| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Ingenic JZ47xx NAND driver |
| * |
| * Copyright (c) 2015 Imagination Technologies |
| * Author: Alex Smith <alex.smith@imgtec.com> |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/io.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_device.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <linux/jz4780-nemc.h> |
| |
| #include "ingenic_ecc.h" |
| |
| #define DRV_NAME "ingenic-nand" |
| |
| struct jz_soc_info { |
| unsigned long data_offset; |
| unsigned long addr_offset; |
| unsigned long cmd_offset; |
| const struct mtd_ooblayout_ops *oob_layout; |
| }; |
| |
| struct ingenic_nand_cs { |
| unsigned int bank; |
| void __iomem *base; |
| }; |
| |
| struct ingenic_nfc { |
| struct device *dev; |
| struct ingenic_ecc *ecc; |
| const struct jz_soc_info *soc_info; |
| struct nand_controller controller; |
| unsigned int num_banks; |
| struct list_head chips; |
| struct ingenic_nand_cs cs[]; |
| }; |
| |
| struct ingenic_nand { |
| struct nand_chip chip; |
| struct list_head chip_list; |
| |
| struct gpio_desc *busy_gpio; |
| struct gpio_desc *wp_gpio; |
| unsigned int reading: 1; |
| }; |
| |
| static inline struct ingenic_nand *to_ingenic_nand(struct mtd_info *mtd) |
| { |
| return container_of(mtd_to_nand(mtd), struct ingenic_nand, chip); |
| } |
| |
| static inline struct ingenic_nfc *to_ingenic_nfc(struct nand_controller *ctrl) |
| { |
| return container_of(ctrl, struct ingenic_nfc, controller); |
| } |
| |
| static int qi_lb60_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section || !ecc->total) |
| return -ERANGE; |
| |
| oobregion->length = ecc->total; |
| oobregion->offset = 12; |
| |
| return 0; |
| } |
| |
| static int qi_lb60_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->length = mtd->oobsize - ecc->total - 12; |
| oobregion->offset = 12 + ecc->total; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops qi_lb60_ooblayout_ops = { |
| .ecc = qi_lb60_ooblayout_ecc, |
| .free = qi_lb60_ooblayout_free, |
| }; |
| |
| static int jz4725b_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section || !ecc->total) |
| return -ERANGE; |
| |
| oobregion->length = ecc->total; |
| oobregion->offset = 3; |
| |
| return 0; |
| } |
| |
| static int jz4725b_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->length = mtd->oobsize - ecc->total - 3; |
| oobregion->offset = 3 + ecc->total; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops jz4725b_ooblayout_ops = { |
| .ecc = jz4725b_ooblayout_ecc, |
| .free = jz4725b_ooblayout_free, |
| }; |
| |
| static void ingenic_nand_ecc_hwctl(struct nand_chip *chip, int mode) |
| { |
| struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); |
| |
| nand->reading = (mode == NAND_ECC_READ); |
| } |
| |
| static int ingenic_nand_ecc_calculate(struct nand_chip *chip, const u8 *dat, |
| u8 *ecc_code) |
| { |
| struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); |
| struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); |
| struct ingenic_ecc_params params; |
| |
| /* |
| * Don't need to generate the ECC when reading, the ECC engine does it |
| * for us as part of decoding/correction. |
| */ |
| if (nand->reading) |
| return 0; |
| |
| params.size = nand->chip.ecc.size; |
| params.bytes = nand->chip.ecc.bytes; |
| params.strength = nand->chip.ecc.strength; |
| |
| return ingenic_ecc_calculate(nfc->ecc, ¶ms, dat, ecc_code); |
| } |
| |
| static int ingenic_nand_ecc_correct(struct nand_chip *chip, u8 *dat, |
| u8 *read_ecc, u8 *calc_ecc) |
| { |
| struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); |
| struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); |
| struct ingenic_ecc_params params; |
| |
| params.size = nand->chip.ecc.size; |
