| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* net/sched/sch_taprio.c Time Aware Priority Scheduler |
| * |
| * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com> |
| * |
| */ |
| |
| #include <linux/ethtool.h> |
| #include <linux/ethtool_netlink.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/list.h> |
| #include <linux/errno.h> |
| #include <linux/skbuff.h> |
| #include <linux/math64.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/rcupdate.h> |
| #include <linux/time.h> |
| #include <net/netlink.h> |
| #include <net/pkt_sched.h> |
| #include <net/pkt_cls.h> |
| #include <net/sch_generic.h> |
| #include <net/sock.h> |
| #include <net/tcp.h> |
| |
| #include "sch_mqprio_lib.h" |
| |
| static LIST_HEAD(taprio_list); |
| static struct static_key_false taprio_have_broken_mqprio; |
| static struct static_key_false taprio_have_working_mqprio; |
| |
| #define TAPRIO_ALL_GATES_OPEN -1 |
| |
| #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) |
| #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD) |
| #define TAPRIO_FLAGS_INVALID U32_MAX |
| |
| struct sched_entry { |
| /* Durations between this GCL entry and the GCL entry where the |
| * respective traffic class gate closes |
| */ |
| u64 gate_duration[TC_MAX_QUEUE]; |
| atomic_t budget[TC_MAX_QUEUE]; |
| /* The qdisc makes some effort so that no packet leaves |
| * after this time |
| */ |
| ktime_t gate_close_time[TC_MAX_QUEUE]; |
| struct list_head list; |
| /* Used to calculate when to advance the schedule */ |
| ktime_t end_time; |
| ktime_t next_txtime; |
| int index; |
| u32 gate_mask; |
| u32 interval; |
| u8 command; |
| }; |
| |
| struct sched_gate_list { |
| /* Longest non-zero contiguous gate durations per traffic class, |
| * or 0 if a traffic class gate never opens during the schedule. |
| */ |
| u64 max_open_gate_duration[TC_MAX_QUEUE]; |
| u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */ |
| u32 max_sdu[TC_MAX_QUEUE]; /* for dump */ |
| struct rcu_head rcu; |
| struct list_head entries; |
| size_t num_entries; |
| ktime_t cycle_end_time; |
| s64 cycle_time; |
| s64 cycle_time_extension; |
| s64 base_time; |
| }; |
| |
| struct taprio_sched { |
| struct Qdisc **qdiscs; |
| struct Qdisc *root; |
| u32 flags; |
| enum tk_offsets tk_offset; |
| int clockid; |
| bool offloaded; |
| bool detected_mqprio; |
| bool broken_mqprio; |
| atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+ |
| * speeds it's sub-nanoseconds per byte |
| */ |
| |
| /* Protects the update side of the RCU protected current_entry */ |
| spinlock_t current_entry_lock; |
| struct sched_entry __rcu *current_entry; |
| struct sched_gate_list __rcu *oper_sched; |
| struct sched_gate_list __rcu *admin_sched; |
| struct hrtimer advance_timer; |
| struct list_head taprio_list; |
| int cur_txq[TC_MAX_QUEUE]; |
| u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */ |
| u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */ |
| u32 txtime_delay; |
| }; |
| |
| struct __tc_taprio_qopt_offload { |
| refcount_t users; |
| struct tc_taprio_qopt_offload offload; |
| }; |
| |
| static void taprio_calculate_gate_durations(struct taprio_sched *q, |
| struct sched_gate_list *sched) |
| { |
| struct net_device *dev = qdisc_dev(q->root); |
| int num_tc = netdev_get_num_tc(dev); |
| struct sched_entry *entry, *cur; |
| int tc; |
| |
| list_for_each_entry(entry, &sched->entries, list) { |
| u32 gates_still_open = entry->gate_mask; |
| |
| /* For each traffic class, calculate each open gate duration, |
| * starting at this schedule entry and ending at the schedule |
| * entry containing a gate close event for that TC. |
| */ |
| cur = entry; |
| |
| do { |
| if (!gates_still_open) |
| break; |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| if (!(gates_still_open & BIT(tc))) |
| continue; |
| |
| if (cur->gate_mask & BIT(tc)) |
| entry->gate_duration[tc] += cur->interval; |
| else |
| gates_still_open &= ~BIT(tc); |
| } |
| |
| cur = list_next_entry_circular(cur, &sched->entries, list); |
| } while (cur != entry); |
| |
| /* Keep track of the maximum gate duration for each traffic |
| * class, taking care to not confuse a traffic class which is |
| * temporarily closed with one that is always closed. |
| */ |
| for (tc = 0; tc < num_tc; tc++) |
| if (entry->gate_duration[tc] && |
| sched->max_open_gate_duration[tc] < entry->gate_duration[tc]) |
| sched->max_open_gate_duration[tc] = entry->gate_duration[tc]; |
| } |
| } |
| |
| static bool taprio_entry_allows_tx(ktime_t skb_end_time, |
| struct sched_entry *entry, int tc) |
| { |
| return ktime_before(skb_end_time, entry->gate_close_time[tc]); |
| } |
| |
| static ktime_t sched_base_time(const struct sched_gate_list *sched) |
| { |
| if (!sched) |
| return KTIME_MAX; |
| |
| return ns_to_ktime(sched->base_time); |
| } |
| |
| static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono) |
| { |
| /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */ |
| enum tk_offsets tk_offset = READ_ONCE(q->tk_offset); |
| |
| switch (tk_offset) { |
| case TK_OFFS_MAX: |
| return mono; |
| default: |
| return ktime_mono_to_any(mono, tk_offset); |
| } |
| } |
| |
| static ktime_t taprio_get_time(const struct taprio_sched *q) |
| { |
| return taprio_mono_to_any(q, ktime_get()); |
| } |
| |
| static void taprio_free_sched_cb(struct rcu_head *head) |
| { |
| struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu); |
| struct sched_entry *entry, *n; |
| |
| list_for_each_entry_safe(entry, n, &sched->entries, list) { |
| list_del(&entry->list); |
| kfree(entry); |
| } |
| |
| kfree(sched); |
| } |
| |
| static void switch_schedules(struct taprio_sched *q, |
| struct sched_gate_list **admin, |
| struct sched_gate_list **oper) |
| { |
| rcu_assign_pointer(q->oper_sched, *admin); |
| rcu_assign_pointer(q->admin_sched, NULL); |
| |
| if (*oper) |
| call_rcu(&(*oper)->rcu, taprio_free_sched_cb); |
| |
| *oper = *admin; |
| *admin = NULL; |
| } |
| |
| /* Get how much time has been already elapsed in the current cycle. */ |
| static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time) |
| { |
| ktime_t time_since_sched_start; |
| s32 time_elapsed; |
| |
| time_since_sched_start = ktime_sub(time, sched->base_time); |
| div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed); |
| |
| return time_elapsed; |
| } |
| |
| static ktime_t get_interval_end_time(struct sched_gate_list *sched, |
| struct sched_gate_list *admin, |
| struct sched_entry *entry, |
| ktime_t intv_start) |
| { |
| s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start); |
| ktime_t intv_end, cycle_ext_end, cycle_end; |
| |
| cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed); |
| intv_end = ktime_add_ns(intv_start, entry->interval); |
| cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension); |
| |
| if (ktime_before(intv_end, cycle_end)) |
| return intv_end; |
| else if (admin && admin != sched && |
| ktime_after(admin->base_time, cycle_end) && |
| ktime_before(admin->base_time, cycle_ext_end)) |
| return admin->base_time; |
| else |
| return cycle_end; |
| } |
| |
| static int length_to_duration(struct taprio_sched *q, int len) |
| { |
| return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC); |
| } |
| |
| static int duration_to_length(struct taprio_sched *q, u64 duration) |
| { |
| return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte)); |
| } |
| |
| /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the |
| * q->max_sdu[] requested by the user and the max_sdu dynamically determined by |
| * the maximum open gate durations at the given link speed. |
| */ |
| static void taprio_update_queue_max_sdu(struct taprio_sched *q, |
| struct sched_gate_list *sched, |
| struct qdisc_size_table *stab) |
| { |
| struct net_device *dev = qdisc_dev(q->root); |
| int num_tc = netdev_get_num_tc(dev); |
| u32 max_sdu_from_user; |
| u32 max_sdu_dynamic; |
| u32 max_sdu; |
| int tc; |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX; |
| |
| /* TC gate never closes => keep the queueMaxSDU |
| * selected by the user |
| */ |
| if (sched->max_open_gate_duration[tc] == sched->cycle_time) { |
| max_sdu_dynamic = U32_MAX; |
| } else { |
| u32 max_frm_len; |
| |
| max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]); |
| /* Compensate for L1 overhead from size table, |
| * but don't let the frame size go negative |
| */ |
| if (stab) { |
| max_frm_len -= stab->szopts.overhead; |
| max_frm_len = max_t(int, max_frm_len, |
| dev->hard_header_len + 1); |
| } |
| max_sdu_dynamic = max_frm_len - dev->hard_header_len; |
| if (max_sdu_dynamic > dev->max_mtu) |
