| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_X86_MSHYPER_H |
| #define _ASM_X86_MSHYPER_H |
| |
| #include <linux/types.h> |
| #include <linux/atomic.h> |
| #include <linux/nmi.h> |
| #include <asm/io.h> |
| #include <asm/hyperv-tlfs.h> |
| #include <asm/nospec-branch.h> |
| |
| #define VP_INVAL U32_MAX |
| |
| struct ms_hyperv_info { |
| u32 features; |
| u32 misc_features; |
| u32 hints; |
| u32 nested_features; |
| u32 max_vp_index; |
| u32 max_lp_index; |
| }; |
| |
| extern struct ms_hyperv_info ms_hyperv; |
| |
| |
| typedef int (*hyperv_fill_flush_list_func)( |
| struct hv_guest_mapping_flush_list *flush, |
| void *data); |
| |
| /* |
| * Generate the guest ID. |
| */ |
| |
| static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version, |
| __u64 d_info2) |
| { |
| __u64 guest_id = 0; |
| |
| guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48); |
| guest_id |= (d_info1 << 48); |
| guest_id |= (kernel_version << 16); |
| guest_id |= d_info2; |
| |
| return guest_id; |
| } |
| |
| |
| /* Free the message slot and signal end-of-message if required */ |
| static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type) |
| { |
| /* |
| * On crash we're reading some other CPU's message page and we need |
| * to be careful: this other CPU may already had cleared the header |
| * and the host may already had delivered some other message there. |
| * In case we blindly write msg->header.message_type we're going |
| * to lose it. We can still lose a message of the same type but |
| * we count on the fact that there can only be one |
| * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages |
| * on crash. |
| */ |
| if (cmpxchg(&msg->header.message_type, old_msg_type, |
| HVMSG_NONE) != old_msg_type) |
| return; |
| |
| /* |
| * Make sure the write to MessageType (ie set to |
| * HVMSG_NONE) happens before we read the |
| * MessagePending and EOMing. Otherwise, the EOMing |
| * will not deliver any more messages since there is |
| * no empty slot |
| */ |
| mb(); |
| |
| if (msg->header.message_flags.msg_pending) { |
| /* |
| * This will cause message queue rescan to |
| * possibly deliver another msg from the |
| * hypervisor |
| */ |
| wrmsrl(HV_X64_MSR_EOM, 0); |
| } |
| } |
| |
| #define hv_init_timer(timer, tick) \ |
| wrmsrl(HV_X64_MSR_STIMER0_COUNT + (2*timer), tick) |
| #define hv_init_timer_config(timer, val) \ |
| wrmsrl(HV_X64_MSR_STIMER0_CONFIG + (2*timer), val) |
| |
| #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val) |
| #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val) |
| |
| #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val) |
| #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val) |
| |
| #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val) |
| #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val) |
| |
| #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index) |
| |
| #define hv_get_synint_state(int_num, val) \ |
| rdmsrl(HV_X64_MSR_SINT0 + int_num, val) |
| #define hv_set_synint_state(int_num, val) \ |
| wrmsrl(HV_X64_MSR_SINT0 + int_num, val) |
| |
| #define hv_get_crash_ctl(val) \ |
| rdmsrl(HV_X64_MSR_CRASH_CTL, val) |
| |
| void hyperv_callback_vector(void); |
| void hyperv_reenlightenment_vector(void); |
| #ifdef CONFIG_TRACING |
| #define trace_hyperv_callback_vector hyperv_callback_vector |
| #endif |
| void hyperv_vector_handler(struct pt_regs *regs); |
| void hv_setup_vmbus_irq(void (*handler)(void)); |
| void hv_remove_vmbus_irq(void); |
| |
