| /* |
| * Performance events x86 architecture code |
| * |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2009 Jaswinder Singh Rajput |
| * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter |
| * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra |
| * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> |
| * Copyright (C) 2009 Google, Inc., Stephane Eranian |
| * |
| * For licencing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/perf_event.h> |
| #include <linux/capability.h> |
| #include <linux/notifier.h> |
| #include <linux/hardirq.h> |
| #include <linux/kprobes.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/kdebug.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/clock.h> |
| #include <linux/uaccess.h> |
| #include <linux/slab.h> |
| #include <linux/cpu.h> |
| #include <linux/bitops.h> |
| #include <linux/device.h> |
| #include <linux/nospec.h> |
| #include <linux/static_call.h> |
| |
| #include <asm/apic.h> |
| #include <asm/stacktrace.h> |
| #include <asm/nmi.h> |
| #include <asm/smp.h> |
| #include <asm/alternative.h> |
| #include <asm/mmu_context.h> |
| #include <asm/tlbflush.h> |
| #include <asm/timer.h> |
| #include <asm/desc.h> |
| #include <asm/ldt.h> |
| #include <asm/unwind.h> |
| |
| #include "perf_event.h" |
| |
| struct x86_pmu x86_pmu __read_mostly; |
| static struct pmu pmu; |
| |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { |
| .enabled = 1, |
| .pmu = &pmu, |
| }; |
| |
| DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key); |
| DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key); |
| DEFINE_STATIC_KEY_FALSE(perf_is_hybrid); |
| |
| /* |
| * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined |
| * from just a typename, as opposed to an actual function. |
| */ |
| DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable); |
| |
| DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign); |
| |
| DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read); |
| |
| DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints); |
| |
| DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling); |
| |
| DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx); |
| |
| DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs); |
| DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases); |
| |
| /* |
| * This one is magic, it will get called even when PMU init fails (because |
| * there is no PMU), in which case it should simply return NULL. |
| */ |
| DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs); |
| |
| u64 __read_mostly hw_cache_event_ids |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX]; |
| u64 __read_mostly hw_cache_extra_regs |
| [PERF_COUNT_HW_CACHE_MAX] |
| [PERF_COUNT_HW_CACHE_OP_MAX] |
| [PERF_COUNT_HW_CACHE_RESULT_MAX]; |
| |
| /* |
| * Propagate event elapsed time into the generic event. |
| * Can only be executed on the CPU where the event is active. |
| * Returns the delta events processed. |
| */ |
| u64 x86_perf_event_update(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int shift = 64 - x86_pmu.cntval_bits; |
| u64 prev_raw_count, new_raw_count; |
| u64 delta; |
| |
| if (unlikely(!hwc->event_base)) |
| return 0; |
| |
| if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event) |
| return x86_pmu.update_topdown_event(event); |
| |
| /* |
| * Careful: an NMI might modify the previous event value. |
| * |
| * Our tactic to handle this is to first atomically read and |
| * exchange a new raw count - then add that new-prev delta |
| * count to the generic event atomically: |
| */ |
| again: |
| prev_raw_count = local64_read(&hwc->prev_count); |
| rdpmcl(hwc->event_base_rdpmc, new_raw_count); |
| |
| if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| new_raw_count) != prev_raw_count) |
| goto again; |
| |
| /* |
| * Now we have the new raw value and have updated the prev |
| * timestamp already. We can now calculate the elapsed delta |
| * (event-)time and add that to the generic event. |
| * |
| * Careful, not all hw sign-extends above the physical width |
| * of the count. |
| */ |
| delta = (new_raw_count << shift) - (prev_raw_count << shift); |
| delta >>= shift; |
| |
| local64_add(delta, &event->count); |
| local64_sub(delta, &hwc->period_left); |
| |
| return new_raw_count; |
| } |
| |
| /* |
| * Find and validate any extra registers to set up. |
| */ |
| static int x86_pmu_extra_regs(u64 config, struct perf_event *event) |
| { |
| struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs); |
| struct hw_perf_event_extra *reg; |
| struct extra_reg *er; |
| |
| reg = &event->hw.extra_reg; |
| |
| if (!extra_regs) |
| return 0; |
| |
| for (er = extra_regs; er->msr; er++) { |
| if (er->event != (config & er->config_mask)) |
| continue; |
| if (event->attr.config1 & ~er->valid_mask) |
| return -EINVAL; |
| /* Check if the extra msrs can be safely accessed*/ |
| if (!er->extra_msr_access) |
| return -ENXIO; |
| |
| reg->idx = er->idx; |
| reg->config = event->attr.config1; |
| reg->reg = er->msr; |
| break; |
| } |
| return 0; |
| } |
| |
| static atomic_t active_events; |
| static atomic_t pmc_refcount; |
| static DEFINE_MUTEX(pmc_reserve_mutex); |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| |
| static inline int get_possible_num_counters(void) |
| { |
| int i, num_counters = x86_pmu.num_counters; |
| |
| if (!is_hybrid()) |
| return num_counters; |
| |
| for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) |
| num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters); |
| |
| return num_counters; |
| } |
| |
| static bool reserve_pmc_hardware(void) |
| { |
| int i, num_counters = get_possible_num_counters(); |
| |
| for (i = 0; i < num_counters; i++) { |
| if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) |
| goto perfctr_fail; |
| } |
| |
| for (i = 0; i < num_counters; i++) { |
| if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) |
| goto eventsel_fail; |
| } |
| |
| return true; |
| |
| eventsel_fail: |
| for (i--; i >= 0; i--) |
| release_evntsel_nmi(x86_pmu_config_addr(i)); |
| |
| i = num_counters; |
| |
| perfctr_fail: |
| for (i--; i >= 0; i--) |
| release_perfctr_nmi(x86_pmu_event_addr(i)); |
| |
| return false; |
| } |
| |
| static void release_pmc_hardware(void) |
| { |
| int i, num_counters = get_possible_num_counters(); |
| |
| for (i = 0; i < num_counters; i++) { |
| release_perfctr_nmi(x86_pmu_event_addr(i)); |
| release_evntsel_nmi(x86_pmu_config_addr(i)); |
| } |
| } |
| |
| #else |
| |
| static bool reserve_pmc_hardware(void) { return true; } |
| static void release_pmc_hardware(void) {} |
| |
| #endif |
| |
| bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed) |
| { |
| u64 val, val_fail = -1, val_new= ~0; |
| int i, reg, reg_fail = -1, ret = 0; |
| int bios_fail = 0; |
| int reg_safe = -1; |
| |
| /* |
| * Check to see if the BIOS enabled any of the counters, if so |
| * complain and bail. |
| */ |
| for (i = 0; i < num_counters; i++) { |
| reg = x86_pmu_config_addr(i); |
| ret = rdmsrl_safe(reg, &val); |
| if (ret) |
| goto msr_fail; |
| if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { |
| bios_fail = 1; |
| val_fail = val; |
| reg_fail = reg; |
| } else { |
| reg_safe = i; |
| } |
| } |
| |
| if (num_counters_fixed) { |
| reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; |
| ret = rdmsrl_safe(reg, &val); |
| if (ret) |
| goto msr_fail; |
| for (i = 0; i < num_counters_fixed; i++) { |
| if (fixed_counter_disabled(i, pmu)) |
| continue; |
| if (val & (0x03ULL << i*4)) { |
| bios_fail = 1; |
| val_fail = val; |
| reg_fail = reg; |
| } |
| } |
| } |
| |
| /* |
| * If all the counters are enabled, the below test will always |
| * fail. The tools will also become useless in this scenario. |
| * Just fail and disable the hardware counters. |
| */ |
| |
| if (reg_safe == -1) { |
| reg = reg_safe; |
| goto msr_fail; |
| } |
| |
| /* |
| * Read the current value, change it and read it back to see if it |
| * matches, this is needed to detect certain hardware emulators |
| * (qemu/kvm) that don't trap on the MSR access and always return 0s. |
| */ |
| reg = x86_pmu_event_addr(reg_safe); |
| if (rdmsrl_safe(reg, &val)) |
| goto msr_fail; |
| val ^= 0xffffUL; |
| ret = wrmsrl_safe(reg, val); |
| ret |= rdmsrl_safe(reg, &val_new); |
| if (ret || val != val_new) |
| goto msr_fail; |
| |
| /* |
| * We still allow the PMU driver to operate: |
| */ |
| if (bios_fail) { |
| pr_cont("Broken BIOS detected, complain to your hardware vendor.\n"); |
| pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", |
| reg_fail, val_fail); |
| } |
| |
| return true; |
| |
| msr_fail: |
| if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) { |
