| // SPDX-License-Identifier: GPL-2.0-only |
| /* Common code for 32 and 64-bit NUMA */ |
| #include <linux/acpi.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/memblock.h> |
| #include <linux/mmzone.h> |
| #include <linux/ctype.h> |
| #include <linux/nodemask.h> |
| #include <linux/sched.h> |
| #include <linux/topology.h> |
| |
| #include <asm/e820/api.h> |
| #include <asm/proto.h> |
| #include <asm/dma.h> |
| #include <asm/amd_nb.h> |
| |
| #include "numa_internal.h" |
| |
| int numa_off; |
| nodemask_t numa_nodes_parsed __initdata; |
| |
| struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; |
| EXPORT_SYMBOL(node_data); |
| |
| static struct numa_meminfo numa_meminfo __initdata_or_meminfo; |
| static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo; |
| |
| static int numa_distance_cnt; |
| static u8 *numa_distance; |
| |
| static __init int numa_setup(char *opt) |
| { |
| if (!opt) |
| return -EINVAL; |
| if (!strncmp(opt, "off", 3)) |
| numa_off = 1; |
| #ifdef CONFIG_NUMA_EMU |
| if (!strncmp(opt, "fake=", 5)) |
| numa_emu_cmdline(opt + 5); |
| #endif |
| #ifdef CONFIG_ACPI_NUMA |
| if (!strncmp(opt, "noacpi", 6)) |
| acpi_numa = -1; |
| #endif |
| return 0; |
| } |
| early_param("numa", numa_setup); |
| |
| /* |
| * apicid, cpu, node mappings |
| */ |
| s16 __apicid_to_node[MAX_LOCAL_APIC] = { |
| [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE |
| }; |
| |
| int numa_cpu_node(int cpu) |
| { |
| int apicid = early_per_cpu(x86_cpu_to_apicid, cpu); |
| |
| if (apicid != BAD_APICID) |
| return __apicid_to_node[apicid]; |
| return NUMA_NO_NODE; |
| } |
| |
| cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; |
| EXPORT_SYMBOL(node_to_cpumask_map); |
| |
| /* |
| * Map cpu index to node index |
| */ |
| DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE); |
| EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map); |
| |
| void numa_set_node(int cpu, int node) |
| { |
| int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map); |
| |
| /* early setting, no percpu area yet */ |
| if (cpu_to_node_map) { |
| cpu_to_node_map[cpu] = node; |
| return; |
| } |
| |
| #ifdef CONFIG_DEBUG_PER_CPU_MAPS |
| if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) { |
| printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu); |
| dump_stack(); |
| return; |
| } |
| #endif |
| per_cpu(x86_cpu_to_node_map, cpu) = node; |
| |
| set_cpu_numa_node(cpu, node); |
| } |
| |
| void numa_clear_node(int cpu) |
| { |
| numa_set_node(cpu, NUMA_NO_NODE); |
| } |
| |
| /* |
| * Allocate node_to_cpumask_map based on number of available nodes |
| * Requires node_possible_map to be valid. |
| * |
| * Note: cpumask_of_node() is not valid until after this is done. |
| * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.) |
| */ |
| void __init setup_node_to_cpumask_map(void) |
| { |
| unsigned int node; |
| |
| /* setup nr_node_ids if not done yet */ |
| if (nr_node_ids == MAX_NUMNODES) |
| setup_nr_node_ids(); |
| |
| /* allocate the map */ |
| for (node = 0; node < nr_node_ids; node++) |
| alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); |
| |
| /* cpumask_of_node() will now work */ |
| pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids); |
| } |
| |
| static int __init numa_add_memblk_to(int nid, u64 start, u64 end, |
| struct numa_meminfo *mi) |
| { |
| /* ignore zero length blks */ |
| if (start == end) |
| return 0; |
| |
| /* whine about and ignore invalid blks */ |
| if (start > end || nid < 0 || nid >= MAX_NUMNODES) { |
| pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n", |
| nid, start, end - 1); |
| return 0; |
| } |
| |
| if (mi->nr_blks >= NR_NODE_MEMBLKS) { |
| pr_err("too many memblk ranges\n"); |
| return -EINVAL; |
| } |
