blob: 66fbcd94642d42237476d537e2c5e563556be004 [file] [log] [blame]
/*
* STMicroelectronics st_lsm6dsx i2c controller driver
*
* i2c controller embedded in lsm6dx series can connect up to four
* slave devices using accelerometer sensor as trigger for i2c
* read/write operations. Current implementation relies on SLV0 channel
* for slave configuration and SLV{1,2,3} to read data and push them into
* the hw FIFO
*
* Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/bitfield.h>
#include "st_lsm6dsx.h"
#define ST_LSM6DSX_MAX_SLV_NUM 3
#define ST_LSM6DSX_SLV_ADDR(n, base) ((base) + (n) * 3)
#define ST_LSM6DSX_SLV_SUB_ADDR(n, base) ((base) + 1 + (n) * 3)
#define ST_LSM6DSX_SLV_CONFIG(n, base) ((base) + 2 + (n) * 3)
#define ST_LS6DSX_READ_OP_MASK GENMASK(2, 0)
static const struct st_lsm6dsx_ext_dev_settings st_lsm6dsx_ext_dev_table[] = {
/* LIS2MDL */
{
.i2c_addr = { 0x1e },
.wai = {
.addr = 0x4f,
.val = 0x40,
},
.id = ST_LSM6DSX_ID_MAGN,
.odr_table = {
.reg = {
.addr = 0x60,
.mask = GENMASK(3, 2),
},
.odr_avl[0] = { 10, 0x0 },
.odr_avl[1] = { 20, 0x1 },
.odr_avl[2] = { 50, 0x2 },
.odr_avl[3] = { 100, 0x3 },
},
.fs_table = {
.fs_avl[0] = {
.gain = 1500,
.val = 0x0,
}, /* 1500 uG/LSB */
},
.temp_comp = {
.addr = 0x60,
.mask = BIT(7),
},
.pwr_table = {
.reg = {
.addr = 0x60,
.mask = GENMASK(1, 0),
},
.off_val = 0x2,
.on_val = 0x0,
},
.off_canc = {
.addr = 0x61,
.mask = BIT(1),
},
.bdu = {
.addr = 0x62,
.mask = BIT(4),
},
.out = {
.addr = 0x68,
.len = 6,
},
},
};
static void st_lsm6dsx_shub_wait_complete(struct st_lsm6dsx_hw *hw)
{
struct st_lsm6dsx_sensor *sensor;
sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
msleep((2000U / sensor->odr) + 1);
}
/**
* st_lsm6dsx_shub_read_reg - read i2c controller register
*
* Read st_lsm6dsx i2c controller register
*/
static int st_lsm6dsx_shub_read_reg(struct st_lsm6dsx_hw *hw, u8 addr,
u8 *data, int len)
{
int err;
mutex_lock(&hw->page_lock);
err = st_lsm6dsx_set_page(hw, true);
if (err < 0)
goto out;
err = regmap_bulk_read(hw->regmap, addr, data, len);
st_lsm6dsx_set_page(hw, false);
out:
mutex_unlock(&hw->page_lock);
return err;
}
/**
* st_lsm6dsx_shub_write_reg - write i2c controller register
*
* Write st_lsm6dsx i2c controller register
*/
static int st_lsm6dsx_shub_write_reg(struct st_lsm6dsx_hw *hw, u8 addr,
u8 *data, int len)
{
int err;
mutex_lock(&hw->page_lock);
err = st_lsm6dsx_set_page(hw, true);
if (err < 0)
goto out;
err = regmap_bulk_write(hw->regmap, addr, data, len);
st_lsm6dsx_set_page(hw, false);
out:
mutex_unlock(&hw->page_lock);
return err;
}
static int
st_lsm6dsx_shub_write_reg_with_mask(struct st_lsm6dsx_hw *hw, u8 addr,
u8 mask, u8 val)
{
int err;
mutex_lock(&hw->page_lock);
err = st_lsm6dsx_set_page(hw, true);
if (err < 0)
goto out;
err = regmap_update_bits(hw->regmap, addr, mask, val);
st_lsm6dsx_set_page(hw, false);
out:
mutex_unlock(&hw->page_lock);
return err;
}
static int st_lsm6dsx_shub_master_enable(struct st_lsm6dsx_sensor *sensor,
bool enable)
{
const struct st_lsm6dsx_shub_settings *hub_settings;
struct st_lsm6dsx_hw *hw = sensor->hw;
unsigned int data;
int err;
/* enable acc sensor as trigger */
err = st_lsm6dsx_sensor_set_enable(sensor, enable);
if (err < 0)
return err;
mutex_lock(&hw->page_lock);
hub_settings = &hw->settings->shub_settings;