| void hv_setup_kexec_handler(void (*handler)(void)); |
| void hv_remove_kexec_handler(void); |
| void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs)); |
| void hv_remove_crash_handler(void); |
| |
| /* |
| * Routines for stimer0 Direct Mode handling. |
| * On x86/x64, there are no percpu actions to take. |
| */ |
| void hv_stimer0_vector_handler(struct pt_regs *regs); |
| void hv_stimer0_callback_vector(void); |
| int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void)); |
| void hv_remove_stimer0_irq(int irq); |
| |
| static inline void hv_enable_stimer0_percpu_irq(int irq) {} |
| static inline void hv_disable_stimer0_percpu_irq(int irq) {} |
| |
| |
| #if IS_ENABLED(CONFIG_HYPERV) |
| extern struct clocksource *hyperv_cs; |
| extern void *hv_hypercall_pg; |
| extern void __percpu **hyperv_pcpu_input_arg; |
| |
| static inline u64 hv_do_hypercall(u64 control, void *input, void *output) |
| { |
| u64 input_address = input ? virt_to_phys(input) : 0; |
| u64 output_address = output ? virt_to_phys(output) : 0; |
| u64 hv_status; |
| |
| #ifdef CONFIG_X86_64 |
| if (!hv_hypercall_pg) |
| return U64_MAX; |
| |
| __asm__ __volatile__("mov %4, %%r8\n" |
| CALL_NOSPEC |
| : "=a" (hv_status), ASM_CALL_CONSTRAINT, |
| "+c" (control), "+d" (input_address) |
| : "r" (output_address), |
| THUNK_TARGET(hv_hypercall_pg) |
| : "cc", "memory", "r8", "r9", "r10", "r11"); |
| #else |
| u32 input_address_hi = upper_32_bits(input_address); |
| u32 input_address_lo = lower_32_bits(input_address); |
| u32 output_address_hi = upper_32_bits(output_address); |
| u32 output_address_lo = lower_32_bits(output_address); |
| |
| if (!hv_hypercall_pg) |
| return U64_MAX; |
| |
| __asm__ __volatile__(CALL_NOSPEC |
| : "=A" (hv_status), |
| "+c" (input_address_lo), ASM_CALL_CONSTRAINT |
| : "A" (control), |
| "b" (input_address_hi), |
| "D"(output_address_hi), "S"(output_address_lo), |
| THUNK_TARGET(hv_hypercall_pg) |
| : "cc", "memory"); |
| #endif /* !x86_64 */ |
| return hv_status; |
| } |
| |
| /* Fast hypercall with 8 bytes of input and no output */ |
| static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1) |
| { |
| u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; |
| |
| #ifdef CONFIG_X86_64 |
| { |
| __asm__ __volatile__(CALL_NOSPEC |
| : "=a" (hv_status), ASM_CALL_CONSTRAINT, |
| "+c" (control), "+d" (input1) |
| : THUNK_TARGET(hv_hypercall_pg) |
| : "cc", "r8", "r9", "r10", "r11"); |
| } |
| #else |
| { |
| u32 input1_hi = upper_32_bits(input1); |
| u32 input1_lo = lower_32_bits(input1); |
| |
| __asm__ __volatile__ (CALL_NOSPEC |
| : "=A"(hv_status), |
| "+c"(input1_lo), |
| ASM_CALL_CONSTRAINT |
| : "A" (control), |
| "b" (input1_hi), |
| THUNK_TARGET(hv_hypercall_pg) |
| : "cc", "edi", "esi"); |
| } |
| #endif |
| return hv_status; |
| } |
| |
| /* Fast hypercall with 16 bytes of input */ |
| static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2) |
| { |
| u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT; |
| |
| #ifdef CONFIG_X86_64 |
| { |
| __asm__ __volatile__("mov %4, %%r8\n" |
| CALL_NOSPEC |
| : "=a" (hv_status), ASM_CALL_CONSTRAINT, |
| "+c" (control), "+d" (input1) |
| : "r" (input2), |
| THUNK_TARGET(hv_hypercall_pg) |
| : "cc", "r8", "r9", "r10", "r11"); |
| } |
| #else |
| { |
| u32 input1_hi = upper_32_bits(input1); |
| u32 input1_lo = lower_32_bits(input1); |
| u32 input2_hi = upper_32_bits(input2); |
| u32 input2_lo = lower_32_bits(input2); |
| |
| __asm__ __volatile__ (CALL_NOSPEC |
| : "=A"(hv_status), |
| "+c"(input1_lo), ASM_CALL_CONSTRAINT |