| |
| mi->blk[mi->nr_blks].start = start; |
| mi->blk[mi->nr_blks].end = end; |
| mi->blk[mi->nr_blks].nid = nid; |
| mi->nr_blks++; |
| return 0; |
| } |
| |
| /** |
| * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo |
| * @idx: Index of memblk to remove |
| * @mi: numa_meminfo to remove memblk from |
| * |
| * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and |
| * decrementing @mi->nr_blks. |
| */ |
| void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi) |
| { |
| mi->nr_blks--; |
| memmove(&mi->blk[idx], &mi->blk[idx + 1], |
| (mi->nr_blks - idx) * sizeof(mi->blk[0])); |
| } |
| |
| /** |
| * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another |
| * @dst: numa_meminfo to append block to |
| * @idx: Index of memblk to remove |
| * @src: numa_meminfo to remove memblk from |
| */ |
| static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx, |
| struct numa_meminfo *src) |
| { |
| dst->blk[dst->nr_blks++] = src->blk[idx]; |
| numa_remove_memblk_from(idx, src); |
| } |
| |
| /** |
| * numa_add_memblk - Add one numa_memblk to numa_meminfo |
| * @nid: NUMA node ID of the new memblk |
| * @start: Start address of the new memblk |
| * @end: End address of the new memblk |
| * |
| * Add a new memblk to the default numa_meminfo. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int __init numa_add_memblk(int nid, u64 start, u64 end) |
| { |
| return numa_add_memblk_to(nid, start, end, &numa_meminfo); |
| } |
| |
| /* Allocate NODE_DATA for a node on the local memory */ |
| static void __init alloc_node_data(int nid) |
| { |
| const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE); |
| u64 nd_pa; |
| void *nd; |
| int tnid; |
| |
| /* |
| * Allocate node data. Try node-local memory and then any node. |
| * Never allocate in DMA zone. |
| */ |
| nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); |
| if (!nd_pa) { |
| pr_err("Cannot find %zu bytes in any node (initial node: %d)\n", |
| nd_size, nid); |
| return; |
| } |
| nd = __va(nd_pa); |
| |
| /* report and initialize */ |
| printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid, |
| nd_pa, nd_pa + nd_size - 1); |
| tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); |
| if (tnid != nid) |
| printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nid, tnid); |
| |
| node_data[nid] = nd; |
| memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); |
| |
| node_set_online(nid); |
| } |
| |
| /** |
| * numa_cleanup_meminfo - Cleanup a numa_meminfo |
| * @mi: numa_meminfo to clean up |
| * |
| * Sanitize @mi by merging and removing unnecessary memblks. Also check for |
| * conflicts and clear unused memblks. |
| * |
| * RETURNS: |
| * 0 on success, -errno on failure. |
| */ |
| int __init numa_cleanup_meminfo(struct numa_meminfo *mi) |
| { |
| const u64 low = 0; |
| const u64 high = PFN_PHYS(max_pfn); |
| int i, j, k; |
| |
| /* first, trim all entries */ |
| for (i = 0; i < mi->nr_blks; i++) { |
| struct numa_memblk *bi = &mi->blk[i]; |
| |
| /* move / save reserved memory ranges */ |
| if (!memblock_overlaps_region(&memblock.memory, |
| bi->start, bi->end - bi->start)) { |
| numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi); |
| continue; |
| } |
| |
| /* make sure all non-reserved blocks are inside the limits */ |
| bi->start = max(bi->start, low); |
| bi->end = min(bi->end, high); |
| |
| /* and there's no empty block */ |
| if (bi->start >= bi->end) |
| numa_remove_memblk_from(i--, mi); |
| } |
| |
| /* merge neighboring / overlapping entries */ |
| for (i = 0; i < mi->nr_blks; i++) { |
| struct numa_memblk *bi = &mi->blk[i]; |
| |
| for (j = i + 1; j < mi->nr_blks; j++) { |
| struct numa_memblk *bj = &mi->blk[j]; |
| u64 start, end; |
| |
| /* |