| max_sdu_dynamic = U32_MAX; |
| } |
| |
| max_sdu = min(max_sdu_dynamic, max_sdu_from_user); |
| |
| if (max_sdu != U32_MAX) { |
| sched->max_frm_len[tc] = max_sdu + dev->hard_header_len; |
| sched->max_sdu[tc] = max_sdu; |
| } else { |
| sched->max_frm_len[tc] = U32_MAX; /* never oversized */ |
| sched->max_sdu[tc] = 0; |
| } |
| } |
| } |
| |
| /* Returns the entry corresponding to next available interval. If |
| * validate_interval is set, it only validates whether the timestamp occurs |
| * when the gate corresponding to the skb's traffic class is open. |
| */ |
| static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb, |
| struct Qdisc *sch, |
| struct sched_gate_list *sched, |
| struct sched_gate_list *admin, |
| ktime_t time, |
| ktime_t *interval_start, |
| ktime_t *interval_end, |
| bool validate_interval) |
| { |
| ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time; |
| ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time; |
| struct sched_entry *entry = NULL, *entry_found = NULL; |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| bool entry_available = false; |
| s32 cycle_elapsed; |
| int tc, n; |
| |
| tc = netdev_get_prio_tc_map(dev, skb->priority); |
| packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb)); |
| |
| *interval_start = 0; |
| *interval_end = 0; |
| |
| if (!sched) |
| return NULL; |
| |
| cycle = sched->cycle_time; |
| cycle_elapsed = get_cycle_time_elapsed(sched, time); |
| curr_intv_end = ktime_sub_ns(time, cycle_elapsed); |
| cycle_end = ktime_add_ns(curr_intv_end, cycle); |
| |
| list_for_each_entry(entry, &sched->entries, list) { |
| curr_intv_start = curr_intv_end; |
| curr_intv_end = get_interval_end_time(sched, admin, entry, |
| curr_intv_start); |
| |
| if (ktime_after(curr_intv_start, cycle_end)) |
| break; |
| |
| if (!(entry->gate_mask & BIT(tc)) || |
| packet_transmit_time > entry->interval) |
| continue; |
| |
| txtime = entry->next_txtime; |
| |
| if (ktime_before(txtime, time) || validate_interval) { |
| transmit_end_time = ktime_add_ns(time, packet_transmit_time); |
| if ((ktime_before(curr_intv_start, time) && |
| ktime_before(transmit_end_time, curr_intv_end)) || |
| (ktime_after(curr_intv_start, time) && !validate_interval)) { |
| entry_found = entry; |
| *interval_start = curr_intv_start; |
| *interval_end = curr_intv_end; |
| break; |
| } else if (!entry_available && !validate_interval) { |
| /* Here, we are just trying to find out the |
| * first available interval in the next cycle. |
| */ |
| entry_available = true; |
| entry_found = entry; |
| *interval_start = ktime_add_ns(curr_intv_start, cycle); |
| *interval_end = ktime_add_ns(curr_intv_end, cycle); |
| } |
| } else if (ktime_before(txtime, earliest_txtime) && |
| !entry_available) { |
| earliest_txtime = txtime; |
| entry_found = entry; |
| n = div_s64(ktime_sub(txtime, curr_intv_start), cycle); |
| *interval_start = ktime_add(curr_intv_start, n * cycle); |
| *interval_end = ktime_add(curr_intv_end, n * cycle); |
| } |
| } |
| |
| return entry_found; |
| } |
| |
| static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct sched_gate_list *sched, *admin; |
| ktime_t interval_start, interval_end; |
| struct sched_entry *entry; |
| |
| rcu_read_lock(); |
| sched = rcu_dereference(q->oper_sched); |
| admin = rcu_dereference(q->admin_sched); |
| |
| entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp, |
| &interval_start, &interval_end, true); |
| rcu_read_unlock(); |
| |
| return entry; |
| } |
| |
| static bool taprio_flags_valid(u32 flags) |
| { |
| /* Make sure no other flag bits are set. */ |
| if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | |
| TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) |
| return false; |
| /* txtime-assist and full offload are mutually exclusive */ |
| if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) && |
| (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) |
| return false; |
| return true; |
| } |
| |
| /* This returns the tstamp value set by TCP in terms of the set clock. */ |
| static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb) |
| { |
| unsigned int offset = skb_network_offset(skb); |
| const struct ipv6hdr *ipv6h; |
| const struct iphdr *iph; |
| struct ipv6hdr _ipv6h; |
| |
| ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); |
| if (!ipv6h) |
| return 0; |
| |
| if (ipv6h->version == 4) { |
| iph = (struct iphdr *)ipv6h; |
| offset += iph->ihl * 4; |
| |
| /* special-case 6in4 tunnelling, as that is a common way to get |
| * v6 connectivity in the home |
| */ |
| if (iph->protocol == IPPROTO_IPV6) { |
| ipv6h = skb_header_pointer(skb, offset, |
| sizeof(_ipv6h), &_ipv6h); |
| |
| if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP) |
| return 0; |
| } else if (iph->protocol != IPPROTO_TCP) { |
| return 0; |
| } |
| } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) { |
| return 0; |
| } |
| |
| return taprio_mono_to_any(q, skb->skb_mstamp_ns); |
| } |
| |
| /* There are a few scenarios where we will have to modify the txtime from |
| * what is read from next_txtime in sched_entry. They are: |
| * 1. If txtime is in the past, |
| * a. The gate for the traffic class is currently open and packet can be |
| * transmitted before it closes, schedule the packet right away. |
| * b. If the gate corresponding to the traffic class is going to open later |
| * in the cycle, set the txtime of packet to the interval start. |
| * 2. If txtime is in the future, there are packets corresponding to the |
| * current traffic class waiting to be transmitted. So, the following |
| * possibilities exist: |
| * a. We can transmit the packet before the window containing the txtime |
| * closes. |
| * b. The window might close before the transmission can be completed |
| * successfully. So, schedule the packet in the next open window. |
| */ |
| static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch) |
| { |
| ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp; |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct sched_gate_list *sched, *admin; |
| ktime_t minimum_time, now, txtime; |
| int len, packet_transmit_time; |
| struct sched_entry *entry; |
| bool sched_changed; |
| |
| now = taprio_get_time(q); |
| minimum_time = ktime_add_ns(now, q->txtime_delay); |
| |
| tcp_tstamp = get_tcp_tstamp(q, skb); |
| minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp); |
| |
| rcu_read_lock(); |
| admin = rcu_dereference(q->admin_sched); |
| sched = rcu_dereference(q->oper_sched); |
| if (admin && ktime_after(minimum_time, admin->base_time)) |
| switch_schedules(q, &admin, &sched); |
| |
| /* Until the schedule starts, all the queues are open */ |
| if (!sched || ktime_before(minimum_time, sched->base_time)) { |
| txtime = minimum_time; |
| goto done; |
| } |
| |
| len = qdisc_pkt_len(skb); |
| packet_transmit_time = length_to_duration(q, len); |
| |
| do { |
| sched_changed = false; |
| |
| entry = find_entry_to_transmit(skb, sch, sched, admin, |
| minimum_time, |
| &interval_start, &interval_end, |
| false); |
| if (!entry) { |
| txtime = 0; |
| goto done; |
| } |
| |
| txtime = entry->next_txtime; |
| txtime = max_t(ktime_t, txtime, minimum_time); |
| txtime = max_t(ktime_t, txtime, interval_start); |
| |
| if (admin && admin != sched && |
| ktime_after(txtime, admin->base_time)) { |
| sched = admin; |
| sched_changed = true; |
| continue; |
| } |
| |
| transmit_end_time = ktime_add(txtime, packet_transmit_time); |
| minimum_time = transmit_end_time; |
| |
| /* Update the txtime of current entry to the next time it's |
| * interval starts. |
| */ |
| if (ktime_after(transmit_end_time, interval_end)) |
| entry->next_txtime = ktime_add(interval_start, sched->cycle_time); |
| } while (sched_changed || ktime_after(transmit_end_time, interval_end)); |
| |
| entry->next_txtime = transmit_end_time; |
| |
| done: |
| rcu_read_unlock(); |
| return txtime; |
| } |
| |
| /* Devices with full offload are expected to honor this in hardware */ |
| static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch, |
| struct sk_buff *skb) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct sched_gate_list *sched; |
| int prio = skb->priority; |
| bool exceeds = false; |
| u8 tc; |
| |
| tc = netdev_get_prio_tc_map(dev, prio); |
| |
| rcu_read_lock(); |
| sched = rcu_dereference(q->oper_sched); |
| if (sched && skb->len > sched->max_frm_len[tc]) |
| exceeds = true; |
| rcu_read_unlock(); |
| |
| return exceeds; |
| } |
| |
| static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch, |