| pr_cont("PMU not available due to virtualization, using software events only.\n"); |
| } else { |
| pr_cont("Broken PMU hardware detected, using software events only.\n"); |
| pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n", |
| reg, val_new); |
| } |
| |
| return false; |
| } |
| |
| static void hw_perf_event_destroy(struct perf_event *event) |
| { |
| x86_release_hardware(); |
| atomic_dec(&active_events); |
| } |
| |
| void hw_perf_lbr_event_destroy(struct perf_event *event) |
| { |
| hw_perf_event_destroy(event); |
| |
| /* undo the lbr/bts event accounting */ |
| x86_del_exclusive(x86_lbr_exclusive_lbr); |
| } |
| |
| static inline int x86_pmu_initialized(void) |
| { |
| return x86_pmu.handle_irq != NULL; |
| } |
| |
| static inline int |
| set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| unsigned int cache_type, cache_op, cache_result; |
| u64 config, val; |
| |
| config = attr->config; |
| |
| cache_type = (config >> 0) & 0xff; |
| if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| return -EINVAL; |
| cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX); |
| |
| cache_op = (config >> 8) & 0xff; |
| if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| return -EINVAL; |
| cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX); |
| |
| cache_result = (config >> 16) & 0xff; |
| if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| return -EINVAL; |
| cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX); |
| |
| val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result]; |
| if (val == 0) |
| return -ENOENT; |
| |
| if (val == -1) |
| return -EINVAL; |
| |
| hwc->config |= val; |
| attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result]; |
| return x86_pmu_extra_regs(val, event); |
| } |
| |
| int x86_reserve_hardware(void) |
| { |
| int err = 0; |
| |
| if (!atomic_inc_not_zero(&pmc_refcount)) { |
| mutex_lock(&pmc_reserve_mutex); |
| if (atomic_read(&pmc_refcount) == 0) { |
| if (!reserve_pmc_hardware()) { |
| err = -EBUSY; |
| } else { |
| reserve_ds_buffers(); |
| reserve_lbr_buffers(); |
| } |
| } |
| if (!err) |
| atomic_inc(&pmc_refcount); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| |
| return err; |
| } |
| |
| void x86_release_hardware(void) |
| { |
| if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) { |
| release_pmc_hardware(); |
| release_ds_buffers(); |
| release_lbr_buffers(); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| } |
| |
| /* |
| * Check if we can create event of a certain type (that no conflicting events |
| * are present). |
| */ |
| int x86_add_exclusive(unsigned int what) |
| { |
| int i; |
| |
| /* |
| * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS. |
| * LBR and BTS are still mutually exclusive. |
| */ |
| if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) |
| goto out; |
| |
| if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) { |
| mutex_lock(&pmc_reserve_mutex); |
| for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) { |
| if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i])) |
| goto fail_unlock; |
| } |
| atomic_inc(&x86_pmu.lbr_exclusive[what]); |
| mutex_unlock(&pmc_reserve_mutex); |
| } |
| |
| out: |
| atomic_inc(&active_events); |
| return 0; |
| |
| fail_unlock: |
| mutex_unlock(&pmc_reserve_mutex); |
| return -EBUSY; |
| } |
| |
| void x86_del_exclusive(unsigned int what) |
| { |
| atomic_dec(&active_events); |
| |
| /* |
| * See the comment in x86_add_exclusive(). |
| */ |
| if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt) |
| return; |
| |
| atomic_dec(&x86_pmu.lbr_exclusive[what]); |
| } |
| |
| int x86_setup_perfctr(struct perf_event *event) |
| { |
| struct perf_event_attr *attr = &event->attr; |
| struct hw_perf_event *hwc = &event->hw; |
| u64 config; |
| |
| if (!is_sampling_event(event)) { |
| hwc->sample_period = x86_pmu.max_period; |
| hwc->last_period = hwc->sample_period; |
| local64_set(&hwc->period_left, hwc->sample_period); |
| } |
| |
| if (attr->type == event->pmu->type) |
| return x86_pmu_extra_regs(event->attr.config, event); |
| |
| if (attr->type == PERF_TYPE_HW_CACHE) |
| return set_ext_hw_attr(hwc, event); |
| |
| if (attr->config >= x86_pmu.max_events) |
| return -EINVAL; |
| |
| attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events); |
| |
| /* |
| * The generic map: |
| */ |
| config = x86_pmu.event_map(attr->config); |
| |
| if (config == 0) |
| return -ENOENT; |
| |
| if (config == -1LL) |
| return -EINVAL; |
| |
| hwc->config |= config; |
| |
| return 0; |
| } |
| |
| /* |
| * check that branch_sample_type is compatible with |
| * settings needed for precise_ip > 1 which implies |
| * using the LBR to capture ALL taken branches at the |
| * priv levels of the measurement |
| */ |
| static inline int precise_br_compat(struct perf_event *event) |
| { |
| u64 m = event->attr.branch_sample_type; |
| u64 b = 0; |
| |
| /* must capture all branches */ |
| if (!(m & PERF_SAMPLE_BRANCH_ANY)) |
| return 0; |
| |
| m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; |
| |
| if (!event->attr.exclude_user) |
| b |= PERF_SAMPLE_BRANCH_USER; |
| |
| if (!event->attr.exclude_kernel) |
| b |= PERF_SAMPLE_BRANCH_KERNEL; |
| |
| /* |
| * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 |
| */ |
| |
| return m == b; |
| } |
| |
| int x86_pmu_max_precise(void) |
| { |
| int precise = 0; |
| |
| /* Support for constant skid */ |
| if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { |
| precise++; |
| |
| /* Support for IP fixup */ |
| if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2) |
| precise++; |
| |
| if (x86_pmu.pebs_prec_dist) |
| precise++; |
| } |
| return precise; |
| } |
| |
| int x86_pmu_hw_config(struct perf_event *event) |
| { |
| if (event->attr.precise_ip) { |
| int precise = x86_pmu_max_precise(); |
| |
| if (event->attr.precise_ip > precise) |
| return -EOPNOTSUPP; |
| |
| /* There's no sense in having PEBS for non sampling events: */ |
| if (!is_sampling_event(event)) |
| return -EINVAL; |
| } |
| /* |
| * check that PEBS LBR correction does not conflict with |
| * whatever the user is asking with attr->branch_sample_type |
| */ |
| if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) { |
| u64 *br_type = &event->attr.branch_sample_type; |
| |
| if (has_branch_stack(event)) { |
| if (!precise_br_compat(event)) |
| return -EOPNOTSUPP; |
| |
| /* branch_sample_type is compatible */ |
| |
| } else { |
| /* |
| * user did not specify branch_sample_type |
| * |
| * For PEBS fixups, we capture all |
| * the branches at the priv level of the |
| * event. |
| */ |
| *br_type = PERF_SAMPLE_BRANCH_ANY; |
| |
| if (!event->attr.exclude_user) |
| *br_type |= PERF_SAMPLE_BRANCH_USER; |
| |
| if (!event->attr.exclude_kernel) |
| *br_type |= PERF_SAMPLE_BRANCH_KERNEL; |
| } |
| } |
| |
| if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK) |
| event->attach_state |= PERF_ATTACH_TASK_DATA; |
| |
| /* |
| * Generate PMC IRQs: |
| * (keep 'enabled' bit clear for now) |
| */ |
| event->hw.config = ARCH_PERFMON_EVENTSEL_INT; |
| |
| /* |
| * Count user and OS events unless requested not to |
| */ |
| if (!event->attr.exclude_user) |
| event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; |
| if (!event->attr.exclude_kernel) |
| event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; |
| |
| if (event->attr.type == event->pmu->type) |
| event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK; |
| |
| if (event->attr.sample_period && x86_pmu.limit_period) { |
| if (x86_pmu.limit_period(event, event->attr.sample_period) > |
| event->attr.sample_period) |
| return -EINVAL; |
| } |
| |
| /* sample_regs_user never support XMM registers */ |
| if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK)) |
| return -EINVAL; |
| /* |
| * Besides the general purpose registers, XMM registers may |
| * be collected in PEBS on some platforms, e.g. Icelake |
| */ |
| if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) { |
| if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS)) |
| return -EINVAL; |
| |
| if (!event->attr.precise_ip) |
| return -EINVAL; |
| } |
| |
| return x86_setup_perfctr(event); |
| } |
| |
| /* |
| * Setup the hardware configuration for a given attr_type |
| */ |
| static int __x86_pmu_event_init(struct perf_event *event) |
| { |
| int err; |
| |
| if (!x86_pmu_initialized()) |
| return -ENODEV; |
| |
| err = x86_reserve_hardware(); |
| if (err) |
| return err; |
| |
| atomic_inc(&active_events); |
| event->destroy = hw_perf_event_destroy; |
| |
| event->hw.idx = -1; |
| event->hw.last_cpu = -1; |
| event->hw.last_tag = ~0ULL; |
| |
| /* mark unused */ |
| event->hw.extra_reg.idx = EXTRA_REG_NONE; |