| * See whether there are overlapping blocks. Whine |
| * about but allow overlaps of the same nid. They |
| * will be merged below. |
| */ |
| if (bi->end > bj->start && bi->start < bj->end) { |
| if (bi->nid != bj->nid) { |
| pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n", |
| bi->nid, bi->start, bi->end - 1, |
| bj->nid, bj->start, bj->end - 1); |
| return -EINVAL; |
| } |
| pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n", |
| bi->nid, bi->start, bi->end - 1, |
| bj->start, bj->end - 1); |
| } |
| |
| /* |
| * Join together blocks on the same node, holes |
| * between which don't overlap with memory on other |
| * nodes. |
| */ |
| if (bi->nid != bj->nid) |
| continue; |
| start = min(bi->start, bj->start); |
| end = max(bi->end, bj->end); |
| for (k = 0; k < mi->nr_blks; k++) { |
| struct numa_memblk *bk = &mi->blk[k]; |
| |
| if (bi->nid == bk->nid) |
| continue; |
| if (start < bk->end && end > bk->start) |
| break; |
| } |
| if (k < mi->nr_blks) |
| continue; |
| printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n", |
| bi->nid, bi->start, bi->end - 1, bj->start, |
| bj->end - 1, start, end - 1); |
| bi->start = start; |
| bi->end = end; |
| numa_remove_memblk_from(j--, mi); |
| } |
| } |
| |
| /* clear unused ones */ |
| for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) { |
| mi->blk[i].start = mi->blk[i].end = 0; |
| mi->blk[i].nid = NUMA_NO_NODE; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Set nodes, which have memory in @mi, in *@nodemask. |
| */ |
| static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask, |
| const struct numa_meminfo *mi) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(mi->blk); i++) |
| if (mi->blk[i].start != mi->blk[i].end && |
| mi->blk[i].nid != NUMA_NO_NODE) |
| node_set(mi->blk[i].nid, *nodemask); |
| } |
| |
| /** |
| * numa_reset_distance - Reset NUMA distance table |
| * |
| * The current table is freed. The next numa_set_distance() call will |
| * create a new one. |
| */ |
| void __init numa_reset_distance(void) |
| { |
| size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]); |
| |
| /* numa_distance could be 1LU marking allocation failure, test cnt */ |
| if (numa_distance_cnt) |
| memblock_free(__pa(numa_distance), size); |
| numa_distance_cnt = 0; |
| numa_distance = NULL; /* enable table creation */ |
| } |
| |
| static int __init numa_alloc_distance(void) |
| { |
| nodemask_t nodes_parsed; |
| size_t size; |
| int i, j, cnt = 0; |
| u64 phys; |
| |
| /* size the new table and allocate it */ |
| nodes_parsed = numa_nodes_parsed; |
| numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo); |
| |
| for_each_node_mask(i, nodes_parsed) |
| cnt = i; |
| cnt++; |
| size = cnt * cnt * sizeof(numa_distance[0]); |
| |
| phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped), |
| size, PAGE_SIZE); |
| if (!phys) { |
| pr_warn("Warning: can't allocate distance table!\n"); |
| /* don't retry until explicitly reset */ |
| numa_distance = (void *)1LU; |
| return -ENOMEM; |
| } |
| memblock_reserve(phys, size); |
| |
| numa_distance = __va(phys); |
| numa_distance_cnt = cnt; |
| |
| /* fill with the default distances */ |
| for (i = 0; i < cnt; i++) |
| for (j = 0; j < cnt; j++) |
| numa_distance[i * cnt + j] = i == j ? |
| LOCAL_DISTANCE : REMOTE_DISTANCE; |
| printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt); |
| |
| return 0; |
| } |
| |
| /** |
| * numa_set_distance - Set NUMA distance from one NUMA to another |
| * @from: the 'from' node to set distance |
| * @to: the 'to' node to set distance |
| * @distance: NUMA distance |
| * |
| * Set the distance from node @from to @to to @distance. If distance table |
| * doesn't exist, one which is large enough to accommodate all the currently |