err = st_lsm6dsx_set_page(hw, true);
if (err < 0)
goto out;
data = ST_LSM6DSX_SHIFT_VAL(enable, hub_settings->master_en.mask);
err = regmap_update_bits(hw->regmap, hub_settings->master_en.addr,
hub_settings->master_en.mask, data);
st_lsm6dsx_set_page(hw, false);
out:
mutex_unlock(&hw->page_lock);
return err;
}
/**
* st_lsm6dsx_shub_read - read data from slave device register
*
* Read data from slave device register. SLV0 is used for
* one-shot read operation
*/
static int
st_lsm6dsx_shub_read(struct st_lsm6dsx_sensor *sensor, u8 addr,
u8 *data, int len)
{
const struct st_lsm6dsx_shub_settings *hub_settings;
struct st_lsm6dsx_hw *hw = sensor->hw;
u8 config[3], slv_addr;
int err;
hub_settings = &hw->settings->shub_settings;
slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr);
config[0] = (sensor->ext_info.addr << 1) | 1;
config[1] = addr;
config[2] = len & ST_LS6DSX_READ_OP_MASK;
err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config,
sizeof(config));
if (err < 0)
return err;
err = st_lsm6dsx_shub_master_enable(sensor, true);
if (err < 0)
return err;
st_lsm6dsx_shub_wait_complete(hw);
err = st_lsm6dsx_shub_read_reg(hw, hub_settings->shub_out, data,
len & ST_LS6DSX_READ_OP_MASK);
st_lsm6dsx_shub_master_enable(sensor, false);
memset(config, 0, sizeof(config));
return st_lsm6dsx_shub_write_reg(hw, slv_addr, config,
sizeof(config));
}
/**
* st_lsm6dsx_shub_write - write data to slave device register
*
* Write data from slave device register. SLV0 is used for
* one-shot write operation
*/
static int
st_lsm6dsx_shub_write(struct st_lsm6dsx_sensor *sensor, u8 addr,
u8 *data, int len)
{
const struct st_lsm6dsx_shub_settings *hub_settings;
struct st_lsm6dsx_hw *hw = sensor->hw;
u8 config[2], slv_addr;
int err, i;
hub_settings = &hw->settings->shub_settings;
if (hub_settings->wr_once.addr) {
unsigned int data;
data = ST_LSM6DSX_SHIFT_VAL(1, hub_settings->wr_once.mask);
err = st_lsm6dsx_shub_write_reg_with_mask(hw,
hub_settings->wr_once.addr,
hub_settings->wr_once.mask,
data);
if (err < 0)
return err;
}
slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr);
config[0] = sensor->ext_info.addr << 1;
for (i = 0 ; i < len; i++) {
config[1] = addr + i;
err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config,
sizeof(config));
if (err < 0)
return err;
err = st_lsm6dsx_shub_write_reg(hw, hub_settings->dw_slv0_addr,
&data[i], 1);
if (err < 0)
return err;
err = st_lsm6dsx_shub_master_enable(sensor, true);
if (err < 0)
return err;
st_lsm6dsx_shub_wait_complete(hw);
st_lsm6dsx_shub_master_enable(sensor, false);
}
memset(config, 0, sizeof(config));
return st_lsm6dsx_shub_write_reg(hw, slv_addr, config, sizeof(config));
}
static int
st_lsm6dsx_shub_write_with_mask(struct st_lsm6dsx_sensor *sensor,
u8 addr, u8 mask, u8 val)
{
int err;
u8 data;
err = st_lsm6dsx_shub_read(sensor, addr, &data, sizeof(data));
if (err < 0)
return err;
data = ((data & ~mask) | (val << __ffs(mask) & mask));
return st_lsm6dsx_shub_write(sensor, addr, &data, sizeof(data));
}
static int
st_lsm6dsx_shub_get_odr_val(struct st_lsm6dsx_sensor *sensor,
u16 odr, u16 *val)
{
const struct st_lsm6dsx_ext_dev_settings *settings;
int i;
settings = sensor->ext_info.settings;
for (i = 0; i < ST_LSM6DSX_ODR_LIST_SIZE; i++)