| struct Qdisc *child, struct sk_buff **to_free) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| |
| /* sk_flags are only safe to use on full sockets. */ |
| if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) { |
| if (!is_valid_interval(skb, sch)) |
| return qdisc_drop(skb, sch, to_free); |
| } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { |
| skb->tstamp = get_packet_txtime(skb, sch); |
| if (!skb->tstamp) |
| return qdisc_drop(skb, sch, to_free); |
| } |
| |
| qdisc_qstats_backlog_inc(sch, skb); |
| sch->q.qlen++; |
| |
| return qdisc_enqueue(skb, child, to_free); |
| } |
| |
| static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch, |
| struct Qdisc *child, |
| struct sk_buff **to_free) |
| { |
| unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb); |
| netdev_features_t features = netif_skb_features(skb); |
| struct sk_buff *segs, *nskb; |
| int ret; |
| |
| segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| if (IS_ERR_OR_NULL(segs)) |
| return qdisc_drop(skb, sch, to_free); |
| |
| skb_list_walk_safe(segs, segs, nskb) { |
| skb_mark_not_on_list(segs); |
| qdisc_skb_cb(segs)->pkt_len = segs->len; |
| slen += segs->len; |
| |
| /* FIXME: we should be segmenting to a smaller size |
| * rather than dropping these |
| */ |
| if (taprio_skb_exceeds_queue_max_sdu(sch, segs)) |
| ret = qdisc_drop(segs, sch, to_free); |
| else |
| ret = taprio_enqueue_one(segs, sch, child, to_free); |
| |
| if (ret != NET_XMIT_SUCCESS) { |
| if (net_xmit_drop_count(ret)) |
| qdisc_qstats_drop(sch); |
| } else { |
| numsegs++; |
| } |
| } |
| |
| if (numsegs > 1) |
| qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen); |
| consume_skb(skb); |
| |
| return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP; |
| } |
| |
| /* Will not be called in the full offload case, since the TX queues are |
| * attached to the Qdisc created using qdisc_create_dflt() |
| */ |
| static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch, |
| struct sk_buff **to_free) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct Qdisc *child; |
| int queue; |
| |
| queue = skb_get_queue_mapping(skb); |
| |
| child = q->qdiscs[queue]; |
| if (unlikely(!child)) |
| return qdisc_drop(skb, sch, to_free); |
| |
| if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) { |
| /* Large packets might not be transmitted when the transmission |
| * duration exceeds any configured interval. Therefore, segment |
| * the skb into smaller chunks. Drivers with full offload are |
| * expected to handle this in hardware. |
| */ |
| if (skb_is_gso(skb)) |
| return taprio_enqueue_segmented(skb, sch, child, |
| to_free); |
| |
| return qdisc_drop(skb, sch, to_free); |
| } |
| |
| return taprio_enqueue_one(skb, sch, child, to_free); |
| } |
| |
| static struct sk_buff *taprio_peek(struct Qdisc *sch) |
| { |
| WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented"); |
| return NULL; |
| } |
| |
| static void taprio_set_budgets(struct taprio_sched *q, |
| struct sched_gate_list *sched, |
| struct sched_entry *entry) |
| { |
| struct net_device *dev = qdisc_dev(q->root); |
| int num_tc = netdev_get_num_tc(dev); |
| int tc, budget; |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| /* Traffic classes which never close have infinite budget */ |
| if (entry->gate_duration[tc] == sched->cycle_time) |
| budget = INT_MAX; |
| else |
| budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC, |
| atomic64_read(&q->picos_per_byte)); |
| |
| atomic_set(&entry->budget[tc], budget); |
| } |
| } |
| |
| /* When an skb is sent, it consumes from the budget of all traffic classes */ |
| static int taprio_update_budgets(struct sched_entry *entry, size_t len, |
| int tc_consumed, int num_tc) |
| { |
| int tc, budget, new_budget = 0; |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| budget = atomic_read(&entry->budget[tc]); |
| /* Don't consume from infinite budget */ |
| if (budget == INT_MAX) { |
| if (tc == tc_consumed) |
| new_budget = budget; |
| continue; |
| } |
| |
| if (tc == tc_consumed) |
| new_budget = atomic_sub_return(len, &entry->budget[tc]); |
| else |
| atomic_sub(len, &entry->budget[tc]); |
| } |
| |
| return new_budget; |
| } |
| |
| static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq, |
| struct sched_entry *entry, |
| u32 gate_mask) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct Qdisc *child = q->qdiscs[txq]; |
| int num_tc = netdev_get_num_tc(dev); |
| struct sk_buff *skb; |
| ktime_t guard; |
| int prio; |
| int len; |
| u8 tc; |
| |
| if (unlikely(!child)) |
| return NULL; |
| |
| if (TXTIME_ASSIST_IS_ENABLED(q->flags)) |
| goto skip_peek_checks; |
| |
| skb = child->ops->peek(child); |
| if (!skb) |
| return NULL; |
| |
| prio = skb->priority; |
| tc = netdev_get_prio_tc_map(dev, prio); |
| |
| if (!(gate_mask & BIT(tc))) |
| return NULL; |
| |
| len = qdisc_pkt_len(skb); |
| guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len)); |
| |
| /* In the case that there's no gate entry, there's no |
| * guard band ... |
| */ |
| if (gate_mask != TAPRIO_ALL_GATES_OPEN && |
| !taprio_entry_allows_tx(guard, entry, tc)) |
| return NULL; |
| |
| /* ... and no budget. */ |
| if (gate_mask != TAPRIO_ALL_GATES_OPEN && |
| taprio_update_budgets(entry, len, tc, num_tc) < 0) |
| return NULL; |
| |
| skip_peek_checks: |
| skb = child->ops->dequeue(child); |
| if (unlikely(!skb)) |
| return NULL; |
| |
| qdisc_bstats_update(sch, skb); |
| qdisc_qstats_backlog_dec(sch, skb); |
| sch->q.qlen--; |
| |
| return skb; |
| } |
| |
| static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq) |
| { |
| int offset = dev->tc_to_txq[tc].offset; |
| int count = dev->tc_to_txq[tc].count; |
| |
| (*txq)++; |
| if (*txq == offset + count) |
| *txq = offset; |
| } |
| |
| /* Prioritize higher traffic classes, and select among TXQs belonging to the |
| * same TC using round robin |
| */ |
| static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch, |
| struct sched_entry *entry, |
| u32 gate_mask) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| int num_tc = netdev_get_num_tc(dev); |
| struct sk_buff *skb; |
| int tc; |
| |
| for (tc = num_tc - 1; tc >= 0; tc--) { |
| int first_txq = q->cur_txq[tc]; |
| |
| if (!(gate_mask & BIT(tc))) |
| continue; |
| |
| do { |
| skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc], |
| entry, gate_mask); |
| |
| taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]); |
| |
| if (skb) |
| return skb; |
| } while (q->cur_txq[tc] != first_txq); |
| } |
| |
| return NULL; |
| } |
| |
| /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic |
| * class other than to determine whether the gate is open or not |
| */ |
| static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch, |
| struct sched_entry *entry, |
| u32 gate_mask) |
| { |
| struct net_device *dev = qdisc_dev(sch); |
| struct sk_buff *skb; |
| int i; |
| |
| for (i = 0; i < dev->num_tx_queues; i++) { |
| skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask); |
| if (skb) |
| return skb; |
| } |
| |
| return NULL; |
| } |
| |
| /* Will not be called in the full offload case, since the TX queues are |
| * attached to the Qdisc created using qdisc_create_dflt() |
| */ |
| static struct sk_buff *taprio_dequeue(struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct sk_buff *skb = NULL; |
| struct sched_entry *entry; |
| u32 gate_mask; |
| |
| rcu_read_lock(); |
| entry = rcu_dereference(q->current_entry); |
| /* if there's no entry, it means that the schedule didn't |
| * start yet, so force all gates to be open, this is in |
| * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5 |
| * "AdminGateStates" |
| */ |
| gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN; |
| if (!gate_mask) |
| goto done; |
| |
| if (static_branch_unlikely(&taprio_have_broken_mqprio) && |
| !static_branch_likely(&taprio_have_working_mqprio)) { |
| /* Single NIC kind which is broken */ |
| skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); |
| } else if (static_branch_likely(&taprio_have_working_mqprio) && |
| !static_branch_unlikely(&taprio_have_broken_mqprio)) { |
| /* Single NIC kind which prioritizes properly */ |
| skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); |
| } else { |
| /* Mixed NIC kinds present in system, need dynamic testing */ |
| if (q->broken_mqprio) |
| skb = taprio_dequeue_txq_priority(sch, entry, gate_mask); |
| else |
| skb = taprio_dequeue_tc_priority(sch, entry, gate_mask); |
| } |
| |
| done: |
| rcu_read_unlock(); |
| |
| return skb; |
| } |
| |
| static bool should_restart_cycle(const struct sched_gate_list *oper, |