| * known nodes will be created. |
| * |
| * If such table cannot be allocated, a warning is printed and further |
| * calls are ignored until the distance table is reset with |
| * numa_reset_distance(). |
| * |
| * If @from or @to is higher than the highest known node or lower than zero |
| * at the time of table creation or @distance doesn't make sense, the call |
| * is ignored. |
| * This is to allow simplification of specific NUMA config implementations. |
| */ |
| void __init numa_set_distance(int from, int to, int distance) |
| { |
| if (!numa_distance && numa_alloc_distance() < 0) |
| return; |
| |
| if (from >= numa_distance_cnt || to >= numa_distance_cnt || |
| from < 0 || to < 0) { |
| pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n", |
| from, to, distance); |
| return; |
| } |
| |
| if ((u8)distance != distance || |
| (from == to && distance != LOCAL_DISTANCE)) { |
| pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n", |
| from, to, distance); |
| return; |
| } |
| |
| numa_distance[from * numa_distance_cnt + to] = distance; |
| } |
| |
| int __node_distance(int from, int to) |
| { |
| if (from >= numa_distance_cnt || to >= numa_distance_cnt) |
| return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE; |
| return numa_distance[from * numa_distance_cnt + to]; |
| } |
| EXPORT_SYMBOL(__node_distance); |
| |
| /* |
| * Sanity check to catch more bad NUMA configurations (they are amazingly |
| * common). Make sure the nodes cover all memory. |
| */ |
| static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi) |
| { |
| u64 numaram, e820ram; |
| int i; |
| |
| numaram = 0; |
| for (i = 0; i < mi->nr_blks; i++) { |
| u64 s = mi->blk[i].start >> PAGE_SHIFT; |
| u64 e = mi->blk[i].end >> PAGE_SHIFT; |
| numaram += e - s; |
| numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e); |
| if ((s64)numaram < 0) |
| numaram = 0; |
| } |
| |
| e820ram = max_pfn - absent_pages_in_range(0, max_pfn); |
| |
| /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ |
| if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) { |
| printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n", |
| (numaram << PAGE_SHIFT) >> 20, |
| (e820ram << PAGE_SHIFT) >> 20); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Mark all currently memblock-reserved physical memory (which covers the |
| * kernel's own memory ranges) as hot-unswappable. |
| */ |
| static void __init numa_clear_kernel_node_hotplug(void) |
| { |
| nodemask_t reserved_nodemask = NODE_MASK_NONE; |
| struct memblock_region *mb_region; |
| int i; |
| |
| /* |
| * We have to do some preprocessing of memblock regions, to |
| * make them suitable for reservation. |
| * |
| * At this time, all memory regions reserved by memblock are |
| * used by the kernel, but those regions are not split up |
| * along node boundaries yet, and don't necessarily have their |
| * node ID set yet either. |
| * |
| * So iterate over all memory known to the x86 architecture, |
| * and use those ranges to set the nid in memblock.reserved. |
| * This will split up the memblock regions along node |
| * boundaries and will set the node IDs as well. |
| */ |
| for (i = 0; i < numa_meminfo.nr_blks; i++) { |
| struct numa_memblk *mb = numa_meminfo.blk + i; |
| int ret; |
| |
| ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid); |
| WARN_ON_ONCE(ret); |
| } |
| |
| /* |
| * Now go over all reserved memblock regions, to construct a |
| * node mask of all kernel reserved memory areas. |
| * |
| * [ Note, when booting with mem=nn[kMG] or in a kdump kernel, |
| * numa_meminfo might not include all memblock.reserved |
| * memory ranges, because quirks such as trim_snb_memory() |
| * reserve specific pages for Sandy Bridge graphics. ] |