if (settings->odr_table.odr_avl[i].hz == odr)
break;
if (i == ST_LSM6DSX_ODR_LIST_SIZE)
return -EINVAL;
*val = settings->odr_table.odr_avl[i].val;
return 0;
}
static int
st_lsm6dsx_shub_set_odr(struct st_lsm6dsx_sensor *sensor, u16 odr)
{
const struct st_lsm6dsx_ext_dev_settings *settings;
u16 val;
int err;
err = st_lsm6dsx_shub_get_odr_val(sensor, odr, &val);
if (err < 0)
return err;
settings = sensor->ext_info.settings;
return st_lsm6dsx_shub_write_with_mask(sensor,
settings->odr_table.reg.addr,
settings->odr_table.reg.mask,
val);
}
/* use SLV{1,2,3} for FIFO read operations */
static int
st_lsm6dsx_shub_config_channels(struct st_lsm6dsx_sensor *sensor,
bool enable)
{
const struct st_lsm6dsx_shub_settings *hub_settings;
const struct st_lsm6dsx_ext_dev_settings *settings;
u8 config[9] = {}, enable_mask, slv_addr;
struct st_lsm6dsx_hw *hw = sensor->hw;
struct st_lsm6dsx_sensor *cur_sensor;
int i, j = 0;
hub_settings = &hw->settings->shub_settings;
if (enable)
enable_mask = hw->enable_mask | BIT(sensor->id);
else
enable_mask = hw->enable_mask & ~BIT(sensor->id);
for (i = ST_LSM6DSX_ID_EXT0; i <= ST_LSM6DSX_ID_EXT2; i++) {
if (!hw->iio_devs[i])
continue;
cur_sensor = iio_priv(hw->iio_devs[i]);
if (!(enable_mask & BIT(cur_sensor->id)))
continue;
settings = cur_sensor->ext_info.settings;
config[j] = (sensor->ext_info.addr << 1) | 1;
config[j + 1] = settings->out.addr;
config[j + 2] = (settings->out.len & ST_LS6DSX_READ_OP_MASK) |
hub_settings->batch_en;
j += 3;
}
slv_addr = ST_LSM6DSX_SLV_ADDR(1, hub_settings->slv0_addr);
return st_lsm6dsx_shub_write_reg(hw, slv_addr, config,
sizeof(config));
}
int st_lsm6dsx_shub_set_enable(struct st_lsm6dsx_sensor *sensor, bool enable)
{
const struct st_lsm6dsx_ext_dev_settings *settings;
int err;
err = st_lsm6dsx_shub_config_channels(sensor, enable);
if (err < 0)
return err;
settings = sensor->ext_info.settings;
if (enable) {
err = st_lsm6dsx_shub_set_odr(sensor, sensor->odr);
if (err < 0)
return err;
} else {
err = st_lsm6dsx_shub_write_with_mask(sensor,
settings->odr_table.reg.addr,
settings->odr_table.reg.mask, 0);
if (err < 0)
return err;
}
if (settings->pwr_table.reg.addr) {
u8 val;
val = enable ? settings->pwr_table.on_val
: settings->pwr_table.off_val;
err = st_lsm6dsx_shub_write_with_mask(sensor,
settings->pwr_table.reg.addr,
settings->pwr_table.reg.mask, val);
if (err < 0)
return err;
}
return st_lsm6dsx_shub_master_enable(sensor, enable);
}
static int
st_lsm6dsx_shub_read_oneshot(struct st_lsm6dsx_sensor *sensor,
struct iio_chan_spec const *ch,
int *val)
{
int err, delay, len;
u8 data[4];
err = st_lsm6dsx_shub_set_enable(sensor, true);
if (err < 0)
return err;
delay = 1000000 / sensor->odr;
usleep_range(delay, 2 * delay);
len = min_t(int, sizeof(data), ch->scan_type.realbits >> 3);
err = st_lsm6dsx_shub_read(sensor, ch->address, data, len);
st_lsm6dsx_shub_set_enable(sensor, false);
if (err < 0)
return err;
switch (len) {
case 2:
*val = (s16)le16_to_cpu(*((__le16 *)data));
break;
default:
return -EINVAL;
}
return IIO_VAL_INT;
}
static int
st_lsm6dsx_shub_read_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *ch,
int *val, int *val2, long mask)
{
struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(iio_dev);
if (ret)
break;
ret = st_lsm6dsx_shub_read_oneshot(sensor, ch, val);