| const struct sched_entry *entry) |
| { |
| if (list_is_last(&entry->list, &oper->entries)) |
| return true; |
| |
| if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0) |
| return true; |
| |
| return false; |
| } |
| |
| static bool should_change_schedules(const struct sched_gate_list *admin, |
| const struct sched_gate_list *oper, |
| ktime_t end_time) |
| { |
| ktime_t next_base_time, extension_time; |
| |
| if (!admin) |
| return false; |
| |
| next_base_time = sched_base_time(admin); |
| |
| /* This is the simple case, the end_time would fall after |
| * the next schedule base_time. |
| */ |
| if (ktime_compare(next_base_time, end_time) <= 0) |
| return true; |
| |
| /* This is the cycle_time_extension case, if the end_time |
| * plus the amount that can be extended would fall after the |
| * next schedule base_time, we can extend the current schedule |
| * for that amount. |
| */ |
| extension_time = ktime_add_ns(end_time, oper->cycle_time_extension); |
| |
| /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about |
| * how precisely the extension should be made. So after |
| * conformance testing, this logic may change. |
| */ |
| if (ktime_compare(next_base_time, extension_time) <= 0) |
| return true; |
| |
| return false; |
| } |
| |
| static enum hrtimer_restart advance_sched(struct hrtimer *timer) |
| { |
| struct taprio_sched *q = container_of(timer, struct taprio_sched, |
| advance_timer); |
| struct net_device *dev = qdisc_dev(q->root); |
| struct sched_gate_list *oper, *admin; |
| int num_tc = netdev_get_num_tc(dev); |
| struct sched_entry *entry, *next; |
| struct Qdisc *sch = q->root; |
| ktime_t end_time; |
| int tc; |
| |
| spin_lock(&q->current_entry_lock); |
| entry = rcu_dereference_protected(q->current_entry, |
| lockdep_is_held(&q->current_entry_lock)); |
| oper = rcu_dereference_protected(q->oper_sched, |
| lockdep_is_held(&q->current_entry_lock)); |
| admin = rcu_dereference_protected(q->admin_sched, |
| lockdep_is_held(&q->current_entry_lock)); |
| |
| if (!oper) |
| switch_schedules(q, &admin, &oper); |
| |
| /* This can happen in two cases: 1. this is the very first run |
| * of this function (i.e. we weren't running any schedule |
| * previously); 2. The previous schedule just ended. The first |
| * entry of all schedules are pre-calculated during the |
| * schedule initialization. |
| */ |
| if (unlikely(!entry || entry->end_time == oper->base_time)) { |
| next = list_first_entry(&oper->entries, struct sched_entry, |
| list); |
| end_time = next->end_time; |
| goto first_run; |
| } |
| |
| if (should_restart_cycle(oper, entry)) { |
| next = list_first_entry(&oper->entries, struct sched_entry, |
| list); |
| oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time, |
| oper->cycle_time); |
| } else { |
| next = list_next_entry(entry, list); |
| } |
| |
| end_time = ktime_add_ns(entry->end_time, next->interval); |
| end_time = min_t(ktime_t, end_time, oper->cycle_end_time); |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| if (next->gate_duration[tc] == oper->cycle_time) |
| next->gate_close_time[tc] = KTIME_MAX; |
| else |
| next->gate_close_time[tc] = ktime_add_ns(entry->end_time, |
| next->gate_duration[tc]); |
| } |
| |
| if (should_change_schedules(admin, oper, end_time)) { |
| /* Set things so the next time this runs, the new |
| * schedule runs. |
| */ |
| end_time = sched_base_time(admin); |
| switch_schedules(q, &admin, &oper); |
| } |
| |
| next->end_time = end_time; |
| taprio_set_budgets(q, oper, next); |
| |
| first_run: |
| rcu_assign_pointer(q->current_entry, next); |
| spin_unlock(&q->current_entry_lock); |
| |
| hrtimer_set_expires(&q->advance_timer, end_time); |
| |
| rcu_read_lock(); |
| __netif_schedule(sch); |
| rcu_read_unlock(); |
| |
| return HRTIMER_RESTART; |
| } |
| |
| static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { |
| [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 }, |
| [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 }, |
| [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 }, |
| [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 }, |
| }; |
| |
| static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { |
| [TCA_TAPRIO_TC_ENTRY_INDEX] = { .type = NLA_U32 }, |
| [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 }, |
| [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32, |
| TC_FP_EXPRESS, |
| TC_FP_PREEMPTIBLE), |
| }; |
| |
| static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = { |
| [TCA_TAPRIO_ATTR_PRIOMAP] = { |
| .len = sizeof(struct tc_mqprio_qopt) |
| }, |
| [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED }, |
| [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 }, |
| [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED }, |
| [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 }, |
| [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 }, |
| [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 }, |
| [TCA_TAPRIO_ATTR_FLAGS] = { .type = NLA_U32 }, |
| [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 }, |
| [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED }, |
| }; |
| |
| static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb, |
| struct sched_entry *entry, |
| struct netlink_ext_ack *extack) |
| { |
| int min_duration = length_to_duration(q, ETH_ZLEN); |
| u32 interval = 0; |
| |
| if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD]) |
| entry->command = nla_get_u8( |
| tb[TCA_TAPRIO_SCHED_ENTRY_CMD]); |
| |
| if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]) |
| entry->gate_mask = nla_get_u32( |
| tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]); |
| |
| if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]) |
| interval = nla_get_u32( |
| tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]); |
| |
| /* The interval should allow at least the minimum ethernet |
| * frame to go out. |
| */ |
| if (interval < min_duration) { |
| NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry"); |
| return -EINVAL; |
| } |
| |
| entry->interval = interval; |
| |
| return 0; |
| } |
| |
| static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n, |
| struct sched_entry *entry, int index, |
| struct netlink_ext_ack *extack) |
| { |
| struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { }; |
| int err; |
| |
| err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n, |
| entry_policy, NULL); |
| if (err < 0) { |
| NL_SET_ERR_MSG(extack, "Could not parse nested entry"); |
| return -EINVAL; |
| } |
| |
| entry->index = index; |
| |
| return fill_sched_entry(q, tb, entry, extack); |
| } |
| |
| static int parse_sched_list(struct taprio_sched *q, struct nlattr *list, |
| struct sched_gate_list *sched, |
| struct netlink_ext_ack *extack) |
| { |
| struct nlattr *n; |
| int err, rem; |
| int i = 0; |
| |
| if (!list) |
| return -EINVAL; |
| |
| nla_for_each_nested(n, list, rem) { |
| struct sched_entry *entry; |
| |
| if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) { |
| NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'"); |
| continue; |
| } |
| |
| entry = kzalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) { |
| NL_SET_ERR_MSG(extack, "Not enough memory for entry"); |
| return -ENOMEM; |
| } |
| |
| err = parse_sched_entry(q, n, entry, i, extack); |
| if (err < 0) { |
| kfree(entry); |
| return err; |
| } |
| |
| list_add_tail(&entry->list, &sched->entries); |
| i++; |
| } |
| |
| sched->num_entries = i; |
| |
| return i; |
| } |
| |
| static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb, |
| struct sched_gate_list *new, |
| struct netlink_ext_ack *extack) |
| { |
| int err = 0; |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) { |
| NL_SET_ERR_MSG(extack, "Adding a single entry is not supported"); |
| return -ENOTSUPP; |
| } |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]) |
| new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]); |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]) |
| new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]); |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]) |
| new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]); |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]) |
| err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], |
| new, extack); |
| if (err < 0) |
| return err; |
| |
| if (!new->cycle_time) { |
| struct sched_entry *entry; |
| ktime_t cycle = 0; |
| |
| list_for_each_entry(entry, &new->entries, list) |
| cycle = ktime_add_ns(cycle, entry->interval); |
| |
| if (!cycle) { |
| NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0"); |