| */ |
| for_each_memblock(reserved, mb_region) { |
| if (mb_region->nid != MAX_NUMNODES) |
| node_set(mb_region->nid, reserved_nodemask); |
| } |
| |
| /* |
| * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory |
| * belonging to the reserved node mask. |
| * |
| * Note that this will include memory regions that reside |
| * on nodes that contain kernel memory - entire nodes |
| * become hot-unpluggable: |
| */ |
| for (i = 0; i < numa_meminfo.nr_blks; i++) { |
| struct numa_memblk *mb = numa_meminfo.blk + i; |
| |
| if (!node_isset(mb->nid, reserved_nodemask)) |
| continue; |
| |
| memblock_clear_hotplug(mb->start, mb->end - mb->start); |
| } |
| } |
| |
| static int __init numa_register_memblks(struct numa_meminfo *mi) |
| { |
| unsigned long uninitialized_var(pfn_align); |
| int i, nid; |
| |
| /* Account for nodes with cpus and no memory */ |
| node_possible_map = numa_nodes_parsed; |
| numa_nodemask_from_meminfo(&node_possible_map, mi); |
| if (WARN_ON(nodes_empty(node_possible_map))) |
| return -EINVAL; |
| |
| for (i = 0; i < mi->nr_blks; i++) { |
| struct numa_memblk *mb = &mi->blk[i]; |
| memblock_set_node(mb->start, mb->end - mb->start, |
| &memblock.memory, mb->nid); |
| } |
| |
| /* |
| * At very early time, the kernel have to use some memory such as |
| * loading the kernel image. We cannot prevent this anyway. So any |
| * node the kernel resides in should be un-hotpluggable. |
| * |
| * And when we come here, alloc node data won't fail. |
| */ |
| numa_clear_kernel_node_hotplug(); |
| |
| /* |
| * If sections array is gonna be used for pfn -> nid mapping, check |
| * whether its granularity is fine enough. |
| */ |
| #ifdef NODE_NOT_IN_PAGE_FLAGS |
| pfn_align = node_map_pfn_alignment(); |
| if (pfn_align && pfn_align < PAGES_PER_SECTION) { |
| printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n", |
| PFN_PHYS(pfn_align) >> 20, |
| PFN_PHYS(PAGES_PER_SECTION) >> 20); |
| return -EINVAL; |
| } |
| #endif |
| if (!numa_meminfo_cover_memory(mi)) |
| return -EINVAL; |
| |
| /* Finally register nodes. */ |
| for_each_node_mask(nid, node_possible_map) { |
| u64 start = PFN_PHYS(max_pfn); |
| u64 end = 0; |
| |
| for (i = 0; i < mi->nr_blks; i++) { |
| if (nid != mi->blk[i].nid) |
| continue; |
| start = min(mi->blk[i].start, start); |
| end = max(mi->blk[i].end, end); |
| } |
| |
| if (start >= end) |
| continue; |
| |
| /* |
| * Don't confuse VM with a node that doesn't have the |
| * minimum amount of memory: |
| */ |
| if (end && (end - start) < NODE_MIN_SIZE) |
| continue; |
| |
| alloc_node_data(nid); |
| } |
| |
| /* Dump memblock with node info and return. */ |
| memblock_dump_all(); |
| return 0; |
| } |
| |
| /* |
| * There are unfortunately some poorly designed mainboards around that |
| * only connect memory to a single CPU. This breaks the 1:1 cpu->node |
| * mapping. To avoid this fill in the mapping for all possible CPUs, |
| * as the number of CPUs is not known yet. We round robin the existing |
| * nodes. |
| */ |
| static void __init numa_init_array(void) |
| { |
| int rr, i; |
| |
| rr = first_node(node_online_map); |
| for (i = 0; i < nr_cpu_ids; i++) { |
| if (early_cpu_to_node(i) != NUMA_NO_NODE) |
| continue; |
| numa_set_node(i, rr); |
| rr = next_node_in(rr, node_online_map); |
| } |
| } |
| |
| static int __init numa_init(int (*init_func)(void)) |
| { |
| int i; |
| int ret; |
| |
| for (i = 0; i < MAX_LOCAL_APIC; i++) |
| set_apicid_to_node(i, NUMA_NO_NODE); |
| |
| nodes_clear(numa_nodes_parsed); |
| nodes_clear(node_possible_map); |
| nodes_clear(node_online_map); |
| memset(&numa_meminfo, 0, sizeof(numa_meminfo)); |
| WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory, |
| MAX_NUMNODES)); |
| WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved, |