| event->hw.branch_reg.idx = EXTRA_REG_NONE; |
| |
| return x86_pmu.hw_config(event); |
| } |
| |
| void x86_pmu_disable_all(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int idx; |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| struct hw_perf_event *hwc = &cpuc->events[idx]->hw; |
| u64 val; |
| |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| rdmsrl(x86_pmu_config_addr(idx), val); |
| if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) |
| continue; |
| val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; |
| wrmsrl(x86_pmu_config_addr(idx), val); |
| if (is_counter_pair(hwc)) |
| wrmsrl(x86_pmu_config_addr(idx + 1), 0); |
| } |
| } |
| |
| struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data) |
| { |
| return static_call(x86_pmu_guest_get_msrs)(nr, data); |
| } |
| EXPORT_SYMBOL_GPL(perf_guest_get_msrs); |
| |
| /* |
| * There may be PMI landing after enabled=0. The PMI hitting could be before or |
| * after disable_all. |
| * |
| * If PMI hits before disable_all, the PMU will be disabled in the NMI handler. |
| * It will not be re-enabled in the NMI handler again, because enabled=0. After |
| * handling the NMI, disable_all will be called, which will not change the |
| * state either. If PMI hits after disable_all, the PMU is already disabled |
| * before entering NMI handler. The NMI handler will not change the state |
| * either. |
| * |
| * So either situation is harmless. |
| */ |
| static void x86_pmu_disable(struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| if (!x86_pmu_initialized()) |
| return; |
| |
| if (!cpuc->enabled) |
| return; |
| |
| cpuc->n_added = 0; |
| cpuc->enabled = 0; |
| barrier(); |
| |
| static_call(x86_pmu_disable_all)(); |
| } |
| |
| void x86_pmu_enable_all(int added) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int idx; |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| struct hw_perf_event *hwc = &cpuc->events[idx]->hw; |
| |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| |
| __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); |
| } |
| } |
| |
| static inline int is_x86_event(struct perf_event *event) |
| { |
| int i; |
| |
| if (!is_hybrid()) |
| return event->pmu == &pmu; |
| |
| for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { |
| if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| struct pmu *x86_get_pmu(unsigned int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| |
| /* |
| * All CPUs of the hybrid type have been offline. |
| * The x86_get_pmu() should not be invoked. |
| */ |
| if (WARN_ON_ONCE(!cpuc->pmu)) |
| return &pmu; |
| |
| return cpuc->pmu; |
| } |
| /* |
| * Event scheduler state: |
| * |
| * Assign events iterating over all events and counters, beginning |
| * with events with least weights first. Keep the current iterator |
| * state in struct sched_state. |
| */ |
| struct sched_state { |
| int weight; |
| int event; /* event index */ |
| int counter; /* counter index */ |
| int unassigned; /* number of events to be assigned left */ |
| int nr_gp; /* number of GP counters used */ |
| u64 used; |
| }; |
| |
| /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ |
| #define SCHED_STATES_MAX 2 |
| |
| struct perf_sched { |
| int max_weight; |
| int max_events; |
| int max_gp; |
| int saved_states; |
| struct event_constraint **constraints; |
| struct sched_state state; |
| struct sched_state saved[SCHED_STATES_MAX]; |
| }; |
| |
| /* |
| * Initialize iterator that runs through all events and counters. |
| */ |
| static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints, |
| int num, int wmin, int wmax, int gpmax) |
| { |
| int idx; |
| |
| memset(sched, 0, sizeof(*sched)); |
| sched->max_events = num; |
| sched->max_weight = wmax; |
| sched->max_gp = gpmax; |
| sched->constraints = constraints; |
| |
| for (idx = 0; idx < num; idx++) { |
| if (constraints[idx]->weight == wmin) |
| break; |
| } |
| |
| sched->state.event = idx; /* start with min weight */ |
| sched->state.weight = wmin; |
| sched->state.unassigned = num; |
| } |
| |
| static void perf_sched_save_state(struct perf_sched *sched) |
| { |
| if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) |
| return; |
| |
| sched->saved[sched->saved_states] = sched->state; |
| sched->saved_states++; |
| } |
| |
| static bool perf_sched_restore_state(struct perf_sched *sched) |
| { |
| if (!sched->saved_states) |
| return false; |
| |
| sched->saved_states--; |
| sched->state = sched->saved[sched->saved_states]; |
| |
| /* this assignment didn't work out */ |
| /* XXX broken vs EVENT_PAIR */ |
| sched->state.used &= ~BIT_ULL(sched->state.counter); |
| |
| /* try the next one */ |
| sched->state.counter++; |
| |
| return true; |
| } |
| |
| /* |
| * Select a counter for the current event to schedule. Return true on |
| * success. |
| */ |
| static bool __perf_sched_find_counter(struct perf_sched *sched) |
| { |
| struct event_constraint *c; |
| int idx; |
| |
| if (!sched->state.unassigned) |
| return false; |
| |
| if (sched->state.event >= sched->max_events) |
| return false; |
| |
| c = sched->constraints[sched->state.event]; |
| /* Prefer fixed purpose counters */ |
| if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { |
| idx = INTEL_PMC_IDX_FIXED; |
| for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { |
| u64 mask = BIT_ULL(idx); |
| |
| if (sched->state.used & mask) |
| continue; |
| |
| sched->state.used |= mask; |
| goto done; |
| } |
| } |
| |
| /* Grab the first unused counter starting with idx */ |
| idx = sched->state.counter; |
| for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { |
| u64 mask = BIT_ULL(idx); |
| |
| if (c->flags & PERF_X86_EVENT_PAIR) |
| mask |= mask << 1; |
| |
| if (sched->state.used & mask) |
| continue; |
| |
| if (sched->state.nr_gp++ >= sched->max_gp) |
| return false; |
| |
| sched->state.used |= mask; |
| goto done; |
| } |
| |
| return false; |
| |
| done: |
| sched->state.counter = idx; |
| |
| if (c->overlap) |
| perf_sched_save_state(sched); |
| |
| return true; |
| } |
| |
| static bool perf_sched_find_counter(struct perf_sched *sched) |
| { |
| while (!__perf_sched_find_counter(sched)) { |
| if (!perf_sched_restore_state(sched)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Go through all unassigned events and find the next one to schedule. |
| * Take events with the least weight first. Return true on success. |
| */ |
| static bool perf_sched_next_event(struct perf_sched *sched) |
| { |
| struct event_constraint *c; |
| |
| if (!sched->state.unassigned || !--sched->state.unassigned) |
| return false; |
| |
| do { |
| /* next event */ |
| sched->state.event++; |
| if (sched->state.event >= sched->max_events) { |
| /* next weight */ |
| sched->state.event = 0; |
| sched->state.weight++; |
| if (sched->state.weight > sched->max_weight) |
| return false; |
| } |
| c = sched->constraints[sched->state.event]; |
| } while (c->weight != sched->state.weight); |
| |
| sched->state.counter = 0; /* start with first counter */ |
| |
| return true; |
| } |
| |
| /* |
| * Assign a counter for each event. |
| */ |
| int perf_assign_events(struct event_constraint **constraints, int n, |
| int wmin, int wmax, int gpmax, int *assign) |
| { |
| struct perf_sched sched; |
| |
| perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax); |
| |
| do { |
| if (!perf_sched_find_counter(&sched)) |
| break; /* failed */ |
| if (assign) |
| assign[sched.state.event] = sched.state.counter; |
| } while (perf_sched_next_event(&sched)); |
| |
| return sched.state.unassigned; |
| } |
| EXPORT_SYMBOL_GPL(perf_assign_events); |
| |
| int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) |
| { |
| int num_counters = hybrid(cpuc->pmu, num_counters); |
| struct event_constraint *c; |
| struct perf_event *e; |
| int n0, i, wmin, wmax, unsched = 0; |
| struct hw_perf_event *hwc; |
| u64 used_mask = 0; |
| |
| /* |
| * Compute the number of events already present; see x86_pmu_add(), |
| * validate_group() and x86_pmu_commit_txn(). For the former two |
| * cpuc->n_events hasn't been updated yet, while for the latter |
| * cpuc->n_txn contains the number of events added in the current |
| * transaction. |
| */ |
| n0 = cpuc->n_events; |
| if (cpuc->txn_flags & PERF_PMU_TXN_ADD) |
| n0 -= cpuc->n_txn; |
| |
| static_call_cond(x86_pmu_start_scheduling)(cpuc); |
| |
| for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { |
| c = cpuc->event_constraint[i]; |
| |
| /* |
| * Previously scheduled events should have a cached constraint, |
| * while new events should not have one. |
| */ |
| WARN_ON_ONCE((c && i >= n0) || (!c && i < n0)); |
| |
| /* |
| * Request constraints for new events; or for those events that |