| return -EINVAL; |
| } |
| |
| new->cycle_time = cycle; |
| } |
| |
| taprio_calculate_gate_durations(q, new); |
| |
| return 0; |
| } |
| |
| static int taprio_parse_mqprio_opt(struct net_device *dev, |
| struct tc_mqprio_qopt *qopt, |
| struct netlink_ext_ack *extack, |
| u32 taprio_flags) |
| { |
| bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags); |
| |
| if (!qopt && !dev->num_tc) { |
| NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary"); |
| return -EINVAL; |
| } |
| |
| /* If num_tc is already set, it means that the user already |
| * configured the mqprio part |
| */ |
| if (dev->num_tc) |
| return 0; |
| |
| /* taprio imposes that traffic classes map 1:n to tx queues */ |
| if (qopt->num_tc > dev->num_tx_queues) { |
| NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues"); |
| return -EINVAL; |
| } |
| |
| /* For some reason, in txtime-assist mode, we allow TXQ ranges for |
| * different TCs to overlap, and just validate the TXQ ranges. |
| */ |
| return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs, |
| extack); |
| } |
| |
| static int taprio_get_start_time(struct Qdisc *sch, |
| struct sched_gate_list *sched, |
| ktime_t *start) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| ktime_t now, base, cycle; |
| s64 n; |
| |
| base = sched_base_time(sched); |
| now = taprio_get_time(q); |
| |
| if (ktime_after(base, now)) { |
| *start = base; |
| return 0; |
| } |
| |
| cycle = sched->cycle_time; |
| |
| /* The qdisc is expected to have at least one sched_entry. Moreover, |
| * any entry must have 'interval' > 0. Thus if the cycle time is zero, |
| * something went really wrong. In that case, we should warn about this |
| * inconsistent state and return error. |
| */ |
| if (WARN_ON(!cycle)) |
| return -EFAULT; |
| |
| /* Schedule the start time for the beginning of the next |
| * cycle. |
| */ |
| n = div64_s64(ktime_sub_ns(now, base), cycle); |
| *start = ktime_add_ns(base, (n + 1) * cycle); |
| return 0; |
| } |
| |
| static void setup_first_end_time(struct taprio_sched *q, |
| struct sched_gate_list *sched, ktime_t base) |
| { |
| struct net_device *dev = qdisc_dev(q->root); |
| int num_tc = netdev_get_num_tc(dev); |
| struct sched_entry *first; |
| ktime_t cycle; |
| int tc; |
| |
| first = list_first_entry(&sched->entries, |
| struct sched_entry, list); |
| |
| cycle = sched->cycle_time; |
| |
| /* FIXME: find a better place to do this */ |
| sched->cycle_end_time = ktime_add_ns(base, cycle); |
| |
| first->end_time = ktime_add_ns(base, first->interval); |
| taprio_set_budgets(q, sched, first); |
| |
| for (tc = 0; tc < num_tc; tc++) { |
| if (first->gate_duration[tc] == sched->cycle_time) |
| first->gate_close_time[tc] = KTIME_MAX; |
| else |
| first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]); |
| } |
| |
| rcu_assign_pointer(q->current_entry, NULL); |
| } |
| |
| static void taprio_start_sched(struct Qdisc *sch, |
| ktime_t start, struct sched_gate_list *new) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| ktime_t expires; |
| |
| if (FULL_OFFLOAD_IS_ENABLED(q->flags)) |
| return; |
| |
| expires = hrtimer_get_expires(&q->advance_timer); |
| if (expires == 0) |
| expires = KTIME_MAX; |
| |
| /* If the new schedule starts before the next expiration, we |
| * reprogram it to the earliest one, so we change the admin |
| * schedule to the operational one at the right time. |
| */ |
| start = min_t(ktime_t, start, expires); |
| |
| hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS); |
| } |
| |
| static void taprio_set_picos_per_byte(struct net_device *dev, |
| struct taprio_sched *q) |
| { |
| struct ethtool_link_ksettings ecmd; |
| int speed = SPEED_10; |
| int picos_per_byte; |
| int err; |
| |
| err = __ethtool_get_link_ksettings(dev, &ecmd); |
| if (err < 0) |
| goto skip; |
| |
| if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN) |
| speed = ecmd.base.speed; |
| |
| skip: |
| picos_per_byte = (USEC_PER_SEC * 8) / speed; |
| |
| atomic64_set(&q->picos_per_byte, picos_per_byte); |
| netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n", |
| dev->name, (long long)atomic64_read(&q->picos_per_byte), |
| ecmd.base.speed); |
| } |
| |
| static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event, |
| void *ptr) |
| { |
| struct net_device *dev = netdev_notifier_info_to_dev(ptr); |
| struct sched_gate_list *oper, *admin; |
| struct qdisc_size_table *stab; |
| struct taprio_sched *q; |
| |
| ASSERT_RTNL(); |
| |
| if (event != NETDEV_UP && event != NETDEV_CHANGE) |
| return NOTIFY_DONE; |
| |
| list_for_each_entry(q, &taprio_list, taprio_list) { |
| if (dev != qdisc_dev(q->root)) |
| continue; |
| |
| taprio_set_picos_per_byte(dev, q); |
| |
| stab = rtnl_dereference(q->root->stab); |
| |
| oper = rtnl_dereference(q->oper_sched); |
| if (oper) |
| taprio_update_queue_max_sdu(q, oper, stab); |
| |
| admin = rtnl_dereference(q->admin_sched); |
| if (admin) |
| taprio_update_queue_max_sdu(q, admin, stab); |
| |
| break; |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| static void setup_txtime(struct taprio_sched *q, |
| struct sched_gate_list *sched, ktime_t base) |
| { |
| struct sched_entry *entry; |
| u32 interval = 0; |
| |
| list_for_each_entry(entry, &sched->entries, list) { |
| entry->next_txtime = ktime_add_ns(base, interval); |
| interval += entry->interval; |
| } |
| } |
| |
| static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries) |
| { |
| struct __tc_taprio_qopt_offload *__offload; |
| |
| __offload = kzalloc(struct_size(__offload, offload.entries, num_entries), |
| GFP_KERNEL); |
| if (!__offload) |
| return NULL; |
| |
| refcount_set(&__offload->users, 1); |
| |
| return &__offload->offload; |
| } |
| |
| struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload |
| *offload) |
| { |
| struct __tc_taprio_qopt_offload *__offload; |
| |
| __offload = container_of(offload, struct __tc_taprio_qopt_offload, |
| offload); |
| |
| refcount_inc(&__offload->users); |
| |
| return offload; |
| } |
| EXPORT_SYMBOL_GPL(taprio_offload_get); |
| |
| void taprio_offload_free(struct tc_taprio_qopt_offload *offload) |
| { |
| struct __tc_taprio_qopt_offload *__offload; |
| |
| __offload = container_of(offload, struct __tc_taprio_qopt_offload, |
| offload); |
| |
| if (!refcount_dec_and_test(&__offload->users)) |
| return; |
| |
| kfree(__offload); |
| } |
| EXPORT_SYMBOL_GPL(taprio_offload_free); |
| |
| /* The function will only serve to keep the pointers to the "oper" and "admin" |
| * schedules valid in relation to their base times, so when calling dump() the |
| * users looks at the right schedules. |
| * When using full offload, the admin configuration is promoted to oper at the |
| * base_time in the PHC time domain. But because the system time is not |
| * necessarily in sync with that, we can't just trigger a hrtimer to call |
| * switch_schedules at the right hardware time. |
| * At the moment we call this by hand right away from taprio, but in the future |
| * it will be useful to create a mechanism for drivers to notify taprio of the |
| * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump(). |
| * This is left as TODO. |
| */ |
| static void taprio_offload_config_changed(struct taprio_sched *q) |
| { |
| struct sched_gate_list *oper, *admin; |
| |
| oper = rtnl_dereference(q->oper_sched); |
| admin = rtnl_dereference(q->admin_sched); |
| |
| switch_schedules(q, &admin, &oper); |
| } |
| |
| static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask) |
| { |
| u32 i, queue_mask = 0; |
| |
| for (i = 0; i < dev->num_tc; i++) { |
| u32 offset, count; |
| |
| if (!(tc_mask & BIT(i))) |
| continue; |
| |
| offset = dev->tc_to_txq[i].offset; |
| count = dev->tc_to_txq[i].count; |
| |
| queue_mask |= GENMASK(offset + count - 1, offset); |
| } |
| |
| return queue_mask; |
| } |
| |
| static void taprio_sched_to_offload(struct net_device *dev, |
| struct sched_gate_list *sched, |
| struct tc_taprio_qopt_offload *offload, |
| const struct tc_taprio_caps *caps) |
| { |
| struct sched_entry *entry; |
| int i = 0; |
| |
| offload->base_time = sched->base_time; |
| offload->cycle_time = sched->cycle_time; |
| offload->cycle_time_extension = sched->cycle_time_extension; |
| |
| list_for_each_entry(entry, &sched->entries, list) { |
| struct tc_taprio_sched_entry *e = &offload->entries[i]; |
| |
| e->command = entry->command; |
| e->interval = entry->interval; |
| if (caps->gate_mask_per_txq) |
| e->gate_mask = tc_map_to_queue_mask(dev, |
| entry->gate_mask); |
| else |
| e->gate_mask = entry->gate_mask; |
| |
| i++; |
| } |