| MAX_NUMNODES)); |
| /* In case that parsing SRAT failed. */ |
| WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX)); |
| numa_reset_distance(); |
| |
| ret = init_func(); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * We reset memblock back to the top-down direction |
| * here because if we configured ACPI_NUMA, we have |
| * parsed SRAT in init_func(). It is ok to have the |
| * reset here even if we did't configure ACPI_NUMA |
| * or acpi numa init fails and fallbacks to dummy |
| * numa init. |
| */ |
| memblock_set_bottom_up(false); |
| |
| ret = numa_cleanup_meminfo(&numa_meminfo); |
| if (ret < 0) |
| return ret; |
| |
| numa_emulation(&numa_meminfo, numa_distance_cnt); |
| |
| ret = numa_register_memblks(&numa_meminfo); |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < nr_cpu_ids; i++) { |
| int nid = early_cpu_to_node(i); |
| |
| if (nid == NUMA_NO_NODE) |
| continue; |
| if (!node_online(nid)) |
| numa_clear_node(i); |
| } |
| numa_init_array(); |
| |
| return 0; |
| } |
| |
| /** |
| * dummy_numa_init - Fallback dummy NUMA init |
| * |
| * Used if there's no underlying NUMA architecture, NUMA initialization |
| * fails, or NUMA is disabled on the command line. |
| * |
| * Must online at least one node and add memory blocks that cover all |
| * allowed memory. This function must not fail. |
| */ |
| static int __init dummy_numa_init(void) |
| { |
| printk(KERN_INFO "%s\n", |
| numa_off ? "NUMA turned off" : "No NUMA configuration found"); |
| printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n", |
| 0LLU, PFN_PHYS(max_pfn) - 1); |
| |
| node_set(0, numa_nodes_parsed); |
| numa_add_memblk(0, 0, PFN_PHYS(max_pfn)); |
| |
| return 0; |
| } |
| |
| /** |
| * x86_numa_init - Initialize NUMA |
| * |
| * Try each configured NUMA initialization method until one succeeds. The |
| * last fallback is dummy single node config encompassing whole memory and |
| * never fails. |
| */ |
| void __init x86_numa_init(void) |
| { |
| if (!numa_off) { |
| #ifdef CONFIG_ACPI_NUMA |
| if (!numa_init(x86_acpi_numa_init)) |
| return; |
| #endif |
| #ifdef CONFIG_AMD_NUMA |
| if (!numa_init(amd_numa_init)) |
| return; |
| #endif |
| } |
| |
| numa_init(dummy_numa_init); |
| } |
| |
| static void __init init_memory_less_node(int nid) |
| { |
| unsigned long zones_size[MAX_NR_ZONES] = {0}; |
| unsigned long zholes_size[MAX_NR_ZONES] = {0}; |
| |
| /* Allocate and initialize node data. Memory-less node is now online.*/ |
| alloc_node_data(nid); |
| free_area_init_node(nid, zones_size, 0, zholes_size); |
| |
| /* |
| * All zonelists will be built later in start_kernel() after per cpu |
| * areas are initialized. |
| */ |
| } |
| |
| /* |
| * Setup early cpu_to_node. |
| * |
| * Populate cpu_to_node[] only if x86_cpu_to_apicid[], |
| * and apicid_to_node[] tables have valid entries for a CPU. |
| * This means we skip cpu_to_node[] initialisation for NUMA |
| * emulation and faking node case (when running a kernel compiled |
| * for NUMA on a non NUMA box), which is OK as cpu_to_node[] |
| * is already initialized in a round robin manner at numa_init_array, |
| * prior to this call, and this initialization is good enough |
| * for the fake NUMA cases. |
| * |
| * Called before the per_cpu areas are setup. |
| */ |
| void __init init_cpu_to_node(void) |
| { |
| int cpu; |
| u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid); |
| |
| BUG_ON(cpu_to_apicid == NULL); |
| |
| for_each_possible_cpu(cpu) { |
| int node = numa_cpu_node(cpu); |
| |
| if (node == NUMA_NO_NODE) |
| continue; |
| |
| if (!node_online(node)) |
| init_memory_less_node(node); |
| |
| numa_set_node(cpu, node); |
| } |
| } |
| |
| #ifndef CONFIG_DEBUG_PER_CPU_MAPS |
| |