| * have a dynamic constraint -- for those the constraint can |
| * change due to external factors (sibling state, allow_tfa). |
| */ |
| if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) { |
| c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]); |
| cpuc->event_constraint[i] = c; |
| } |
| |
| wmin = min(wmin, c->weight); |
| wmax = max(wmax, c->weight); |
| } |
| |
| /* |
| * fastpath, try to reuse previous register |
| */ |
| for (i = 0; i < n; i++) { |
| u64 mask; |
| |
| hwc = &cpuc->event_list[i]->hw; |
| c = cpuc->event_constraint[i]; |
| |
| /* never assigned */ |
| if (hwc->idx == -1) |
| break; |
| |
| /* constraint still honored */ |
| if (!test_bit(hwc->idx, c->idxmsk)) |
| break; |
| |
| mask = BIT_ULL(hwc->idx); |
| if (is_counter_pair(hwc)) |
| mask |= mask << 1; |
| |
| /* not already used */ |
| if (used_mask & mask) |
| break; |
| |
| used_mask |= mask; |
| |
| if (assign) |
| assign[i] = hwc->idx; |
| } |
| |
| /* slow path */ |
| if (i != n) { |
| int gpmax = num_counters; |
| |
| /* |
| * Do not allow scheduling of more than half the available |
| * generic counters. |
| * |
| * This helps avoid counter starvation of sibling thread by |
| * ensuring at most half the counters cannot be in exclusive |
| * mode. There is no designated counters for the limits. Any |
| * N/2 counters can be used. This helps with events with |
| * specific counter constraints. |
| */ |
| if (is_ht_workaround_enabled() && !cpuc->is_fake && |
| READ_ONCE(cpuc->excl_cntrs->exclusive_present)) |
| gpmax /= 2; |
| |
| /* |
| * Reduce the amount of available counters to allow fitting |
| * the extra Merge events needed by large increment events. |
| */ |
| if (x86_pmu.flags & PMU_FL_PAIR) { |
| gpmax = num_counters - cpuc->n_pair; |
| WARN_ON(gpmax <= 0); |
| } |
| |
| unsched = perf_assign_events(cpuc->event_constraint, n, wmin, |
| wmax, gpmax, assign); |
| } |
| |
| /* |
| * In case of success (unsched = 0), mark events as committed, |
| * so we do not put_constraint() in case new events are added |
| * and fail to be scheduled |
| * |
| * We invoke the lower level commit callback to lock the resource |
| * |
| * We do not need to do all of this in case we are called to |
| * validate an event group (assign == NULL) |
| */ |
| if (!unsched && assign) { |
| for (i = 0; i < n; i++) |
| static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]); |
| } else { |
| for (i = n0; i < n; i++) { |
| e = cpuc->event_list[i]; |
| |
| /* |
| * release events that failed scheduling |
| */ |
| static_call_cond(x86_pmu_put_event_constraints)(cpuc, e); |
| |
| cpuc->event_constraint[i] = NULL; |
| } |
| } |
| |
| static_call_cond(x86_pmu_stop_scheduling)(cpuc); |
| |
| return unsched ? -EINVAL : 0; |
| } |
| |
| static int add_nr_metric_event(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| if (is_metric_event(event)) { |
| if (cpuc->n_metric == INTEL_TD_METRIC_NUM) |
| return -EINVAL; |
| cpuc->n_metric++; |
| cpuc->n_txn_metric++; |
| } |
| |
| return 0; |
| } |
| |
| static void del_nr_metric_event(struct cpu_hw_events *cpuc, |
| struct perf_event *event) |
| { |
| if (is_metric_event(event)) |
| cpuc->n_metric--; |
| } |
| |
| static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event, |
| int max_count, int n) |
| { |
| union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); |
| |
| if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event)) |
| return -EINVAL; |
| |
| if (n >= max_count + cpuc->n_metric) |
| return -EINVAL; |
| |
| cpuc->event_list[n] = event; |
| if (is_counter_pair(&event->hw)) { |
| cpuc->n_pair++; |
| cpuc->n_txn_pair++; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * dogrp: true if must collect siblings events (group) |
| * returns total number of events and error code |
| */ |
| static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) |
| { |
| int num_counters = hybrid(cpuc->pmu, num_counters); |
| int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); |
| struct perf_event *event; |
| int n, max_count; |
| |
| max_count = num_counters + num_counters_fixed; |
| |
| /* current number of events already accepted */ |
| n = cpuc->n_events; |
| if (!cpuc->n_events) |
| cpuc->pebs_output = 0; |
| |
| if (!cpuc->is_fake && leader->attr.precise_ip) { |
| /* |
| * For PEBS->PT, if !aux_event, the group leader (PT) went |
| * away, the group was broken down and this singleton event |
| * can't schedule any more. |
| */ |
| if (is_pebs_pt(leader) && !leader->aux_event) |
| return -EINVAL; |
| |
| /* |
| * pebs_output: 0: no PEBS so far, 1: PT, 2: DS |
| */ |
| if (cpuc->pebs_output && |
| cpuc->pebs_output != is_pebs_pt(leader) + 1) |
| return -EINVAL; |
| |
| cpuc->pebs_output = is_pebs_pt(leader) + 1; |
| } |
| |
| if (is_x86_event(leader)) { |
| if (collect_event(cpuc, leader, max_count, n)) |
| return -EINVAL; |
| n++; |
| } |
| |
| if (!dogrp) |
| return n; |
| |
| for_each_sibling_event(event, leader) { |
| if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF) |
| continue; |
| |
| if (collect_event(cpuc, event, max_count, n)) |
| return -EINVAL; |
| |
| n++; |
| } |
| return n; |
| } |
| |
| static inline void x86_assign_hw_event(struct perf_event *event, |
| struct cpu_hw_events *cpuc, int i) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int idx; |
| |
| idx = hwc->idx = cpuc->assign[i]; |
| hwc->last_cpu = smp_processor_id(); |
| hwc->last_tag = ++cpuc->tags[i]; |
| |
| static_call_cond(x86_pmu_assign)(event, idx); |
| |
| switch (hwc->idx) { |
| case INTEL_PMC_IDX_FIXED_BTS: |
| case INTEL_PMC_IDX_FIXED_VLBR: |
| hwc->config_base = 0; |
| hwc->event_base = 0; |
| break; |
| |
| case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END: |
| /* All the metric events are mapped onto the fixed counter 3. */ |
| idx = INTEL_PMC_IDX_FIXED_SLOTS; |
| fallthrough; |
| case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1: |
| hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; |
| hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + |
| (idx - INTEL_PMC_IDX_FIXED); |
| hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) | |
| INTEL_PMC_FIXED_RDPMC_BASE; |
| break; |
| |
| default: |
| hwc->config_base = x86_pmu_config_addr(hwc->idx); |
| hwc->event_base = x86_pmu_event_addr(hwc->idx); |
| hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); |
| break; |
| } |
| } |
| |
| /** |
| * x86_perf_rdpmc_index - Return PMC counter used for event |
| * @event: the perf_event to which the PMC counter was assigned |
| * |
| * The counter assigned to this performance event may change if interrupts |
| * are enabled. This counter should thus never be used while interrupts are |
| * enabled. Before this function is used to obtain the assigned counter the |
| * event should be checked for validity using, for example, |
| * perf_event_read_local(), within the same interrupt disabled section in |
| * which this counter is planned to be used. |
| * |
| * Return: The index of the performance monitoring counter assigned to |
| * @perf_event. |
| */ |
| int x86_perf_rdpmc_index(struct perf_event *event) |
| { |
| lockdep_assert_irqs_disabled(); |
| |
| return event->hw.event_base_rdpmc; |
| } |
| |
| static inline int match_prev_assignment(struct hw_perf_event *hwc, |
| struct cpu_hw_events *cpuc, |
| int i) |
| { |
| return hwc->idx == cpuc->assign[i] && |
| hwc->last_cpu == smp_processor_id() && |
| hwc->last_tag == cpuc->tags[i]; |
| } |
| |
| static void x86_pmu_start(struct perf_event *event, int flags); |
| |
| static void x86_pmu_enable(struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| int i, added = cpuc->n_added; |
| |
| if (!x86_pmu_initialized()) |
| return; |
| |
| if (cpuc->enabled) |
| return; |
| |
| if (cpuc->n_added) { |
| int n_running = cpuc->n_events - cpuc->n_added; |
| /* |
| * apply assignment obtained either from |
| * hw_perf_group_sched_in() or x86_pmu_enable() |
| * |
| * step1: save events moving to new counters |
| */ |
| for (i = 0; i < n_running; i++) { |
| event = cpuc->event_list[i]; |
| hwc = &event->hw; |
| |
| /* |
| * we can avoid reprogramming counter if: |
| * - assigned same counter as last time |
| * - running on same CPU as last time |
| * - no other event has used the counter since |
| */ |
| if (hwc->idx == -1 || |
| match_prev_assignment(hwc, cpuc, i)) |
| continue; |
| |
| /* |
| * Ensure we don't accidentally enable a stopped |
| * counter simply because we rescheduled. |
| */ |
| if (hwc->state & PERF_HES_STOPPED) |
| hwc->state |= PERF_HES_ARCH; |
| |
| x86_pmu_stop(event, PERF_EF_UPDATE); |
| } |
| |
| /* |
| * step2: reprogram moved events into new counters |
| */ |
| for (i = 0; i < cpuc->n_events; i++) { |
| event = cpuc->event_list[i]; |