| : "A" (control), "b" (input1_hi), |
| "D"(input2_hi), "S"(input2_lo), |
| THUNK_TARGET(hv_hypercall_pg) |
| : "cc"); |
| } |
| #endif |
| return hv_status; |
| } |
| |
| /* |
| * Rep hypercalls. Callers of this functions are supposed to ensure that |
| * rep_count and varhead_size comply with Hyper-V hypercall definition. |
| */ |
| static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size, |
| void *input, void *output) |
| { |
| u64 control = code; |
| u64 status; |
| u16 rep_comp; |
| |
| control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET; |
| control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET; |
| |
| do { |
| status = hv_do_hypercall(control, input, output); |
| if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) |
| return status; |
| |
| /* Bits 32-43 of status have 'Reps completed' data. */ |
| rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >> |
| HV_HYPERCALL_REP_COMP_OFFSET; |
| |
| control &= ~HV_HYPERCALL_REP_START_MASK; |
| control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET; |
| |
| touch_nmi_watchdog(); |
| } while (rep_comp < rep_count); |
| |
| return status; |
| } |
| |
| /* |
| * Hypervisor's notion of virtual processor ID is different from |
| * Linux' notion of CPU ID. This information can only be retrieved |
| * in the context of the calling CPU. Setup a map for easy access |
| * to this information. |
| */ |
| extern u32 *hv_vp_index; |
| extern u32 hv_max_vp_index; |
| extern struct hv_vp_assist_page **hv_vp_assist_page; |
| |
| static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) |
| { |
| if (!hv_vp_assist_page) |
| return NULL; |
| |
| return hv_vp_assist_page[cpu]; |
| } |
| |
| /** |
| * hv_cpu_number_to_vp_number() - Map CPU to VP. |
| * @cpu_number: CPU number in Linux terms |
| * |
| * This function returns the mapping between the Linux processor |
| * number and the hypervisor's virtual processor number, useful |
| * in making hypercalls and such that talk about specific |
| * processors. |
| * |
| * Return: Virtual processor number in Hyper-V terms |
| */ |
| static inline int hv_cpu_number_to_vp_number(int cpu_number) |
| { |
| return hv_vp_index[cpu_number]; |
| } |
| |
| static inline int cpumask_to_vpset(struct hv_vpset *vpset, |
| const struct cpumask *cpus) |
| { |
| int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1; |
| |
| /* valid_bank_mask can represent up to 64 banks */ |
| if (hv_max_vp_index / 64 >= 64) |
| return 0; |
| |
| /* |
| * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex |
| * structs are not cleared between calls, we risk flushing unneeded |
| * vCPUs otherwise. |
| */ |
| for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++) |
| vpset->bank_contents[vcpu_bank] = 0; |
| |
| /* |
| * Some banks may end up being empty but this is acceptable. |
| */ |
| for_each_cpu(cpu, cpus) { |
| vcpu = hv_cpu_number_to_vp_number(cpu); |
| if (vcpu == VP_INVAL) |
| return -1; |
| vcpu_bank = vcpu / 64; |
| vcpu_offset = vcpu % 64; |
| __set_bit(vcpu_offset, (unsigned long *) |
| &vpset->bank_contents[vcpu_bank]); |
| if (vcpu_bank >= nr_bank) |
| nr_bank = vcpu_bank + 1; |
| } |
| vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0); |
| return nr_bank; |
| } |
| |
| void __init hyperv_init(void); |
| void hyperv_setup_mmu_ops(void); |
| void hyperv_report_panic(struct pt_regs *regs, long err); |
| void hyperv_report_panic_msg(phys_addr_t pa, size_t size); |
| bool hv_is_hyperv_initialized(void); |
| void hyperv_cleanup(void); |
| |