iio_device_release_direct_mode(iio_dev);
break;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = sensor->odr;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = sensor->gain;
ret = IIO_VAL_INT_PLUS_MICRO;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int
st_lsm6dsx_shub_write_raw(struct iio_dev *iio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
int err;
err = iio_device_claim_direct_mode(iio_dev);
if (err)
return err;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ: {
u16 data;
err = st_lsm6dsx_shub_get_odr_val(sensor, val, &data);
if (!err)
sensor->odr = val;
break;
}
default:
err = -EINVAL;
break;
}
iio_device_release_direct_mode(iio_dev);
return err;
}
static ssize_t
st_lsm6dsx_shub_sampling_freq_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct st_lsm6dsx_sensor *sensor = iio_priv(dev_get_drvdata(dev));
const struct st_lsm6dsx_ext_dev_settings *settings;
int i, len = 0;
settings = sensor->ext_info.settings;
for (i = 0; i < ST_LSM6DSX_ODR_LIST_SIZE; i++) {
u16 val = settings->odr_table.odr_avl[i].hz;
if (val > 0)
len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
val);
}
buf[len - 1] = '\n';
return len;
}
static ssize_t st_lsm6dsx_shub_scale_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct st_lsm6dsx_sensor *sensor = iio_priv(dev_get_drvdata(dev));
const struct st_lsm6dsx_ext_dev_settings *settings;
int i, len = 0;
settings = sensor->ext_info.settings;
for (i = 0; i < ST_LSM6DSX_FS_LIST_SIZE; i++) {
u16 val = settings->fs_table.fs_avl[i].gain;
if (val > 0)
len += scnprintf(buf + len, PAGE_SIZE - len, "0.%06u ",
val);
}
buf[len - 1] = '\n';
return len;
}
static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(st_lsm6dsx_shub_sampling_freq_avail);
static IIO_DEVICE_ATTR(in_scale_available, 0444,
st_lsm6dsx_shub_scale_avail, NULL, 0);
static struct attribute *st_lsm6dsx_ext_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
&iio_dev_attr_in_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group st_lsm6dsx_ext_attribute_group = {
.attrs = st_lsm6dsx_ext_attributes,
};
static const struct iio_info st_lsm6dsx_ext_info = {
.attrs = &st_lsm6dsx_ext_attribute_group,
.read_raw = st_lsm6dsx_shub_read_raw,
.write_raw = st_lsm6dsx_shub_write_raw,
.hwfifo_set_watermark = st_lsm6dsx_set_watermark,
};
static struct iio_dev *
st_lsm6dsx_shub_alloc_iiodev(struct st_lsm6dsx_hw *hw,
enum st_lsm6dsx_sensor_id id,
const struct st_lsm6dsx_ext_dev_settings *info,
u8 i2c_addr, const char *name)
{
struct iio_chan_spec *ext_channels;
struct st_lsm6dsx_sensor *sensor;
struct iio_dev *iio_dev;
iio_dev = devm_iio_device_alloc(hw->dev, sizeof(*sensor));
if (!iio_dev)
return NULL;
iio_dev->modes = INDIO_DIRECT_MODE;
iio_dev->dev.parent = hw->dev;
iio_dev->info = &st_lsm6dsx_ext_info;
sensor = iio_priv(iio_dev);
sensor->id = id;
sensor->hw = hw;
sensor->odr = info->odr_table.odr_avl[0].hz;
sensor->gain = info->fs_table.fs_avl[0].gain;
sensor->ext_info.settings = info;
sensor->ext_info.addr = i2c_addr;
sensor->watermark = 1;
switch (info->id) {
case ST_LSM6DSX_ID_MAGN: {
const struct iio_chan_spec magn_channels[] = {
ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr,
IIO_MOD_X, 0),
ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr + 2,
IIO_MOD_Y, 1),