| hwc = &event->hw; |
| |
| if (!match_prev_assignment(hwc, cpuc, i)) |
| x86_assign_hw_event(event, cpuc, i); |
| else if (i < n_running) |
| continue; |
| |
| if (hwc->state & PERF_HES_ARCH) |
| continue; |
| |
| /* |
| * if cpuc->enabled = 0, then no wrmsr as |
| * per x86_pmu_enable_event() |
| */ |
| x86_pmu_start(event, PERF_EF_RELOAD); |
| } |
| cpuc->n_added = 0; |
| perf_events_lapic_init(); |
| } |
| |
| cpuc->enabled = 1; |
| barrier(); |
| |
| static_call(x86_pmu_enable_all)(added); |
| } |
| |
| static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); |
| |
| /* |
| * Set the next IRQ period, based on the hwc->period_left value. |
| * To be called with the event disabled in hw: |
| */ |
| int x86_perf_event_set_period(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| s64 left = local64_read(&hwc->period_left); |
| s64 period = hwc->sample_period; |
| int ret = 0, idx = hwc->idx; |
| |
| if (unlikely(!hwc->event_base)) |
| return 0; |
| |
| if (unlikely(is_topdown_count(event)) && |
| x86_pmu.set_topdown_event_period) |
| return x86_pmu.set_topdown_event_period(event); |
| |
| /* |
| * If we are way outside a reasonable range then just skip forward: |
| */ |
| if (unlikely(left <= -period)) { |
| left = period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| |
| if (unlikely(left <= 0)) { |
| left += period; |
| local64_set(&hwc->period_left, left); |
| hwc->last_period = period; |
| ret = 1; |
| } |
| /* |
| * Quirk: certain CPUs dont like it if just 1 hw_event is left: |
| */ |
| if (unlikely(left < 2)) |
| left = 2; |
| |
| if (left > x86_pmu.max_period) |
| left = x86_pmu.max_period; |
| |
| if (x86_pmu.limit_period) |
| left = x86_pmu.limit_period(event, left); |
| |
| per_cpu(pmc_prev_left[idx], smp_processor_id()) = left; |
| |
| /* |
| * The hw event starts counting from this event offset, |
| * mark it to be able to extra future deltas: |
| */ |
| local64_set(&hwc->prev_count, (u64)-left); |
| |
| wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); |
| |
| /* |
| * Sign extend the Merge event counter's upper 16 bits since |
| * we currently declare a 48-bit counter width |
| */ |
| if (is_counter_pair(hwc)) |
| wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff); |
| |
| /* |
| * Due to erratum on certan cpu we need |
| * a second write to be sure the register |
| * is updated properly |
| */ |
| if (x86_pmu.perfctr_second_write) { |
| wrmsrl(hwc->event_base, |
| (u64)(-left) & x86_pmu.cntval_mask); |
| } |
| |
| perf_event_update_userpage(event); |
| |
| return ret; |
| } |
| |
| void x86_pmu_enable_event(struct perf_event *event) |
| { |
| if (__this_cpu_read(cpu_hw_events.enabled)) |
| __x86_pmu_enable_event(&event->hw, |
| ARCH_PERFMON_EVENTSEL_ENABLE); |
| } |
| |
| /* |
| * Add a single event to the PMU. |
| * |
| * The event is added to the group of enabled events |
| * but only if it can be scheduled with existing events. |
| */ |
| static int x86_pmu_add(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc; |
| int assign[X86_PMC_IDX_MAX]; |
| int n, n0, ret; |
| |
| hwc = &event->hw; |
| |
| n0 = cpuc->n_events; |
| ret = n = collect_events(cpuc, event, false); |
| if (ret < 0) |
| goto out; |
| |
| hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| if (!(flags & PERF_EF_START)) |
| hwc->state |= PERF_HES_ARCH; |
| |
| /* |
| * If group events scheduling transaction was started, |
| * skip the schedulability test here, it will be performed |
| * at commit time (->commit_txn) as a whole. |
| * |
| * If commit fails, we'll call ->del() on all events |
| * for which ->add() was called. |
| */ |
| if (cpuc->txn_flags & PERF_PMU_TXN_ADD) |
| goto done_collect; |
| |
| ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); |
| if (ret) |
| goto out; |
| /* |
| * copy new assignment, now we know it is possible |
| * will be used by hw_perf_enable() |
| */ |
| memcpy(cpuc->assign, assign, n*sizeof(int)); |
| |
| done_collect: |
| /* |
| * Commit the collect_events() state. See x86_pmu_del() and |
| * x86_pmu_*_txn(). |
| */ |
| cpuc->n_events = n; |
| cpuc->n_added += n - n0; |
| cpuc->n_txn += n - n0; |
| |
| /* |
| * This is before x86_pmu_enable() will call x86_pmu_start(), |
| * so we enable LBRs before an event needs them etc.. |
| */ |
| static_call_cond(x86_pmu_add)(event); |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static void x86_pmu_start(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int idx = event->hw.idx; |
| |
| if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) |
| return; |
| |
| if (WARN_ON_ONCE(idx == -1)) |
| return; |
| |
| if (flags & PERF_EF_RELOAD) { |
| WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); |
| x86_perf_event_set_period(event); |
| } |
| |
| event->hw.state = 0; |
| |
| cpuc->events[idx] = event; |
| __set_bit(idx, cpuc->active_mask); |
| static_call(x86_pmu_enable)(event); |
| perf_event_update_userpage(event); |
| } |
| |
| void perf_event_print_debug(void) |
| { |
| u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; |
| u64 pebs, debugctl; |
| int cpu = smp_processor_id(); |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| int num_counters = hybrid(cpuc->pmu, num_counters); |
| int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed); |
| struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints); |
| unsigned long flags; |
| int idx; |
| |
| if (!num_counters) |
| return; |
| |
| local_irq_save(flags); |
| |
| if (x86_pmu.version >= 2) { |
| rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); |
| rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); |
| rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); |
| rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); |
| |
| pr_info("\n"); |
| pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl); |
| pr_info("CPU#%d: status: %016llx\n", cpu, status); |
| pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow); |
| pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed); |
| if (pebs_constraints) { |
| rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); |
| pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs); |
| } |
| if (x86_pmu.lbr_nr) { |
| rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl); |
| } |
| } |
| pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask); |
| |
| for (idx = 0; idx < num_counters; idx++) { |
| rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); |
| rdmsrl(x86_pmu_event_addr(idx), pmc_count); |
| |
| prev_left = per_cpu(pmc_prev_left[idx], cpu); |
| |
| pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n", |
| cpu, idx, pmc_ctrl); |
| pr_info("CPU#%d: gen-PMC%d count: %016llx\n", |
| cpu, idx, pmc_count); |
| pr_info("CPU#%d: gen-PMC%d left: %016llx\n", |
| cpu, idx, prev_left); |
| } |
| for (idx = 0; idx < num_counters_fixed; idx++) { |
| if (fixed_counter_disabled(idx, cpuc->pmu)) |
| continue; |
| rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); |
| |
| pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", |
| cpu, idx, pmc_count); |
| } |
| local_irq_restore(flags); |
| } |
| |
| void x86_pmu_stop(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (test_bit(hwc->idx, cpuc->active_mask)) { |
| static_call(x86_pmu_disable)(event); |
| __clear_bit(hwc->idx, cpuc->active_mask); |
| cpuc->events[hwc->idx] = NULL; |
| WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); |
| hwc->state |= PERF_HES_STOPPED; |
| } |
| |
| if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { |
| /* |
| * Drain the remaining delta count out of a event |
| * that we are disabling: |
| */ |
| x86_perf_event_update(event); |
| hwc->state |= PERF_HES_UPTODATE; |
| } |
| } |
| |
| static void x86_pmu_del(struct perf_event *event, int flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap); |
| int i; |
| |
| /* |
| * If we're called during a txn, we only need to undo x86_pmu.add. |
| * The events never got scheduled and ->cancel_txn will truncate |
| * the event_list. |
| * |
| * XXX assumes any ->del() called during a TXN will only be on |
| * an event added during that same TXN. |
| */ |
| if (cpuc->txn_flags & PERF_PMU_TXN_ADD) |
| goto do_del; |
| |
| __set_bit(event->hw.idx, cpuc->dirty); |
| |
| /* |
| * Not a TXN, therefore cleanup properly. |
| */ |
| x86_pmu_stop(event, PERF_EF_UPDATE); |
| |
| for (i = 0; i < cpuc->n_events; i++) { |
| if (event == cpuc->event_list[i]) |
| break; |
| } |
| |
| if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */ |
| return; |
| |
| /* If we have a newly added event; make sure to decrease n_added. */ |
| if (i >= cpuc->n_events - cpuc->n_added) |
| --cpuc->n_added; |
| |
| static_call_cond(x86_pmu_put_event_constraints)(cpuc, event); |
