| /* SPDX-License-Identifier: LGPL-2.1 OR MIT */ |
| /* |
| * rseq.h |
| * |
| * (C) Copyright 2016-2018 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com> |
| */ |
| |
| #ifndef RSEQ_H |
| #define RSEQ_H |
| |
| #include <stdint.h> |
| #include <stdbool.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <sched.h> |
| #include <errno.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <stddef.h> |
| #include "rseq-abi.h" |
| #include "compiler.h" |
| |
| #ifndef rseq_sizeof_field |
| #define rseq_sizeof_field(TYPE, MEMBER) sizeof((((TYPE *)0)->MEMBER)) |
| #endif |
| |
| #ifndef rseq_offsetofend |
| #define rseq_offsetofend(TYPE, MEMBER) \ |
| (offsetof(TYPE, MEMBER) + rseq_sizeof_field(TYPE, MEMBER)) |
| #endif |
| |
| /* |
| * Empty code injection macros, override when testing. |
| * It is important to consider that the ASM injection macros need to be |
| * fully reentrant (e.g. do not modify the stack). |
| */ |
| #ifndef RSEQ_INJECT_ASM |
| #define RSEQ_INJECT_ASM(n) |
| #endif |
| |
| #ifndef RSEQ_INJECT_C |
| #define RSEQ_INJECT_C(n) |
| #endif |
| |
| #ifndef RSEQ_INJECT_INPUT |
| #define RSEQ_INJECT_INPUT |
| #endif |
| |
| #ifndef RSEQ_INJECT_CLOBBER |
| #define RSEQ_INJECT_CLOBBER |
| #endif |
| |
| #ifndef RSEQ_INJECT_FAILED |
| #define RSEQ_INJECT_FAILED |
| #endif |
| |
| #include "rseq-thread-pointer.h" |
| |
| /* Offset from the thread pointer to the rseq area. */ |
| extern ptrdiff_t rseq_offset; |
| |
| /* |
| * Size of the registered rseq area. 0 if the registration was |
| * unsuccessful. |
| */ |
| extern unsigned int rseq_size; |
| |
| /* Flags used during rseq registration. */ |
| extern unsigned int rseq_flags; |
| |
| /* |
| * rseq feature size supported by the kernel. 0 if the registration was |
| * unsuccessful. |
| */ |
| extern unsigned int rseq_feature_size; |
| |
| enum rseq_mo { |
| RSEQ_MO_RELAXED = 0, |
| RSEQ_MO_CONSUME = 1, /* Unused */ |
| RSEQ_MO_ACQUIRE = 2, /* Unused */ |
| RSEQ_MO_RELEASE = 3, |
| RSEQ_MO_ACQ_REL = 4, /* Unused */ |
| RSEQ_MO_SEQ_CST = 5, /* Unused */ |
| }; |
| |
| enum rseq_percpu_mode { |
| RSEQ_PERCPU_CPU_ID = 0, |
| RSEQ_PERCPU_MM_CID = 1, |
| }; |
| |
| static inline struct rseq_abi *rseq_get_abi(void) |
| { |
| return (struct rseq_abi *) ((uintptr_t) rseq_thread_pointer() + rseq_offset); |
| } |
| |
| #define rseq_likely(x) __builtin_expect(!!(x), 1) |
| #define rseq_unlikely(x) __builtin_expect(!!(x), 0) |
| #define rseq_barrier() __asm__ __volatile__("" : : : "memory") |
| |
| #define RSEQ_ACCESS_ONCE(x) (*(__volatile__ __typeof__(x) *)&(x)) |
| #define RSEQ_WRITE_ONCE(x, v) __extension__ ({ RSEQ_ACCESS_ONCE(x) = (v); }) |
| #define RSEQ_READ_ONCE(x) RSEQ_ACCESS_ONCE(x) |
| |
| #define __rseq_str_1(x) #x |
| #define __rseq_str(x) __rseq_str_1(x) |
| |
| #define rseq_log(fmt, args...) \ |
| fprintf(stderr, fmt "(in %s() at " __FILE__ ":" __rseq_str(__LINE__)"\n", \ |
| ## args, __func__) |
| |
| #define rseq_bug(fmt, args...) \ |
| do { \ |
| rseq_log(fmt, ##args); \ |
| abort(); \ |
| } while (0) |
| |
| #if defined(__x86_64__) || defined(__i386__) |
| #include <rseq-x86.h> |
| #elif defined(__ARMEL__) |
| #include <rseq-arm.h> |
| #elif defined (__AARCH64EL__) |
| #include <rseq-arm64.h> |
| #elif defined(__PPC__) |
| #include <rseq-ppc.h> |
| #elif defined(__mips__) |
| #include <rseq-mips.h> |
| #elif defined(__s390__) |
| #include <rseq-s390.h> |
| #elif defined(__riscv) |
| #include <rseq-riscv.h> |
| #else |
| #error unsupported target |
| #endif |
| |
| /* |
| * Register rseq for the current thread. This needs to be called once |
| * by any thread which uses restartable sequences, before they start |
| * using restartable sequences, to ensure restartable sequences |
| * succeed. A restartable sequence executed from a non-registered |
| * thread will always fail. |
| */ |
| int rseq_register_current_thread(void); |