| |
| offload->num_entries = i; |
| } |
| |
| static void taprio_detect_broken_mqprio(struct taprio_sched *q) |
| { |
| struct net_device *dev = qdisc_dev(q->root); |
| struct tc_taprio_caps caps; |
| |
| qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, |
| &caps, sizeof(caps)); |
| |
| q->broken_mqprio = caps.broken_mqprio; |
| if (q->broken_mqprio) |
| static_branch_inc(&taprio_have_broken_mqprio); |
| else |
| static_branch_inc(&taprio_have_working_mqprio); |
| |
| q->detected_mqprio = true; |
| } |
| |
| static void taprio_cleanup_broken_mqprio(struct taprio_sched *q) |
| { |
| if (!q->detected_mqprio) |
| return; |
| |
| if (q->broken_mqprio) |
| static_branch_dec(&taprio_have_broken_mqprio); |
| else |
| static_branch_dec(&taprio_have_working_mqprio); |
| } |
| |
| static int taprio_enable_offload(struct net_device *dev, |
| struct taprio_sched *q, |
| struct sched_gate_list *sched, |
| struct netlink_ext_ack *extack) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| struct tc_taprio_qopt_offload *offload; |
| struct tc_taprio_caps caps; |
| int tc, err = 0; |
| |
| if (!ops->ndo_setup_tc) { |
| NL_SET_ERR_MSG(extack, |
| "Device does not support taprio offload"); |
| return -EOPNOTSUPP; |
| } |
| |
| qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO, |
| &caps, sizeof(caps)); |
| |
| if (!caps.supports_queue_max_sdu) { |
| for (tc = 0; tc < TC_MAX_QUEUE; tc++) { |
| if (q->max_sdu[tc]) { |
| NL_SET_ERR_MSG_MOD(extack, |
| "Device does not handle queueMaxSDU"); |
| return -EOPNOTSUPP; |
| } |
| } |
| } |
| |
| offload = taprio_offload_alloc(sched->num_entries); |
| if (!offload) { |
| NL_SET_ERR_MSG(extack, |
| "Not enough memory for enabling offload mode"); |
| return -ENOMEM; |
| } |
| offload->enable = 1; |
| offload->extack = extack; |
| mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt); |
| offload->mqprio.extack = extack; |
| taprio_sched_to_offload(dev, sched, offload, &caps); |
| mqprio_fp_to_offload(q->fp, &offload->mqprio); |
| |
| for (tc = 0; tc < TC_MAX_QUEUE; tc++) |
| offload->max_sdu[tc] = q->max_sdu[tc]; |
| |
| err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); |
| if (err < 0) { |
| NL_SET_ERR_MSG_WEAK(extack, |
| "Device failed to setup taprio offload"); |
| goto done; |
| } |
| |
| q->offloaded = true; |
| |
| done: |
| /* The offload structure may linger around via a reference taken by the |
| * device driver, so clear up the netlink extack pointer so that the |
| * driver isn't tempted to dereference data which stopped being valid |
| */ |
| offload->extack = NULL; |
| offload->mqprio.extack = NULL; |
| taprio_offload_free(offload); |
| |
| return err; |
| } |
| |
| static int taprio_disable_offload(struct net_device *dev, |
| struct taprio_sched *q, |
| struct netlink_ext_ack *extack) |
| { |
| const struct net_device_ops *ops = dev->netdev_ops; |
| struct tc_taprio_qopt_offload *offload; |
| int err; |
| |
| if (!q->offloaded) |
| return 0; |
| |
| offload = taprio_offload_alloc(0); |
| if (!offload) { |
| NL_SET_ERR_MSG(extack, |
| "Not enough memory to disable offload mode"); |
| return -ENOMEM; |
| } |
| offload->enable = 0; |
| |
| err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload); |
| if (err < 0) { |
| NL_SET_ERR_MSG(extack, |
| "Device failed to disable offload"); |
| goto out; |
| } |
| |
| q->offloaded = false; |
| |
| out: |
| taprio_offload_free(offload); |
| |
| return err; |
| } |
| |
| /* If full offload is enabled, the only possible clockid is the net device's |
| * PHC. For that reason, specifying a clockid through netlink is incorrect. |
| * For txtime-assist, it is implicitly assumed that the device's PHC is kept |
| * in sync with the specified clockid via a user space daemon such as phc2sys. |
| * For both software taprio and txtime-assist, the clockid is used for the |
| * hrtimer that advances the schedule and hence mandatory. |
| */ |
| static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb, |
| struct netlink_ext_ack *extack) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| int err = -EINVAL; |
| |
| if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { |
| const struct ethtool_ops *ops = dev->ethtool_ops; |
| struct ethtool_ts_info info = { |
| .cmd = ETHTOOL_GET_TS_INFO, |
| .phc_index = -1, |
| }; |
| |
| if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { |
| NL_SET_ERR_MSG(extack, |
| "The 'clockid' cannot be specified for full offload"); |
| goto out; |
| } |
| |
| if (ops && ops->get_ts_info) |
| err = ops->get_ts_info(dev, &info); |
| |
| if (err || info.phc_index < 0) { |
| NL_SET_ERR_MSG(extack, |
| "Device does not have a PTP clock"); |
| err = -ENOTSUPP; |
| goto out; |
| } |
| } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) { |
| int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]); |
| enum tk_offsets tk_offset; |
| |
| /* We only support static clockids and we don't allow |
| * for it to be modified after the first init. |
| */ |
| if (clockid < 0 || |
| (q->clockid != -1 && q->clockid != clockid)) { |
| NL_SET_ERR_MSG(extack, |
| "Changing the 'clockid' of a running schedule is not supported"); |
| err = -ENOTSUPP; |
| goto out; |
| } |
| |
| switch (clockid) { |
| case CLOCK_REALTIME: |
| tk_offset = TK_OFFS_REAL; |
| break; |
| case CLOCK_MONOTONIC: |
| tk_offset = TK_OFFS_MAX; |
| break; |
| case CLOCK_BOOTTIME: |
| tk_offset = TK_OFFS_BOOT; |
| break; |
| case CLOCK_TAI: |
| tk_offset = TK_OFFS_TAI; |
| break; |
| default: |
| NL_SET_ERR_MSG(extack, "Invalid 'clockid'"); |
| err = -EINVAL; |
| goto out; |
| } |
| /* This pairs with READ_ONCE() in taprio_mono_to_any */ |
| WRITE_ONCE(q->tk_offset, tk_offset); |
| |
| q->clockid = clockid; |
| } else { |
| NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory"); |
| goto out; |
| } |
| |
| /* Everything went ok, return success. */ |
| err = 0; |
| |
| out: |
| return err; |
| } |
| |
| static int taprio_parse_tc_entry(struct Qdisc *sch, |
| struct nlattr *opt, |
| u32 max_sdu[TC_QOPT_MAX_QUEUE], |
| u32 fp[TC_QOPT_MAX_QUEUE], |
| unsigned long *seen_tcs, |
| struct netlink_ext_ack *extack) |
| { |
| struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { }; |
| struct net_device *dev = qdisc_dev(sch); |
| int err, tc; |
| u32 val; |
| |
| err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt, |
| taprio_tc_policy, extack); |
| if (err < 0) |
| return err; |
| |
| if (!tb[TCA_TAPRIO_TC_ENTRY_INDEX]) { |
| NL_SET_ERR_MSG_MOD(extack, "TC entry index missing"); |
| return -EINVAL; |
| } |
| |
| tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]); |
| if (tc >= TC_QOPT_MAX_QUEUE) { |
| NL_SET_ERR_MSG_MOD(extack, "TC entry index out of range"); |
| return -ERANGE; |
| } |
| |
| if (*seen_tcs & BIT(tc)) { |
| NL_SET_ERR_MSG_MOD(extack, "Duplicate TC entry"); |
| return -EINVAL; |
| } |
| |
| *seen_tcs |= BIT(tc); |
| |
| if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) { |
| val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]); |
| if (val > dev->max_mtu) { |
| NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU"); |
| return -ERANGE; |
| } |
| |
| max_sdu[tc] = val; |
| } |
| |
| if (tb[TCA_TAPRIO_TC_ENTRY_FP]) |
| fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]); |
| |
| return 0; |
| } |
| |
| static int taprio_parse_tc_entries(struct Qdisc *sch, |
| struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| u32 max_sdu[TC_QOPT_MAX_QUEUE]; |
| bool have_preemption = false; |
| unsigned long seen_tcs = 0; |
| u32 fp[TC_QOPT_MAX_QUEUE]; |
| struct nlattr *n; |
| int tc, rem; |
| int err = 0; |
| |
| for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { |
| max_sdu[tc] = q->max_sdu[tc]; |
| fp[tc] = q->fp[tc]; |
| } |
| |
| nla_for_each_nested(n, opt, rem) { |
| if (nla_type(n) != TCA_TAPRIO_ATTR_TC_ENTRY) |
| continue; |
| |
| err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs, |
| extack); |
| if (err) |
| return err; |
| } |
| |
| for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) { |
| q->max_sdu[tc] = max_sdu[tc]; |
| q->fp[tc] = fp[tc]; |
| if (fp[tc] != TC_FP_EXPRESS) |
| have_preemption = true; |
| } |
| |
| if (have_preemption) { |
| if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) { |
| NL_SET_ERR_MSG(extack, |
| "Preemption only supported with full offload"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!ethtool_dev_mm_supported(dev)) { |
| NL_SET_ERR_MSG(extack, |
| "Device does not support preemption"); |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| return err; |
| } |
| |
| static int taprio_mqprio_cmp(const struct net_device *dev, |