| |
| /* Delete the array entry. */ |
| while (++i < cpuc->n_events) { |
| cpuc->event_list[i-1] = cpuc->event_list[i]; |
| cpuc->event_constraint[i-1] = cpuc->event_constraint[i]; |
| } |
| cpuc->event_constraint[i-1] = NULL; |
| --cpuc->n_events; |
| if (intel_cap.perf_metrics) |
| del_nr_metric_event(cpuc, event); |
| |
| perf_event_update_userpage(event); |
| |
| do_del: |
| |
| /* |
| * This is after x86_pmu_stop(); so we disable LBRs after any |
| * event can need them etc.. |
| */ |
| static_call_cond(x86_pmu_del)(event); |
| } |
| |
| int x86_pmu_handle_irq(struct pt_regs *regs) |
| { |
| struct perf_sample_data data; |
| struct cpu_hw_events *cpuc; |
| struct perf_event *event; |
| int idx, handled = 0; |
| u64 val; |
| |
| cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| /* |
| * Some chipsets need to unmask the LVTPC in a particular spot |
| * inside the nmi handler. As a result, the unmasking was pushed |
| * into all the nmi handlers. |
| * |
| * This generic handler doesn't seem to have any issues where the |
| * unmasking occurs so it was left at the top. |
| */ |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| |
| for (idx = 0; idx < x86_pmu.num_counters; idx++) { |
| if (!test_bit(idx, cpuc->active_mask)) |
| continue; |
| |
| event = cpuc->events[idx]; |
| |
| val = x86_perf_event_update(event); |
| if (val & (1ULL << (x86_pmu.cntval_bits - 1))) |
| continue; |
| |
| /* |
| * event overflow |
| */ |
| handled++; |
| |
| if (!x86_perf_event_set_period(event)) |
| continue; |
| |
| perf_sample_data_init(&data, 0, event->hw.last_period); |
| |
| if (has_branch_stack(event)) |
| data.br_stack = &cpuc->lbr_stack; |
| |
| if (perf_event_overflow(event, &data, regs)) |
| x86_pmu_stop(event, 0); |
| } |
| |
| if (handled) |
| inc_irq_stat(apic_perf_irqs); |
| |
| return handled; |
| } |
| |
| void perf_events_lapic_init(void) |
| { |
| if (!x86_pmu.apic || !x86_pmu_initialized()) |
| return; |
| |
| /* |
| * Always use NMI for PMU |
| */ |
| apic_write(APIC_LVTPC, APIC_DM_NMI); |
| } |
| |
| static int |
| perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) |
| { |
| u64 start_clock; |
| u64 finish_clock; |
| int ret; |
| |
| /* |
| * All PMUs/events that share this PMI handler should make sure to |
| * increment active_events for their events. |
| */ |
| if (!atomic_read(&active_events)) |
| return NMI_DONE; |
| |
| start_clock = sched_clock(); |
| ret = static_call(x86_pmu_handle_irq)(regs); |
| finish_clock = sched_clock(); |
| |
| perf_sample_event_took(finish_clock - start_clock); |
| |
| return ret; |
| } |
| NOKPROBE_SYMBOL(perf_event_nmi_handler); |
| |
| struct event_constraint emptyconstraint; |
| struct event_constraint unconstrained; |
| |
| static int x86_pmu_prepare_cpu(unsigned int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| int i; |
| |
| for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) |
| cpuc->kfree_on_online[i] = NULL; |
| if (x86_pmu.cpu_prepare) |
| return x86_pmu.cpu_prepare(cpu); |
| return 0; |
| } |
| |
| static int x86_pmu_dead_cpu(unsigned int cpu) |
| { |
| if (x86_pmu.cpu_dead) |
| x86_pmu.cpu_dead(cpu); |
| return 0; |
| } |
| |
| static int x86_pmu_online_cpu(unsigned int cpu) |
| { |
| struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); |
| int i; |
| |
| for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) { |
| kfree(cpuc->kfree_on_online[i]); |
| cpuc->kfree_on_online[i] = NULL; |
| } |
| return 0; |
| } |
| |
| static int x86_pmu_starting_cpu(unsigned int cpu) |
| { |
| if (x86_pmu.cpu_starting) |
| x86_pmu.cpu_starting(cpu); |
| return 0; |
| } |
| |
| static int x86_pmu_dying_cpu(unsigned int cpu) |
| { |
| if (x86_pmu.cpu_dying) |
| x86_pmu.cpu_dying(cpu); |
| return 0; |
| } |
| |
| static void __init pmu_check_apic(void) |
| { |
| if (boot_cpu_has(X86_FEATURE_APIC)) |
| return; |
| |
| x86_pmu.apic = 0; |
| pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); |
| pr_info("no hardware sampling interrupt available.\n"); |
| |
| /* |
| * If we have a PMU initialized but no APIC |
| * interrupts, we cannot sample hardware |
| * events (user-space has to fall back and |
| * sample via a hrtimer based software event): |
| */ |
| pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; |
| |
| } |
| |
| static struct attribute_group x86_pmu_format_group __ro_after_init = { |
| .name = "format", |
| .attrs = NULL, |
| }; |
| |
| ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page) |
| { |
| struct perf_pmu_events_attr *pmu_attr = |
| container_of(attr, struct perf_pmu_events_attr, attr); |
| u64 config = 0; |
| |
| if (pmu_attr->id < x86_pmu.max_events) |
| config = x86_pmu.event_map(pmu_attr->id); |
| |
| /* string trumps id */ |
| if (pmu_attr->event_str) |
| return sprintf(page, "%s\n", pmu_attr->event_str); |
| |
| return x86_pmu.events_sysfs_show(page, config); |
| } |
| EXPORT_SYMBOL_GPL(events_sysfs_show); |
| |
| ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr, |
| char *page) |
| { |
| struct perf_pmu_events_ht_attr *pmu_attr = |
| container_of(attr, struct perf_pmu_events_ht_attr, attr); |
| |
| /* |
| * Report conditional events depending on Hyper-Threading. |
| * |
| * This is overly conservative as usually the HT special |
| * handling is not needed if the other CPU thread is idle. |
| * |
| * Note this does not (and cannot) handle the case when thread |
| * siblings are invisible, for example with virtualization |
| * if they are owned by some other guest. The user tool |
| * has to re-read when a thread sibling gets onlined later. |
| */ |
| return sprintf(page, "%s", |
| topology_max_smt_threads() > 1 ? |
| pmu_attr->event_str_ht : |
| pmu_attr->event_str_noht); |
| } |
| |
| ssize_t events_hybrid_sysfs_show(struct device *dev, |
| struct device_attribute *attr, |
| char *page) |
| { |
| struct perf_pmu_events_hybrid_attr *pmu_attr = |
| container_of(attr, struct perf_pmu_events_hybrid_attr, attr); |
| struct x86_hybrid_pmu *pmu; |
| const char *str, *next_str; |
| int i; |
| |
| if (hweight64(pmu_attr->pmu_type) == 1) |
| return sprintf(page, "%s", pmu_attr->event_str); |
| |
| /* |
| * Hybrid PMUs may support the same event name, but with different |
| * event encoding, e.g., the mem-loads event on an Atom PMU has |
| * different event encoding from a Core PMU. |
| * |
| * The event_str includes all event encodings. Each event encoding |
| * is divided by ";". The order of the event encodings must follow |
| * the order of the hybrid PMU index. |
| */ |
| pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu); |
| |
| str = pmu_attr->event_str; |
| for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { |
| if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type)) |
| continue; |
| if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) { |
| next_str = strchr(str, ';'); |
| if (next_str) |
| return snprintf(page, next_str - str + 1, "%s", str); |
| else |
| return sprintf(page, "%s", str); |
| } |
| str = strchr(str, ';'); |
| str++; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show); |
| |
| EVENT_ATTR(cpu-cycles, CPU_CYCLES ); |
| EVENT_ATTR(instructions, INSTRUCTIONS ); |
| EVENT_ATTR(cache-references, CACHE_REFERENCES ); |
| EVENT_ATTR(cache-misses, CACHE_MISSES ); |
| EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS ); |
| EVENT_ATTR(branch-misses, BRANCH_MISSES ); |
| EVENT_ATTR(bus-cycles, BUS_CYCLES ); |
| EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND ); |
| EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND ); |
| EVENT_ATTR(ref-cycles, REF_CPU_CYCLES ); |
| |
| static struct attribute *empty_attrs; |
| |
| static struct attribute *events_attr[] = { |
| EVENT_PTR(CPU_CYCLES), |
| EVENT_PTR(INSTRUCTIONS), |
| EVENT_PTR(CACHE_REFERENCES), |
| EVENT_PTR(CACHE_MISSES), |
| EVENT_PTR(BRANCH_INSTRUCTIONS), |
| EVENT_PTR(BRANCH_MISSES), |
| EVENT_PTR(BUS_CYCLES), |
| EVENT_PTR(STALLED_CYCLES_FRONTEND), |
| EVENT_PTR(STALLED_CYCLES_BACKEND), |
| EVENT_PTR(REF_CPU_CYCLES), |
| NULL, |
| }; |
| |
| /* |
| * Remove all undefined events (x86_pmu.event_map(id) == 0) |
| * out of events_attr attributes. |
| */ |
| static umode_t |
| is_visible(struct kobject *kobj, struct attribute *attr, int idx) |
| { |
| struct perf_pmu_events_attr *pmu_attr; |
| |
| if (idx >= x86_pmu.max_events) |
| return 0; |
| |
| pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr); |
| /* str trumps id */ |
| return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0; |
| } |
| |
| static struct attribute_group x86_pmu_events_group __ro_after_init = { |
| .name = "events", |
| .attrs = events_attr, |
| .is_visible = is_visible, |
| }; |
| |
| ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) |