| void hyperv_reenlightenment_intr(struct pt_regs *regs); |
| void set_hv_tscchange_cb(void (*cb)(void)); |
| void clear_hv_tscchange_cb(void); |
| void hyperv_stop_tsc_emulation(void); |
| int hyperv_flush_guest_mapping(u64 as); |
| int hyperv_flush_guest_mapping_range(u64 as, |
| hyperv_fill_flush_list_func fill_func, void *data); |
| int hyperv_fill_flush_guest_mapping_list( |
| struct hv_guest_mapping_flush_list *flush, |
| u64 start_gfn, u64 end_gfn); |
| |
| #ifdef CONFIG_X86_64 |
| void hv_apic_init(void); |
| void __init hv_init_spinlocks(void); |
| bool hv_vcpu_is_preempted(int vcpu); |
| #else |
| static inline void hv_apic_init(void) {} |
| #endif |
| |
| #else /* CONFIG_HYPERV */ |
| static inline void hyperv_init(void) {} |
| static inline bool hv_is_hyperv_initialized(void) { return false; } |
| static inline void hyperv_cleanup(void) {} |
| static inline void hyperv_setup_mmu_ops(void) {} |
| static inline void set_hv_tscchange_cb(void (*cb)(void)) {} |
| static inline void clear_hv_tscchange_cb(void) {} |
| static inline void hyperv_stop_tsc_emulation(void) {}; |
| static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu) |
| { |
| return NULL; |
| } |
| static inline int hyperv_flush_guest_mapping(u64 as) { return -1; } |
| static inline int hyperv_flush_guest_mapping_range(u64 as, |
| hyperv_fill_flush_list_func fill_func, void *data) |
| { |
| return -1; |
| } |
| #endif /* CONFIG_HYPERV */ |
| |
| #ifdef CONFIG_HYPERV_TSCPAGE |
| struct ms_hyperv_tsc_page *hv_get_tsc_page(void); |
| static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, |
| u64 *cur_tsc) |
| { |
| u64 scale, offset; |
| u32 sequence; |
| |
| /* |
| * The protocol for reading Hyper-V TSC page is specified in Hypervisor |
| * Top-Level Functional Specification ver. 3.0 and above. To get the |
| * reference time we must do the following: |
| * - READ ReferenceTscSequence |
| * A special '0' value indicates the time source is unreliable and we |
| * need to use something else. The currently published specification |
| * versions (up to 4.0b) contain a mistake and wrongly claim '-1' |
| * instead of '0' as the special value, see commit c35b82ef0294. |
| * - ReferenceTime = |
| * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset |
| * - READ ReferenceTscSequence again. In case its value has changed |
| * since our first reading we need to discard ReferenceTime and repeat |
| * the whole sequence as the hypervisor was updating the page in |
| * between. |
| */ |
| do { |
| sequence = READ_ONCE(tsc_pg->tsc_sequence); |
| if (!sequence) |
| return U64_MAX; |
| /* |
| * Make sure we read sequence before we read other values from |
| * TSC page. |
| */ |
| smp_rmb(); |
| |
| scale = READ_ONCE(tsc_pg->tsc_scale); |
| offset = READ_ONCE(tsc_pg->tsc_offset); |
| *cur_tsc = rdtsc_ordered(); |
| |
| /* |
| * Make sure we read sequence after we read all other values |
| * from TSC page. |
| */ |
| smp_rmb(); |
| |
| } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence); |
| |
| return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset; |
| } |
| |
| static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg) |
| { |
| u64 cur_tsc; |
| |
| return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc); |
| } |
| |
| #else |
| static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void) |
| { |
| return NULL; |
| } |
| |
| static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg, |
| u64 *cur_tsc) |
| { |
| BUG(); |
| return U64_MAX; |
| } |
| #endif |
| #endif |