| const struct tc_mqprio_qopt *mqprio) |
| { |
| int i; |
| |
| if (!mqprio || mqprio->num_tc != dev->num_tc) |
| return -1; |
| |
| for (i = 0; i < mqprio->num_tc; i++) |
| if (dev->tc_to_txq[i].count != mqprio->count[i] || |
| dev->tc_to_txq[i].offset != mqprio->offset[i]) |
| return -1; |
| |
| for (i = 0; i <= TC_BITMASK; i++) |
| if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i]) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* The semantics of the 'flags' argument in relation to 'change()' |
| * requests, are interpreted following two rules (which are applied in |
| * this order): (1) an omitted 'flags' argument is interpreted as |
| * zero; (2) the 'flags' of a "running" taprio instance cannot be |
| * changed. |
| */ |
| static int taprio_new_flags(const struct nlattr *attr, u32 old, |
| struct netlink_ext_ack *extack) |
| { |
| u32 new = 0; |
| |
| if (attr) |
| new = nla_get_u32(attr); |
| |
| if (old != TAPRIO_FLAGS_INVALID && old != new) { |
| NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!taprio_flags_valid(new)) { |
| NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid"); |
| return -EINVAL; |
| } |
| |
| return new; |
| } |
| |
| static int taprio_change(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct qdisc_size_table *stab = rtnl_dereference(sch->stab); |
| struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { }; |
| struct sched_gate_list *oper, *admin, *new_admin; |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct tc_mqprio_qopt *mqprio = NULL; |
| unsigned long flags; |
| ktime_t start; |
| int i, err; |
| |
| err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt, |
| taprio_policy, extack); |
| if (err < 0) |
| return err; |
| |
| if (tb[TCA_TAPRIO_ATTR_PRIOMAP]) |
| mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]); |
| |
| err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS], |
| q->flags, extack); |
| if (err < 0) |
| return err; |
| |
| q->flags = err; |
| |
| err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags); |
| if (err < 0) |
| return err; |
| |
| err = taprio_parse_tc_entries(sch, opt, extack); |
| if (err) |
| return err; |
| |
| new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL); |
| if (!new_admin) { |
| NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule"); |
| return -ENOMEM; |
| } |
| INIT_LIST_HEAD(&new_admin->entries); |
| |
| oper = rtnl_dereference(q->oper_sched); |
| admin = rtnl_dereference(q->admin_sched); |
| |
| /* no changes - no new mqprio settings */ |
| if (!taprio_mqprio_cmp(dev, mqprio)) |
| mqprio = NULL; |
| |
| if (mqprio && (oper || admin)) { |
| NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported"); |
| err = -ENOTSUPP; |
| goto free_sched; |
| } |
| |
| if (mqprio) { |
| err = netdev_set_num_tc(dev, mqprio->num_tc); |
| if (err) |
| goto free_sched; |
| for (i = 0; i < mqprio->num_tc; i++) { |
| netdev_set_tc_queue(dev, i, |
| mqprio->count[i], |
| mqprio->offset[i]); |
| q->cur_txq[i] = mqprio->offset[i]; |
| } |
| |
| /* Always use supplied priority mappings */ |
| for (i = 0; i <= TC_BITMASK; i++) |
| netdev_set_prio_tc_map(dev, i, |
| mqprio->prio_tc_map[i]); |
| } |
| |
| err = parse_taprio_schedule(q, tb, new_admin, extack); |
| if (err < 0) |
| goto free_sched; |
| |
| if (new_admin->num_entries == 0) { |
| NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule"); |
| err = -EINVAL; |
| goto free_sched; |
| } |
| |
| err = taprio_parse_clockid(sch, tb, extack); |
| if (err < 0) |
| goto free_sched; |
| |
| taprio_set_picos_per_byte(dev, q); |
| taprio_update_queue_max_sdu(q, new_admin, stab); |
| |
| if (FULL_OFFLOAD_IS_ENABLED(q->flags)) |
| err = taprio_enable_offload(dev, q, new_admin, extack); |
| else |
| err = taprio_disable_offload(dev, q, extack); |
| if (err) |
| goto free_sched; |
| |
| /* Protects against enqueue()/dequeue() */ |
| spin_lock_bh(qdisc_lock(sch)); |
| |
| if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) { |
| if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) { |
| NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled"); |
| err = -EINVAL; |
| goto unlock; |
| } |
| |
| q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]); |
| } |
| |
| if (!TXTIME_ASSIST_IS_ENABLED(q->flags) && |
| !FULL_OFFLOAD_IS_ENABLED(q->flags) && |
| !hrtimer_active(&q->advance_timer)) { |
| hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS); |
| q->advance_timer.function = advance_sched; |
| } |
| |
| err = taprio_get_start_time(sch, new_admin, &start); |
| if (err < 0) { |
| NL_SET_ERR_MSG(extack, "Internal error: failed get start time"); |
| goto unlock; |
| } |
| |
| setup_txtime(q, new_admin, start); |
| |
| if (TXTIME_ASSIST_IS_ENABLED(q->flags)) { |
| if (!oper) { |
| rcu_assign_pointer(q->oper_sched, new_admin); |
| err = 0; |
| new_admin = NULL; |
| goto unlock; |
| } |
| |
| rcu_assign_pointer(q->admin_sched, new_admin); |
| if (admin) |
| call_rcu(&admin->rcu, taprio_free_sched_cb); |
| } else { |
| setup_first_end_time(q, new_admin, start); |
| |
| /* Protects against advance_sched() */ |
| spin_lock_irqsave(&q->current_entry_lock, flags); |
| |
| taprio_start_sched(sch, start, new_admin); |
| |
| rcu_assign_pointer(q->admin_sched, new_admin); |
| if (admin) |
| call_rcu(&admin->rcu, taprio_free_sched_cb); |
| |
| spin_unlock_irqrestore(&q->current_entry_lock, flags); |
| |
| if (FULL_OFFLOAD_IS_ENABLED(q->flags)) |
| taprio_offload_config_changed(q); |
| } |
| |
| new_admin = NULL; |
| err = 0; |
| |
| if (!stab) |
| NL_SET_ERR_MSG_MOD(extack, |
| "Size table not specified, frame length estimations may be inaccurate"); |
| |
| unlock: |
| spin_unlock_bh(qdisc_lock(sch)); |
| |
| free_sched: |
| if (new_admin) |
| call_rcu(&new_admin->rcu, taprio_free_sched_cb); |
| |
| return err; |
| } |
| |
| static void taprio_reset(struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| int i; |
| |
| hrtimer_cancel(&q->advance_timer); |
| |
| if (q->qdiscs) { |
| for (i = 0; i < dev->num_tx_queues; i++) |
| if (q->qdiscs[i]) |
| qdisc_reset(q->qdiscs[i]); |
| } |
| } |
| |
| static void taprio_destroy(struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct sched_gate_list *oper, *admin; |
| unsigned int i; |
| |
| list_del(&q->taprio_list); |
| |
| /* Note that taprio_reset() might not be called if an error |
| * happens in qdisc_create(), after taprio_init() has been called. |
| */ |
| hrtimer_cancel(&q->advance_timer); |
| qdisc_synchronize(sch); |
| |
| taprio_disable_offload(dev, q, NULL); |
| |
| if (q->qdiscs) { |
| for (i = 0; i < dev->num_tx_queues; i++) |
| qdisc_put(q->qdiscs[i]); |
| |
| kfree(q->qdiscs); |
| } |
| q->qdiscs = NULL; |
| |
| netdev_reset_tc(dev); |
| |
| oper = rtnl_dereference(q->oper_sched); |
| admin = rtnl_dereference(q->admin_sched); |
| |
| if (oper) |
| call_rcu(&oper->rcu, taprio_free_sched_cb); |
| |
| if (admin) |
| call_rcu(&admin->rcu, taprio_free_sched_cb); |
| |
| taprio_cleanup_broken_mqprio(q); |
| } |
| |
| static int taprio_init(struct Qdisc *sch, struct nlattr *opt, |
| struct netlink_ext_ack *extack) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| int i, tc; |
| |
| spin_lock_init(&q->current_entry_lock); |
| |
| hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS); |
| q->advance_timer.function = advance_sched; |
| |
| q->root = sch; |
| |
| /* We only support static clockids. Use an invalid value as default |
| * and get the valid one on taprio_change(). |
| */ |
| q->clockid = -1; |
| q->flags = TAPRIO_FLAGS_INVALID; |
| |
| list_add(&q->taprio_list, &taprio_list); |
| |
| if (sch->parent != TC_H_ROOT) { |
| NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!netif_is_multiqueue(dev)) { |
| NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required"); |
| return -EOPNOTSUPP; |
| } |
| |
| /* pre-allocate qdisc, attachment can't fail */ |
| q->qdiscs = kcalloc(dev->num_tx_queues, |
| sizeof(q->qdiscs[0]), |
| GFP_KERNEL); |
| |
| if (!q->qdiscs) |
| return -ENOMEM; |
| |
| if (!opt) |
| return -EINVAL; |
| |
| for (i = 0; i < dev->num_tx_queues; i++) { |
| struct netdev_queue *dev_queue; |
| struct Qdisc *qdisc; |
| |
| dev_queue = netdev_get_tx_queue(dev, i); |
| qdisc = qdisc_create_dflt(dev_queue, |
| &pfifo_qdisc_ops, |
| TC_H_MAKE(TC_H_MAJ(sch->handle), |
| TC_H_MIN(i + 1)), |
| extack); |
| if (!qdisc) |
| return -ENOMEM; |
| |
| if (i < dev->real_num_tx_queues) |
| qdisc_hash_add(qdisc, false); |
| |
| q->qdiscs[i] = qdisc; |
| } |
| |
| for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) |
| q->fp[tc] = TC_FP_EXPRESS; |
| |
| taprio_detect_broken_mqprio(q); |
| |
| return taprio_change(sch, opt, extack); |