| { |
| u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; |
| u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; |
| bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE); |
| bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); |
| bool any = (config & ARCH_PERFMON_EVENTSEL_ANY); |
| bool inv = (config & ARCH_PERFMON_EVENTSEL_INV); |
| ssize_t ret; |
| |
| /* |
| * We have whole page size to spend and just little data |
| * to write, so we can safely use sprintf. |
| */ |
| ret = sprintf(page, "event=0x%02llx", event); |
| |
| if (umask) |
| ret += sprintf(page + ret, ",umask=0x%02llx", umask); |
| |
| if (edge) |
| ret += sprintf(page + ret, ",edge"); |
| |
| if (pc) |
| ret += sprintf(page + ret, ",pc"); |
| |
| if (any) |
| ret += sprintf(page + ret, ",any"); |
| |
| if (inv) |
| ret += sprintf(page + ret, ",inv"); |
| |
| if (cmask) |
| ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); |
| |
| ret += sprintf(page + ret, "\n"); |
| |
| return ret; |
| } |
| |
| static struct attribute_group x86_pmu_attr_group; |
| static struct attribute_group x86_pmu_caps_group; |
| |
| static void x86_pmu_static_call_update(void) |
| { |
| static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq); |
| static_call_update(x86_pmu_disable_all, x86_pmu.disable_all); |
| static_call_update(x86_pmu_enable_all, x86_pmu.enable_all); |
| static_call_update(x86_pmu_enable, x86_pmu.enable); |
| static_call_update(x86_pmu_disable, x86_pmu.disable); |
| |
| static_call_update(x86_pmu_assign, x86_pmu.assign); |
| |
| static_call_update(x86_pmu_add, x86_pmu.add); |
| static_call_update(x86_pmu_del, x86_pmu.del); |
| static_call_update(x86_pmu_read, x86_pmu.read); |
| |
| static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events); |
| static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints); |
| static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints); |
| |
| static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling); |
| static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling); |
| static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling); |
| |
| static_call_update(x86_pmu_sched_task, x86_pmu.sched_task); |
| static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx); |
| |
| static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs); |
| static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases); |
| |
| static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs); |
| } |
| |
| static void _x86_pmu_read(struct perf_event *event) |
| { |
| x86_perf_event_update(event); |
| } |
| |
| void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed, |
| u64 intel_ctrl) |
| { |
| pr_info("... version: %d\n", x86_pmu.version); |
| pr_info("... bit width: %d\n", x86_pmu.cntval_bits); |
| pr_info("... generic registers: %d\n", num_counters); |
| pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask); |
| pr_info("... max period: %016Lx\n", x86_pmu.max_period); |
| pr_info("... fixed-purpose events: %lu\n", |
| hweight64((((1ULL << num_counters_fixed) - 1) |
| << INTEL_PMC_IDX_FIXED) & intel_ctrl)); |
| pr_info("... event mask: %016Lx\n", intel_ctrl); |
| } |
| |
| /* |
| * The generic code is not hybrid friendly. The hybrid_pmu->pmu |
| * of the first registered PMU is unconditionally assigned to |
| * each possible cpuctx->ctx.pmu. |
| * Update the correct hybrid PMU to the cpuctx->ctx.pmu. |
| */ |
| void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu) |
| { |
| struct perf_cpu_context *cpuctx; |
| |
| if (!pmu->pmu_cpu_context) |
| return; |
| |
| cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu); |
| cpuctx->ctx.pmu = pmu; |
| } |
| |
| static int __init init_hw_perf_events(void) |
| { |
| struct x86_pmu_quirk *quirk; |
| int err; |
| |
| pr_info("Performance Events: "); |
| |
| switch (boot_cpu_data.x86_vendor) { |
| case X86_VENDOR_INTEL: |
| err = intel_pmu_init(); |
| break; |
| case X86_VENDOR_AMD: |
| err = amd_pmu_init(); |
| break; |
| case X86_VENDOR_HYGON: |
| err = amd_pmu_init(); |
| x86_pmu.name = "HYGON"; |
| break; |
| case X86_VENDOR_ZHAOXIN: |
| case X86_VENDOR_CENTAUR: |
| err = zhaoxin_pmu_init(); |
| break; |
| default: |
| err = -ENOTSUPP; |
| } |
| if (err != 0) { |
| pr_cont("no PMU driver, software events only.\n"); |
| err = 0; |
| goto out_bad_pmu; |
| } |
| |
| pmu_check_apic(); |
| |
| /* sanity check that the hardware exists or is emulated */ |
| if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed)) |
| goto out_bad_pmu; |
| |
| pr_cont("%s PMU driver.\n", x86_pmu.name); |
| |
| x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ |
| |
| for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) |
| quirk->func(); |
| |
| if (!x86_pmu.intel_ctrl) |
| x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; |
| |
| perf_events_lapic_init(); |
| register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); |
| |
| unconstrained = (struct event_constraint) |
| __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1, |
| 0, x86_pmu.num_counters, 0, 0); |
| |
| x86_pmu_format_group.attrs = x86_pmu.format_attrs; |
| |
| if (!x86_pmu.events_sysfs_show) |
| x86_pmu_events_group.attrs = &empty_attrs; |
| |
| pmu.attr_update = x86_pmu.attr_update; |
| |
| if (!is_hybrid()) { |
| x86_pmu_show_pmu_cap(x86_pmu.num_counters, |
| x86_pmu.num_counters_fixed, |
| x86_pmu.intel_ctrl); |
| } |
| |
| if (!x86_pmu.read) |
| x86_pmu.read = _x86_pmu_read; |
| |
| if (!x86_pmu.guest_get_msrs) |
| x86_pmu.guest_get_msrs = (void *)&__static_call_return0; |
| |
| x86_pmu_static_call_update(); |
| |
| /* |
| * Install callbacks. Core will call them for each online |
| * cpu. |
| */ |
| err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare", |
| x86_pmu_prepare_cpu, x86_pmu_dead_cpu); |
| if (err) |
| return err; |
| |
| err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING, |
| "perf/x86:starting", x86_pmu_starting_cpu, |
| x86_pmu_dying_cpu); |
| if (err) |
| goto out; |
| |
| err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online", |
| x86_pmu_online_cpu, NULL); |
| if (err) |
| goto out1; |
| |
| if (!is_hybrid()) { |
| err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); |
| if (err) |
| goto out2; |
| } else { |
| u8 cpu_type = get_this_hybrid_cpu_type(); |
| struct x86_hybrid_pmu *hybrid_pmu; |
| int i, j; |
| |
| if (!cpu_type && x86_pmu.get_hybrid_cpu_type) |
| cpu_type = x86_pmu.get_hybrid_cpu_type(); |
| |
| for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) { |
| hybrid_pmu = &x86_pmu.hybrid_pmu[i]; |
| |
| hybrid_pmu->pmu = pmu; |
| hybrid_pmu->pmu.type = -1; |
| hybrid_pmu->pmu.attr_update = x86_pmu.attr_update; |
| hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS; |
| hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE; |
| |
| err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name, |
| (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1); |
| if (err) |
| break; |
| |
| if (cpu_type == hybrid_pmu->cpu_type) |
| x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id()); |
| } |
| |
| if (i < x86_pmu.num_hybrid_pmus) { |
| for (j = 0; j < i; j++) |
| perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu); |
| pr_warn("Failed to register hybrid PMUs\n"); |
| kfree(x86_pmu.hybrid_pmu); |
| x86_pmu.hybrid_pmu = NULL; |
| x86_pmu.num_hybrid_pmus = 0; |
| goto out2; |
| } |
| } |
| |
| return 0; |
| |
| out2: |
| cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE); |
| out1: |
| cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING); |
| out: |
| cpuhp_remove_state(CPUHP_PERF_X86_PREPARE); |
| out_bad_pmu: |
| memset(&x86_pmu, 0, sizeof(x86_pmu)); |
| return err; |
| } |
| early_initcall(init_hw_perf_events); |
| |
| static void x86_pmu_read(struct perf_event *event) |
| { |
| static_call(x86_pmu_read)(event); |
| } |
| |
| /* |
| * Start group events scheduling transaction |
| * Set the flag to make pmu::enable() not perform the |
| * schedulability test, it will be performed at commit time |
| * |
| * We only support PERF_PMU_TXN_ADD transactions. Save the |
| * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD |
| * transactions. |
| */ |
| static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */ |
| |
| cpuc->txn_flags = txn_flags; |
| if (txn_flags & ~PERF_PMU_TXN_ADD) |
| return; |
| |
| perf_pmu_disable(pmu); |
| __this_cpu_write(cpu_hw_events.n_txn, 0); |
| __this_cpu_write(cpu_hw_events.n_txn_pair, 0); |
| __this_cpu_write(cpu_hw_events.n_txn_metric, 0); |
| } |
| |
| /* |
| * Stop group events scheduling transaction |
| * Clear the flag and pmu::enable() will perform the |
| * schedulability test. |
| */ |
| static void x86_pmu_cancel_txn(struct pmu *pmu) |