| params.bytes = nand->chip.ecc.bytes; |
| params.strength = nand->chip.ecc.strength; |
| |
| return ingenic_ecc_correct(nfc->ecc, ¶ms, dat, read_ecc); |
| } |
| |
| static int ingenic_nand_attach_chip(struct nand_chip *chip) |
| { |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct ingenic_nfc *nfc = to_ingenic_nfc(chip->controller); |
| int eccbytes; |
| |
| if (chip->ecc.strength == 4) { |
| /* JZ4740 uses 9 bytes of ECC to correct maximum 4 errors */ |
| chip->ecc.bytes = 9; |
| } else { |
| chip->ecc.bytes = fls((1 + 8) * chip->ecc.size) * |
| (chip->ecc.strength / 8); |
| } |
| |
| switch (chip->ecc.engine_type) { |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| if (!nfc->ecc) { |
| dev_err(nfc->dev, "HW ECC selected, but ECC controller not found\n"); |
| return -ENODEV; |
| } |
| |
| chip->ecc.hwctl = ingenic_nand_ecc_hwctl; |
| chip->ecc.calculate = ingenic_nand_ecc_calculate; |
| chip->ecc.correct = ingenic_nand_ecc_correct; |
| fallthrough; |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| dev_info(nfc->dev, "using %s (strength %d, size %d, bytes %d)\n", |
| (nfc->ecc) ? "hardware ECC" : "software ECC", |
| chip->ecc.strength, chip->ecc.size, chip->ecc.bytes); |
| break; |
| case NAND_ECC_ENGINE_TYPE_NONE: |
| dev_info(nfc->dev, "not using ECC\n"); |
| break; |
| default: |
| dev_err(nfc->dev, "ECC mode %d not supported\n", |
| chip->ecc.engine_type); |
| return -EINVAL; |
| } |
| |
| /* The NAND core will generate the ECC layout for SW ECC */ |
| if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) |
| return 0; |
| |
| /* Generate ECC layout. ECC codes are right aligned in the OOB area. */ |
| eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes; |
| |
| if (eccbytes > mtd->oobsize - 2) { |
| dev_err(nfc->dev, |
| "invalid ECC config: required %d ECC bytes, but only %d are available", |
| eccbytes, mtd->oobsize - 2); |
| return -EINVAL; |
| } |
| |
| /* |
| * The generic layout for BBT markers will most likely overlap with our |
| * ECC bytes in the OOB, so move the BBT markers outside the OOB area. |
| */ |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| |
| /* For legacy reasons we use a different layout on the qi,lb60 board. */ |
| if (of_machine_is_compatible("qi,lb60")) |
| mtd_set_ooblayout(mtd, &qi_lb60_ooblayout_ops); |
| else if (nfc->soc_info->oob_layout) |
| mtd_set_ooblayout(mtd, nfc->soc_info->oob_layout); |
| else |
| mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout()); |
| |
| return 0; |
| } |
| |
| static int ingenic_nand_exec_instr(struct nand_chip *chip, |
| struct ingenic_nand_cs *cs, |
| const struct nand_op_instr *instr) |
| { |
| struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); |
| struct ingenic_nfc *nfc = to_ingenic_nfc(chip->controller); |
| unsigned int i; |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| writeb(instr->ctx.cmd.opcode, |
| cs->base + nfc->soc_info->cmd_offset); |
| return 0; |
| case NAND_OP_ADDR_INSTR: |
| for (i = 0; i < instr->ctx.addr.naddrs; i++) |
| writeb(instr->ctx.addr.addrs[i], |
| cs->base + nfc->soc_info->addr_offset); |
| return 0; |
| case NAND_OP_DATA_IN_INSTR: |
| if (instr->ctx.data.force_8bit || |
| !(chip->options & NAND_BUSWIDTH_16)) |
| ioread8_rep(cs->base + nfc->soc_info->data_offset, |
| instr->ctx.data.buf.in, |
| instr->ctx.data.len); |
| else |
| ioread16_rep(cs->base + nfc->soc_info->data_offset, |
| instr->ctx.data.buf.in, |
| instr->ctx.data.len); |
| return 0; |
| case NAND_OP_DATA_OUT_INSTR: |
| if (instr->ctx.data.force_8bit || |
| !(chip->options & NAND_BUSWIDTH_16)) |
| iowrite8_rep(cs->base + nfc->soc_info->data_offset, |
| instr->ctx.data.buf.out, |
| instr->ctx.data.len); |
| else |
| iowrite16_rep(cs->base + nfc->soc_info->data_offset, |