| } |
| |
| static void taprio_attach(struct Qdisc *sch) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| unsigned int ntx; |
| |
| /* Attach underlying qdisc */ |
| for (ntx = 0; ntx < dev->num_tx_queues; ntx++) { |
| struct Qdisc *qdisc = q->qdiscs[ntx]; |
| struct Qdisc *old; |
| |
| if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { |
| qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; |
| old = dev_graft_qdisc(qdisc->dev_queue, qdisc); |
| } else { |
| old = dev_graft_qdisc(qdisc->dev_queue, sch); |
| qdisc_refcount_inc(sch); |
| } |
| if (old) |
| qdisc_put(old); |
| } |
| |
| /* access to the child qdiscs is not needed in offload mode */ |
| if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { |
| kfree(q->qdiscs); |
| q->qdiscs = NULL; |
| } |
| } |
| |
| static struct netdev_queue *taprio_queue_get(struct Qdisc *sch, |
| unsigned long cl) |
| { |
| struct net_device *dev = qdisc_dev(sch); |
| unsigned long ntx = cl - 1; |
| |
| if (ntx >= dev->num_tx_queues) |
| return NULL; |
| |
| return netdev_get_tx_queue(dev, ntx); |
| } |
| |
| static int taprio_graft(struct Qdisc *sch, unsigned long cl, |
| struct Qdisc *new, struct Qdisc **old, |
| struct netlink_ext_ack *extack) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); |
| |
| if (!dev_queue) |
| return -EINVAL; |
| |
| if (dev->flags & IFF_UP) |
| dev_deactivate(dev); |
| |
| if (FULL_OFFLOAD_IS_ENABLED(q->flags)) { |
| *old = dev_graft_qdisc(dev_queue, new); |
| } else { |
| *old = q->qdiscs[cl - 1]; |
| q->qdiscs[cl - 1] = new; |
| } |
| |
| if (new) |
| new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT; |
| |
| if (dev->flags & IFF_UP) |
| dev_activate(dev); |
| |
| return 0; |
| } |
| |
| static int dump_entry(struct sk_buff *msg, |
| const struct sched_entry *entry) |
| { |
| struct nlattr *item; |
| |
| item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY); |
| if (!item) |
| return -ENOSPC; |
| |
| if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index)) |
| goto nla_put_failure; |
| |
| if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK, |
| entry->gate_mask)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL, |
| entry->interval)) |
| goto nla_put_failure; |
| |
| return nla_nest_end(msg, item); |
| |
| nla_put_failure: |
| nla_nest_cancel(msg, item); |
| return -1; |
| } |
| |
| static int dump_schedule(struct sk_buff *msg, |
| const struct sched_gate_list *root) |
| { |
| struct nlattr *entry_list; |
| struct sched_entry *entry; |
| |
| if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME, |
| root->base_time, TCA_TAPRIO_PAD)) |
| return -1; |
| |
| if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME, |
| root->cycle_time, TCA_TAPRIO_PAD)) |
| return -1; |
| |
| if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION, |
| root->cycle_time_extension, TCA_TAPRIO_PAD)) |
| return -1; |
| |
| entry_list = nla_nest_start_noflag(msg, |
| TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST); |
| if (!entry_list) |
| goto error_nest; |
| |
| list_for_each_entry(entry, &root->entries, list) { |
| if (dump_entry(msg, entry) < 0) |
| goto error_nest; |
| } |
| |
| nla_nest_end(msg, entry_list); |
| return 0; |
| |
| error_nest: |
| nla_nest_cancel(msg, entry_list); |
| return -1; |
| } |
| |
| static int taprio_dump_tc_entries(struct sk_buff *skb, |
| struct taprio_sched *q, |
| struct sched_gate_list *sched) |
| { |
| struct nlattr *n; |
| int tc; |
| |
| for (tc = 0; tc < TC_MAX_QUEUE; tc++) { |
| n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY); |
| if (!n) |
| return -EMSGSIZE; |
| |
| if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc)) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU, |
| sched->max_sdu[tc])) |
| goto nla_put_failure; |
| |
| if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc])) |
| goto nla_put_failure; |
| |
| nla_nest_end(skb, n); |
| } |
| |
| return 0; |
| |
| nla_put_failure: |
| nla_nest_cancel(skb, n); |
| return -EMSGSIZE; |
| } |
| |
| static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb) |
| { |
| struct taprio_sched *q = qdisc_priv(sch); |
| struct net_device *dev = qdisc_dev(sch); |
| struct sched_gate_list *oper, *admin; |
| struct tc_mqprio_qopt opt = { 0 }; |
| struct nlattr *nest, *sched_nest; |
| |
| oper = rtnl_dereference(q->oper_sched); |
| admin = rtnl_dereference(q->admin_sched); |
| |
| mqprio_qopt_reconstruct(dev, &opt); |
| |
| nest = nla_nest_start_noflag(skb, TCA_OPTIONS); |
| if (!nest) |
| goto start_error; |
| |
| if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt)) |
| goto options_error; |
| |
| if (!FULL_OFFLOAD_IS_ENABLED(q->flags) && |
| nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid)) |
| goto options_error; |
| |
| if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags)) |
| goto options_error; |
| |
| if (q->txtime_delay && |
| nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay)) |
| goto options_error; |
| |
| if (oper && taprio_dump_tc_entries(skb, q, oper)) |
| goto options_error; |
| |
| if (oper && dump_schedule(skb, oper)) |
| goto options_error; |
| |
| if (!admin) |
| goto done; |
| |
| sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED); |
| if (!sched_nest) |
| goto options_error; |
| |
| if (dump_schedule(skb, admin)) |
| goto admin_error; |
| |
| nla_nest_end(skb, sched_nest); |
| |
| done: |
| return nla_nest_end(skb, nest); |
| |
| admin_error: |
| nla_nest_cancel(skb, sched_nest); |
| |
| options_error: |
| nla_nest_cancel(skb, nest); |
| |
| start_error: |
| return -ENOSPC; |
| } |
| |
| static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl) |
| { |
| struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); |
| |
| if (!dev_queue) |
| return NULL; |
| |
| return dev_queue->qdisc_sleeping; |
| } |
| |
| static unsigned long taprio_find(struct Qdisc *sch, u32 classid) |
| { |
| unsigned int ntx = TC_H_MIN(classid); |
| |
| if (!taprio_queue_get(sch, ntx)) |
| return 0; |
| return ntx; |
| } |
| |
| static int taprio_dump_class(struct Qdisc *sch, unsigned long cl, |
| struct sk_buff *skb, struct tcmsg *tcm) |
| { |
| struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); |
| |
| tcm->tcm_parent = TC_H_ROOT; |
| tcm->tcm_handle |= TC_H_MIN(cl); |
| tcm->tcm_info = dev_queue->qdisc_sleeping->handle; |
| |
| return 0; |
| } |
| |
| static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl, |
| struct gnet_dump *d) |
| __releases(d->lock) |
| __acquires(d->lock) |
| { |
| struct netdev_queue *dev_queue = taprio_queue_get(sch, cl); |
| |
| sch = dev_queue->qdisc_sleeping; |
| if (gnet_stats_copy_basic(d, NULL, &sch->bstats, true) < 0 || |
| qdisc_qstats_copy(d, sch) < 0) |
| return -1; |
| return 0; |
| } |
| |
| static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg) |
| { |
| struct net_device *dev = qdisc_dev(sch); |
| unsigned long ntx; |
| |
| if (arg->stop) |
| return; |
| |
| arg->count = arg->skip; |
| for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) { |
| if (!tc_qdisc_stats_dump(sch, ntx + 1, arg)) |
| break; |
| } |
| } |
| |
| static struct netdev_queue *taprio_select_queue(struct Qdisc *sch, |
| struct tcmsg *tcm) |
| { |
| return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent)); |
| } |
| |
| static const struct Qdisc_class_ops taprio_class_ops = { |
| .graft = taprio_graft, |
| .leaf = taprio_leaf, |
| .find = taprio_find, |
| .walk = taprio_walk, |
| .dump = taprio_dump_class, |
| .dump_stats = taprio_dump_class_stats, |
| .select_queue = taprio_select_queue, |
| }; |
| |
| static struct Qdisc_ops taprio_qdisc_ops __read_mostly = { |
| .cl_ops = &taprio_class_ops, |
| .id = "taprio", |
| .priv_size = sizeof(struct taprio_sched), |
| .init = taprio_init, |
| .change = taprio_change, |
| .destroy = taprio_destroy, |
| .reset = taprio_reset, |
| .attach = taprio_attach, |
| .peek = taprio_peek, |
| .dequeue = taprio_dequeue, |
| .enqueue = taprio_enqueue, |
| .dump = taprio_dump, |
| .owner = THIS_MODULE, |
| }; |
| |
| static struct notifier_block taprio_device_notifier = { |
| .notifier_call = taprio_dev_notifier, |
| }; |
| |
| static int __init taprio_module_init(void) |
| { |
| int err = register_netdevice_notifier(&taprio_device_notifier); |
| |
| if (err) |
| return err; |
| |
| return register_qdisc(&taprio_qdisc_ops); |
| } |
| |
| static void __exit taprio_module_exit(void) |
| { |
| unregister_qdisc(&taprio_qdisc_ops); |
| unregister_netdevice_notifier(&taprio_device_notifier); |
| } |
| |
| module_init(taprio_module_init); |
| module_exit(taprio_module_exit); |
| MODULE_LICENSE("GPL"); |