ST_LSM6DSX_CHANNEL(IIO_MAGN, info->out.addr + 4,
IIO_MOD_Z, 2),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
ext_channels = devm_kzalloc(hw->dev, sizeof(magn_channels),
GFP_KERNEL);
if (!ext_channels)
return NULL;
memcpy(ext_channels, magn_channels, sizeof(magn_channels));
iio_dev->available_scan_masks = st_lsm6dsx_available_scan_masks;
iio_dev->channels = ext_channels;
iio_dev->num_channels = ARRAY_SIZE(magn_channels);
scnprintf(sensor->name, sizeof(sensor->name), "%s_magn",
name);
break;
}
default:
return NULL;
}
iio_dev->name = sensor->name;
return iio_dev;
}
static int st_lsm6dsx_shub_init_device(struct st_lsm6dsx_sensor *sensor)
{
const struct st_lsm6dsx_ext_dev_settings *settings;
int err;
settings = sensor->ext_info.settings;
if (settings->bdu.addr) {
err = st_lsm6dsx_shub_write_with_mask(sensor,
settings->bdu.addr,
settings->bdu.mask, 1);
if (err < 0)
return err;
}
if (settings->temp_comp.addr) {
err = st_lsm6dsx_shub_write_with_mask(sensor,
settings->temp_comp.addr,
settings->temp_comp.mask, 1);
if (err < 0)
return err;
}
if (settings->off_canc.addr) {
err = st_lsm6dsx_shub_write_with_mask(sensor,
settings->off_canc.addr,
settings->off_canc.mask, 1);
if (err < 0)
return err;
}
return 0;
}
static int
st_lsm6dsx_shub_check_wai(struct st_lsm6dsx_hw *hw, u8 *i2c_addr,
const struct st_lsm6dsx_ext_dev_settings *settings)
{
const struct st_lsm6dsx_shub_settings *hub_settings;
struct st_lsm6dsx_sensor *sensor;
u8 config[3], data, slv_addr;
bool found = false;
int i, err;
hub_settings = &hw->settings->shub_settings;
slv_addr = ST_LSM6DSX_SLV_ADDR(0, hub_settings->slv0_addr);
sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
for (i = 0; i < ARRAY_SIZE(settings->i2c_addr); i++) {
if (!settings->i2c_addr[i])
continue;
/* read wai slave register */
config[0] = (settings->i2c_addr[i] << 1) | 0x1;
config[1] = settings->wai.addr;
config[2] = 0x1;
err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config,
sizeof(config));
if (err < 0)
return err;
err = st_lsm6dsx_shub_master_enable(sensor, true);
if (err < 0)
return err;
st_lsm6dsx_shub_wait_complete(hw);
err = st_lsm6dsx_shub_read_reg(hw,
hub_settings->shub_out,
&data, sizeof(data));
st_lsm6dsx_shub_master_enable(sensor, false);
if (err < 0)
return err;
if (data != settings->wai.val)
continue;
*i2c_addr = settings->i2c_addr[i];
found = true;
break;
}
/* reset SLV0 channel */
memset(config, 0, sizeof(config));
err = st_lsm6dsx_shub_write_reg(hw, slv_addr, config,
sizeof(config));
if (err < 0)
return err;
return found ? 0 : -ENODEV;
}
int st_lsm6dsx_shub_probe(struct st_lsm6dsx_hw *hw, const char *name)
{
enum st_lsm6dsx_sensor_id id = ST_LSM6DSX_ID_EXT0;
struct st_lsm6dsx_sensor *sensor;
int err, i, num_ext_dev = 0;
u8 i2c_addr = 0;
for (i = 0; i < ARRAY_SIZE(st_lsm6dsx_ext_dev_table); i++) {
err = st_lsm6dsx_shub_check_wai(hw, &i2c_addr,
&st_lsm6dsx_ext_dev_table[i]);
if (err == -ENODEV)
continue;
else if (err < 0)
return err;
hw->iio_devs[id] = st_lsm6dsx_shub_alloc_iiodev(hw, id,
&st_lsm6dsx_ext_dev_table[i],
i2c_addr, name);
if (!hw->iio_devs[id])
return -ENOMEM;
sensor = iio_priv(hw->iio_devs[id]);
err = st_lsm6dsx_shub_init_device(sensor);
if (err < 0)
return err;
if (++num_ext_dev >= ST_LSM6DSX_MAX_SLV_NUM)
break;
id++;
}
return 0;
}