| instr->ctx.data.buf.out, |
| instr->ctx.data.len); |
| return 0; |
| case NAND_OP_WAITRDY_INSTR: |
| if (!nand->busy_gpio) |
| return nand_soft_waitrdy(chip, |
| instr->ctx.waitrdy.timeout_ms); |
| |
| return nand_gpio_waitrdy(chip, nand->busy_gpio, |
| instr->ctx.waitrdy.timeout_ms); |
| default: |
| break; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int ingenic_nand_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, |
| bool check_only) |
| { |
| struct ingenic_nand *nand = to_ingenic_nand(nand_to_mtd(chip)); |
| struct ingenic_nfc *nfc = to_ingenic_nfc(nand->chip.controller); |
| struct ingenic_nand_cs *cs; |
| unsigned int i; |
| int ret = 0; |
| |
| if (check_only) |
| return 0; |
| |
| cs = &nfc->cs[op->cs]; |
| jz4780_nemc_assert(nfc->dev, cs->bank, true); |
| for (i = 0; i < op->ninstrs; i++) { |
| ret = ingenic_nand_exec_instr(chip, cs, &op->instrs[i]); |
| if (ret) |
| break; |
| |
| if (op->instrs[i].delay_ns) |
| ndelay(op->instrs[i].delay_ns); |
| } |
| jz4780_nemc_assert(nfc->dev, cs->bank, false); |
| |
| return ret; |
| } |
| |
| static const struct nand_controller_ops ingenic_nand_controller_ops = { |
| .attach_chip = ingenic_nand_attach_chip, |
| .exec_op = ingenic_nand_exec_op, |
| }; |
| |
| static int ingenic_nand_init_chip(struct platform_device *pdev, |
| struct ingenic_nfc *nfc, |
| struct device_node *np, |
| unsigned int chipnr) |
| { |
| struct device *dev = &pdev->dev; |
| struct ingenic_nand *nand; |
| struct ingenic_nand_cs *cs; |
| struct nand_chip *chip; |
| struct mtd_info *mtd; |
| const __be32 *reg; |
| int ret = 0; |
| |
| cs = &nfc->cs[chipnr]; |
| |
| reg = of_get_property(np, "reg", NULL); |
| if (!reg) |
| return -EINVAL; |
| |
| cs->bank = be32_to_cpu(*reg); |
| |
| jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND); |
| |
| cs->base = devm_platform_ioremap_resource(pdev, chipnr); |
| if (IS_ERR(cs->base)) |
| return PTR_ERR(cs->base); |
| |
| nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); |
| if (!nand) |
| return -ENOMEM; |
| |
| nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN); |
| |
| if (IS_ERR(nand->busy_gpio)) { |
| ret = PTR_ERR(nand->busy_gpio); |
| dev_err(dev, "failed to request busy GPIO: %d\n", ret); |
| return ret; |
| } |
| |
| /* |
| * The rb-gpios semantics was undocumented and qi,lb60 (along with |
| * the ingenic driver) got it wrong. The active state encodes the |
| * NAND ready state, which is high level. Since there's no signal |
| * inverter on this board, it should be active-high. Let's fix that |
| * here for older DTs so we can re-use the generic nand_gpio_waitrdy() |
| * helper, and be consistent with what other drivers do. |
| */ |
| if (of_machine_is_compatible("qi,lb60") && |
| gpiod_is_active_low(nand->busy_gpio)) |
| gpiod_toggle_active_low(nand->busy_gpio); |
| |
| nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); |
| |
| if (IS_ERR(nand->wp_gpio)) { |
| ret = PTR_ERR(nand->wp_gpio); |
| dev_err(dev, "failed to request WP GPIO: %d\n", ret); |
| return ret; |
| } |
| |
| chip = &nand->chip; |
| mtd = nand_to_mtd(chip); |
| mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), |
| cs->bank); |
| if (!mtd->name) |
| return -ENOMEM; |
| mtd->dev.parent = dev; |
| |
| chip->options = NAND_NO_SUBPAGE_WRITE; |
| chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; |
| chip->controller = &nfc->controller; |
| nand_set_flash_node(chip, np); |
| |
| chip->controller->ops = &ingenic_nand_controller_ops; |
| ret = nand_scan(chip, 1); |
| if (ret) |
| return ret; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| nand_cleanup(chip); |
| return ret; |
| } |
| |
| list_add_tail(&nand->chip_list, &nfc->chips); |
| |
| return 0; |
| } |
| |
| static void ingenic_nand_cleanup_chips(struct ingenic_nfc *nfc) |