| |
| /* |
| * Unregister rseq for current thread. |
| */ |
| int rseq_unregister_current_thread(void); |
| |
| /* |
| * Restartable sequence fallback for reading the current CPU number. |
| */ |
| int32_t rseq_fallback_current_cpu(void); |
| |
| /* |
| * Restartable sequence fallback for reading the current node number. |
| */ |
| int32_t rseq_fallback_current_node(void); |
| |
| /* |
| * Values returned can be either the current CPU number, -1 (rseq is |
| * uninitialized), or -2 (rseq initialization has failed). |
| */ |
| static inline int32_t rseq_current_cpu_raw(void) |
| { |
| return RSEQ_ACCESS_ONCE(rseq_get_abi()->cpu_id); |
| } |
| |
| /* |
| * Returns a possible CPU number, which is typically the current CPU. |
| * The returned CPU number can be used to prepare for an rseq critical |
| * section, which will confirm whether the cpu number is indeed the |
| * current one, and whether rseq is initialized. |
| * |
| * The CPU number returned by rseq_cpu_start should always be validated |
| * by passing it to a rseq asm sequence, or by comparing it to the |
| * return value of rseq_current_cpu_raw() if the rseq asm sequence |
| * does not need to be invoked. |
| */ |
| static inline uint32_t rseq_cpu_start(void) |
| { |
| return RSEQ_ACCESS_ONCE(rseq_get_abi()->cpu_id_start); |
| } |
| |
| static inline uint32_t rseq_current_cpu(void) |
| { |
| int32_t cpu; |
| |
| cpu = rseq_current_cpu_raw(); |
| if (rseq_unlikely(cpu < 0)) |
| cpu = rseq_fallback_current_cpu(); |
| return cpu; |
| } |
| |
| static inline bool rseq_node_id_available(void) |
| { |
| return (int) rseq_feature_size >= rseq_offsetofend(struct rseq_abi, node_id); |
| } |
| |
| /* |
| * Current NUMA node number. |
| */ |
| static inline uint32_t rseq_current_node_id(void) |
| { |
| assert(rseq_node_id_available()); |
| return RSEQ_ACCESS_ONCE(rseq_get_abi()->node_id); |
| } |
| |
| static inline bool rseq_mm_cid_available(void) |
| { |
| return (int) rseq_feature_size >= rseq_offsetofend(struct rseq_abi, mm_cid); |
| } |
| |
| static inline uint32_t rseq_current_mm_cid(void) |
| { |
| return RSEQ_ACCESS_ONCE(rseq_get_abi()->mm_cid); |
| } |
| |
| static inline void rseq_clear_rseq_cs(void) |
| { |
| RSEQ_WRITE_ONCE(rseq_get_abi()->rseq_cs.arch.ptr, 0); |
| } |
| |
| /* |
| * rseq_prepare_unload() should be invoked by each thread executing a rseq |
| * critical section at least once between their last critical section and |
| * library unload of the library defining the rseq critical section (struct |
| * rseq_cs) or the code referred to by the struct rseq_cs start_ip and |
| * post_commit_offset fields. This also applies to use of rseq in code |
| * generated by JIT: rseq_prepare_unload() should be invoked at least once by |
| * each thread executing a rseq critical section before reclaim of the memory |
| * holding the struct rseq_cs or reclaim of the code pointed to by struct |
| * rseq_cs start_ip and post_commit_offset fields. |
| */ |
| static inline void rseq_prepare_unload(void) |
| { |
| rseq_clear_rseq_cs(); |
| } |
| |
| static inline __attribute__((always_inline)) |
| int rseq_cmpeqv_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, |
| intptr_t *v, intptr_t expect, |
| intptr_t newv, int cpu) |
| { |
| if (rseq_mo != RSEQ_MO_RELAXED) |
| return -1; |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_cmpeqv_storev_relaxed_cpu_id(v, expect, newv, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_cmpeqv_storev_relaxed_mm_cid(v, expect, newv, cpu); |
| } |
| return -1; |
| } |
| |
| /* |
| * Compare @v against @expectnot. When it does _not_ match, load @v |
| * into @load, and store the content of *@v + voffp into @v. |
| */ |
| static inline __attribute__((always_inline)) |
| int rseq_cmpnev_storeoffp_load(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, |