| # ifndef CONFIG_NUMA_EMU |
| void numa_add_cpu(int cpu) |
| { |
| cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); |
| } |
| |
| void numa_remove_cpu(int cpu) |
| { |
| cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]); |
| } |
| # endif /* !CONFIG_NUMA_EMU */ |
| |
| #else /* !CONFIG_DEBUG_PER_CPU_MAPS */ |
| |
| int __cpu_to_node(int cpu) |
| { |
| if (early_per_cpu_ptr(x86_cpu_to_node_map)) { |
| printk(KERN_WARNING |
| "cpu_to_node(%d): usage too early!\n", cpu); |
| dump_stack(); |
| return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; |
| } |
| return per_cpu(x86_cpu_to_node_map, cpu); |
| } |
| EXPORT_SYMBOL(__cpu_to_node); |
| |
| /* |
| * Same function as cpu_to_node() but used if called before the |
| * per_cpu areas are setup. |
| */ |
| int early_cpu_to_node(int cpu) |
| { |
| if (early_per_cpu_ptr(x86_cpu_to_node_map)) |
| return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu]; |
| |
| if (!cpu_possible(cpu)) { |
| printk(KERN_WARNING |
| "early_cpu_to_node(%d): no per_cpu area!\n", cpu); |
| dump_stack(); |
| return NUMA_NO_NODE; |
| } |
| return per_cpu(x86_cpu_to_node_map, cpu); |
| } |
| |
| void debug_cpumask_set_cpu(int cpu, int node, bool enable) |
| { |
| struct cpumask *mask; |
| |
| if (node == NUMA_NO_NODE) { |
| /* early_cpu_to_node() already emits a warning and trace */ |
| return; |
| } |
| mask = node_to_cpumask_map[node]; |
| if (!mask) { |
| pr_err("node_to_cpumask_map[%i] NULL\n", node); |
| dump_stack(); |
| return; |
| } |
| |
| if (enable) |
| cpumask_set_cpu(cpu, mask); |
| else |
| cpumask_clear_cpu(cpu, mask); |
| |
| printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n", |
| enable ? "numa_add_cpu" : "numa_remove_cpu", |
| cpu, node, cpumask_pr_args(mask)); |
| return; |
| } |
| |
| # ifndef CONFIG_NUMA_EMU |
| static void numa_set_cpumask(int cpu, bool enable) |
| { |
| debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable); |
| } |
| |
| void numa_add_cpu(int cpu) |
| { |
| numa_set_cpumask(cpu, true); |
| } |
| |
| void numa_remove_cpu(int cpu) |
| { |
| numa_set_cpumask(cpu, false); |
| } |
| # endif /* !CONFIG_NUMA_EMU */ |
| |
| /* |
| * Returns a pointer to the bitmask of CPUs on Node 'node'. |
| */ |
| const struct cpumask *cpumask_of_node(int node) |
| { |
| if ((unsigned)node >= nr_node_ids) { |
| printk(KERN_WARNING |
| "cpumask_of_node(%d): (unsigned)node >= nr_node_ids(%u)\n", |
| node, nr_node_ids); |
| dump_stack(); |
| return cpu_none_mask; |
| } |
| if (node_to_cpumask_map[node] == NULL) { |
| printk(KERN_WARNING |
| "cpumask_of_node(%d): no node_to_cpumask_map!\n", |
| node); |
| dump_stack(); |
| return cpu_online_mask; |
| } |
| return node_to_cpumask_map[node]; |
| } |
| EXPORT_SYMBOL(cpumask_of_node); |
| |
| #endif /* !CONFIG_DEBUG_PER_CPU_MAPS */ |
| |
| #ifdef CONFIG_NUMA_KEEP_MEMINFO |
| static int meminfo_to_nid(struct numa_meminfo *mi, u64 start) |
| { |
| int i; |
| |
| for (i = 0; i < mi->nr_blks; i++) |
| if (mi->blk[i].start <= start && mi->blk[i].end > start) |
| return mi->blk[i].nid; |
| return NUMA_NO_NODE; |
| } |
| |
| int phys_to_target_node(phys_addr_t start) |
| { |
| int nid = meminfo_to_nid(&numa_meminfo, start); |
| |
| /* |
| * Prefer online nodes, but if reserved memory might be |
| * hot-added continue the search with reserved ranges. |
| */ |
| if (nid != NUMA_NO_NODE) |
| return nid; |
| |
| return meminfo_to_nid(&numa_reserved_meminfo, start); |
| } |
| EXPORT_SYMBOL_GPL(phys_to_target_node); |
| |
| int memory_add_physaddr_to_nid(u64 start) |
| { |
| int nid = meminfo_to_nid(&numa_meminfo, start); |
| |
| if (nid == NUMA_NO_NODE) |
| nid = numa_meminfo.blk[0].nid; |
| return nid; |
| } |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); |
| #endif |