| { |
| struct ingenic_nand *ingenic_chip; |
| struct nand_chip *chip; |
| int ret; |
| |
| while (!list_empty(&nfc->chips)) { |
| ingenic_chip = list_first_entry(&nfc->chips, |
| struct ingenic_nand, chip_list); |
| chip = &ingenic_chip->chip; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| list_del(&ingenic_chip->chip_list); |
| } |
| } |
| |
| static int ingenic_nand_init_chips(struct ingenic_nfc *nfc, |
| struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct device_node *np; |
| int i = 0; |
| int ret; |
| int num_chips = of_get_child_count(dev->of_node); |
| |
| if (num_chips > nfc->num_banks) { |
| dev_err(dev, "found %d chips but only %d banks\n", |
| num_chips, nfc->num_banks); |
| return -EINVAL; |
| } |
| |
| for_each_child_of_node(dev->of_node, np) { |
| ret = ingenic_nand_init_chip(pdev, nfc, np, i); |
| if (ret) { |
| ingenic_nand_cleanup_chips(nfc); |
| of_node_put(np); |
| return ret; |
| } |
| |
| i++; |
| } |
| |
| return 0; |
| } |
| |
| static int ingenic_nand_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| unsigned int num_banks; |
| struct ingenic_nfc *nfc; |
| int ret; |
| |
| num_banks = jz4780_nemc_num_banks(dev); |
| if (num_banks == 0) { |
| dev_err(dev, "no banks found\n"); |
| return -ENODEV; |
| } |
| |
| nfc = devm_kzalloc(dev, struct_size(nfc, cs, num_banks), GFP_KERNEL); |
| if (!nfc) |
| return -ENOMEM; |
| |
| nfc->soc_info = device_get_match_data(dev); |
| if (!nfc->soc_info) |
| return -EINVAL; |
| |
| /* |
| * Check for ECC HW before we call nand_scan_ident, to prevent us from |
| * having to call it again if the ECC driver returns -EPROBE_DEFER. |
| */ |
| nfc->ecc = of_ingenic_ecc_get(dev->of_node); |
| if (IS_ERR(nfc->ecc)) |
| return PTR_ERR(nfc->ecc); |
| |
| nfc->dev = dev; |
| nfc->num_banks = num_banks; |
| |
| nand_controller_init(&nfc->controller); |
| INIT_LIST_HEAD(&nfc->chips); |
| |
| ret = ingenic_nand_init_chips(nfc, pdev); |
| if (ret) { |
| if (nfc->ecc) |
| ingenic_ecc_release(nfc->ecc); |
| return ret; |
| } |
| |
| platform_set_drvdata(pdev, nfc); |
| return 0; |
| } |
| |
| static int ingenic_nand_remove(struct platform_device *pdev) |
| { |
| struct ingenic_nfc *nfc = platform_get_drvdata(pdev); |
| |
| if (nfc->ecc) |
| ingenic_ecc_release(nfc->ecc); |
| |
| ingenic_nand_cleanup_chips(nfc); |
| |
| return 0; |
| } |
| |
| static const struct jz_soc_info jz4740_soc_info = { |
| .data_offset = 0x00000000, |
| .cmd_offset = 0x00008000, |
| .addr_offset = 0x00010000, |
| }; |
| |
| static const struct jz_soc_info jz4725b_soc_info = { |
| .data_offset = 0x00000000, |
| .cmd_offset = 0x00008000, |
| .addr_offset = 0x00010000, |
| .oob_layout = &jz4725b_ooblayout_ops, |
| }; |
| |
| static const struct jz_soc_info jz4780_soc_info = { |
| .data_offset = 0x00000000, |
| .cmd_offset = 0x00400000, |
| .addr_offset = 0x00800000, |
| }; |
| |
| static const struct of_device_id ingenic_nand_dt_match[] = { |
| { .compatible = "ingenic,jz4740-nand", .data = &jz4740_soc_info }, |
| { .compatible = "ingenic,jz4725b-nand", .data = &jz4725b_soc_info }, |
| { .compatible = "ingenic,jz4780-nand", .data = &jz4780_soc_info }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, ingenic_nand_dt_match); |
| |
| static struct platform_driver ingenic_nand_driver = { |
| .probe = ingenic_nand_probe, |
| .remove = ingenic_nand_remove, |
| .driver = { |
| .name = DRV_NAME, |
| .of_match_table = of_match_ptr(ingenic_nand_dt_match), |
| }, |
| }; |
| module_platform_driver(ingenic_nand_driver); |
| |
| MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>"); |
| MODULE_AUTHOR("Harvey Hunt <harveyhuntnexus@gmail.com>"); |
| MODULE_DESCRIPTION("Ingenic JZ47xx NAND driver"); |
| MODULE_LICENSE("GPL v2"); |