| intptr_t *v, intptr_t expectnot, long voffp, intptr_t *load, |
| int cpu) |
| { |
| if (rseq_mo != RSEQ_MO_RELAXED) |
| return -1; |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_cmpnev_storeoffp_load_relaxed_cpu_id(v, expectnot, voffp, load, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_cmpnev_storeoffp_load_relaxed_mm_cid(v, expectnot, voffp, load, cpu); |
| } |
| return -1; |
| } |
| |
| static inline __attribute__((always_inline)) |
| int rseq_addv(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, |
| intptr_t *v, intptr_t count, int cpu) |
| { |
| if (rseq_mo != RSEQ_MO_RELAXED) |
| return -1; |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_addv_relaxed_cpu_id(v, count, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_addv_relaxed_mm_cid(v, count, cpu); |
| } |
| return -1; |
| } |
| |
| #ifdef RSEQ_ARCH_HAS_OFFSET_DEREF_ADDV |
| /* |
| * pval = *(ptr+off) |
| * *pval += inc; |
| */ |
| static inline __attribute__((always_inline)) |
| int rseq_offset_deref_addv(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, |
| intptr_t *ptr, long off, intptr_t inc, int cpu) |
| { |
| if (rseq_mo != RSEQ_MO_RELAXED) |
| return -1; |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_offset_deref_addv_relaxed_cpu_id(ptr, off, inc, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_offset_deref_addv_relaxed_mm_cid(ptr, off, inc, cpu); |
| } |
| return -1; |
| } |
| #endif |
| |
| static inline __attribute__((always_inline)) |
| int rseq_cmpeqv_trystorev_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, |
| intptr_t *v, intptr_t expect, |
| intptr_t *v2, intptr_t newv2, |
| intptr_t newv, int cpu) |
| { |
| switch (rseq_mo) { |
| case RSEQ_MO_RELAXED: |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_cmpeqv_trystorev_storev_relaxed_cpu_id(v, expect, v2, newv2, newv, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_cmpeqv_trystorev_storev_relaxed_mm_cid(v, expect, v2, newv2, newv, cpu); |
| } |
| return -1; |
| case RSEQ_MO_RELEASE: |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_cmpeqv_trystorev_storev_release_cpu_id(v, expect, v2, newv2, newv, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_cmpeqv_trystorev_storev_release_mm_cid(v, expect, v2, newv2, newv, cpu); |
| } |
| return -1; |
| default: |
| return -1; |
| } |
| } |
| |
| static inline __attribute__((always_inline)) |
| int rseq_cmpeqv_cmpeqv_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, |
| intptr_t *v, intptr_t expect, |
| intptr_t *v2, intptr_t expect2, |
| intptr_t newv, int cpu) |
| { |
| if (rseq_mo != RSEQ_MO_RELAXED) |
| return -1; |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_cmpeqv_cmpeqv_storev_relaxed_cpu_id(v, expect, v2, expect2, newv, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_cmpeqv_cmpeqv_storev_relaxed_mm_cid(v, expect, v2, expect2, newv, cpu); |
| } |
| return -1; |
| } |
| |
| static inline __attribute__((always_inline)) |
| int rseq_cmpeqv_trymemcpy_storev(enum rseq_mo rseq_mo, enum rseq_percpu_mode percpu_mode, |
| intptr_t *v, intptr_t expect, |
| void *dst, void *src, size_t len, |
| intptr_t newv, int cpu) |
| { |
| switch (rseq_mo) { |
| case RSEQ_MO_RELAXED: |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_cmpeqv_trymemcpy_storev_relaxed_cpu_id(v, expect, dst, src, len, newv, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_cmpeqv_trymemcpy_storev_relaxed_mm_cid(v, expect, dst, src, len, newv, cpu); |
| } |
| return -1; |
| case RSEQ_MO_RELEASE: |
| switch (percpu_mode) { |
| case RSEQ_PERCPU_CPU_ID: |
| return rseq_cmpeqv_trymemcpy_storev_release_cpu_id(v, expect, dst, src, len, newv, cpu); |
| case RSEQ_PERCPU_MM_CID: |
| return rseq_cmpeqv_trymemcpy_storev_release_mm_cid(v, expect, dst, src, len, newv, cpu); |
| } |
| return -1; |
| default: |
| return -1; |
| } |
| } |
| |
| #endif /* RSEQ_H_ */ |