| { |
| unsigned int txn_flags; |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| |
| WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ |
| |
| txn_flags = cpuc->txn_flags; |
| cpuc->txn_flags = 0; |
| if (txn_flags & ~PERF_PMU_TXN_ADD) |
| return; |
| |
| /* |
| * Truncate collected array by the number of events added in this |
| * transaction. See x86_pmu_add() and x86_pmu_*_txn(). |
| */ |
| __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); |
| __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); |
| __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair)); |
| __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric)); |
| perf_pmu_enable(pmu); |
| } |
| |
| /* |
| * Commit group events scheduling transaction |
| * Perform the group schedulability test as a whole |
| * Return 0 if success |
| * |
| * Does not cancel the transaction on failure; expects the caller to do this. |
| */ |
| static int x86_pmu_commit_txn(struct pmu *pmu) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int assign[X86_PMC_IDX_MAX]; |
| int n, ret; |
| |
| WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */ |
| |
| if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) { |
| cpuc->txn_flags = 0; |
| return 0; |
| } |
| |
| n = cpuc->n_events; |
| |
| if (!x86_pmu_initialized()) |
| return -EAGAIN; |
| |
| ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign); |
| if (ret) |
| return ret; |
| |
| /* |
| * copy new assignment, now we know it is possible |
| * will be used by hw_perf_enable() |
| */ |
| memcpy(cpuc->assign, assign, n*sizeof(int)); |
| |
| cpuc->txn_flags = 0; |
| perf_pmu_enable(pmu); |
| return 0; |
| } |
| /* |
| * a fake_cpuc is used to validate event groups. Due to |
| * the extra reg logic, we need to also allocate a fake |
| * per_core and per_cpu structure. Otherwise, group events |
| * using extra reg may conflict without the kernel being |
| * able to catch this when the last event gets added to |
| * the group. |
| */ |
| static void free_fake_cpuc(struct cpu_hw_events *cpuc) |
| { |
| intel_cpuc_finish(cpuc); |
| kfree(cpuc); |
| } |
| |
| static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu) |
| { |
| struct cpu_hw_events *cpuc; |
| int cpu; |
| |
| cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); |
| if (!cpuc) |
| return ERR_PTR(-ENOMEM); |
| cpuc->is_fake = 1; |
| |
| if (is_hybrid()) { |
| struct x86_hybrid_pmu *h_pmu; |
| |
| h_pmu = hybrid_pmu(event_pmu); |
| if (cpumask_empty(&h_pmu->supported_cpus)) |
| goto error; |
| cpu = cpumask_first(&h_pmu->supported_cpus); |
| } else |
| cpu = raw_smp_processor_id(); |
| cpuc->pmu = event_pmu; |
| |
| if (intel_cpuc_prepare(cpuc, cpu)) |
| goto error; |
| |
| return cpuc; |
| error: |
| free_fake_cpuc(cpuc); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * validate that we can schedule this event |
| */ |
| static int validate_event(struct perf_event *event) |
| { |
| struct cpu_hw_events *fake_cpuc; |
| struct event_constraint *c; |
| int ret = 0; |
| |
| fake_cpuc = allocate_fake_cpuc(event->pmu); |
| if (IS_ERR(fake_cpuc)) |
| return PTR_ERR(fake_cpuc); |
| |
| c = x86_pmu.get_event_constraints(fake_cpuc, 0, event); |
| |
| if (!c || !c->weight) |
| ret = -EINVAL; |
| |
| if (x86_pmu.put_event_constraints) |
| x86_pmu.put_event_constraints(fake_cpuc, event); |
| |
| free_fake_cpuc(fake_cpuc); |
| |
| return ret; |
| } |
| |
| /* |
| * validate a single event group |
| * |
| * validation include: |
| * - check events are compatible which each other |
| * - events do not compete for the same counter |
| * - number of events <= number of counters |
| * |
| * validation ensures the group can be loaded onto the |
| * PMU if it was the only group available. |
| */ |
| static int validate_group(struct perf_event *event) |
| { |
| struct perf_event *leader = event->group_leader; |
| struct cpu_hw_events *fake_cpuc; |
| int ret = -EINVAL, n; |
| |
| /* |
| * Reject events from different hybrid PMUs. |
| */ |
| if (is_hybrid()) { |
| struct perf_event *sibling; |
| struct pmu *pmu = NULL; |
| |
| if (is_x86_event(leader)) |
| pmu = leader->pmu; |
| |
| for_each_sibling_event(sibling, leader) { |
| if (!is_x86_event(sibling)) |
| continue; |
| if (!pmu) |
| pmu = sibling->pmu; |
| else if (pmu != sibling->pmu) |
| return ret; |
| } |
| } |
| |
| fake_cpuc = allocate_fake_cpuc(event->pmu); |
| if (IS_ERR(fake_cpuc)) |
| return PTR_ERR(fake_cpuc); |
| /* |
| * the event is not yet connected with its |
| * siblings therefore we must first collect |
| * existing siblings, then add the new event |
| * before we can simulate the scheduling |
| */ |
| n = collect_events(fake_cpuc, leader, true); |
| if (n < 0) |
| goto out; |
| |
| fake_cpuc->n_events = n; |
| n = collect_events(fake_cpuc, event, false); |
| if (n < 0) |
| goto out; |
| |
| fake_cpuc->n_events = 0; |
| ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); |
| |
| out: |
| free_fake_cpuc(fake_cpuc); |
| return ret; |
| } |
| |
| static int x86_pmu_event_init(struct perf_event *event) |
| { |
| struct x86_hybrid_pmu *pmu = NULL; |
| int err; |
| |
| if ((event->attr.type != event->pmu->type) && |
| (event->attr.type != PERF_TYPE_HARDWARE) && |
| (event->attr.type != PERF_TYPE_HW_CACHE)) |
| return -ENOENT; |
| |
| if (is_hybrid() && (event->cpu != -1)) { |
| pmu = hybrid_pmu(event->pmu); |
| if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus)) |
| return -ENOENT; |
| } |
| |
| err = __x86_pmu_event_init(event); |
| if (!err) { |
| if (event->group_leader != event) |
| err = validate_group(event); |
| else |
| err = validate_event(event); |
| } |
| if (err) { |
| if (event->destroy) |
| event->destroy(event); |
| event->destroy = NULL; |
| } |
| |
| if (READ_ONCE(x86_pmu.attr_rdpmc) && |
| !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS)) |
| event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT; |
| |
| return err; |
| } |
| |
| void perf_clear_dirty_counters(void) |
| { |
| struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| int i; |
| |
| /* Don't need to clear the assigned counter. */ |
| for (i = 0; i < cpuc->n_events; i++) |
| __clear_bit(cpuc->assign[i], cpuc->dirty); |
| |
| if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX)) |
| return; |
| |
| for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) { |
| if (i >= INTEL_PMC_IDX_FIXED) { |
| /* Metrics and fake events don't have corresponding HW counters. */ |
| if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed)) |
| continue; |
| |
| wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0); |
| } else { |
| wrmsrl(x86_pmu_event_addr(i), 0); |
| } |
| } |
| |
| bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX); |
| } |
| |
| static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm) |
| { |
| if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) |
| return; |
| |
| /* |
| * This function relies on not being called concurrently in two |
| * tasks in the same mm. Otherwise one task could observe |
| * perf_rdpmc_allowed > 1 and return all the way back to |
| * userspace with CR4.PCE clear while another task is still |
| * doing on_each_cpu_mask() to propagate CR4.PCE. |
| * |
| * For now, this can't happen because all callers hold mmap_lock |
| * for write. If this changes, we'll need a different solution. |
| */ |
| mmap_assert_write_locked(mm); |
| |
| if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1) |
| on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); |
| } |
| |
| static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm) |
| { |
| if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)) |
| return; |
| |
| if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed)) |
| on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1); |
| } |
| |
| static int x86_pmu_event_idx(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT)) |
| return 0; |
| |
| if (is_metric_idx(hwc->idx)) |
| return INTEL_PMC_FIXED_RDPMC_METRICS + 1; |
| else |
| return hwc->event_base_rdpmc + 1; |
| } |
| |
| static ssize_t get_attr_rdpmc(struct device *cdev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); |
| } |
| |
| static ssize_t set_attr_rdpmc(struct device *cdev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| unsigned long val; |
| ssize_t ret; |
| |
| ret = kstrtoul(buf, 0, &val); |
| if (ret) |
| return ret; |
| |
| if (val > 2) |
| return -EINVAL; |
| |
| if (x86_pmu.attr_rdpmc_broken) |
| return -ENOTSUPP; |
| |
| if (val != x86_pmu.attr_rdpmc) { |
| /* |
| * Changing into or out of never available or always available, |
| * aka perf-event-bypassing mode. This path is extremely slow, |
| * but only root can trigger it, so it's okay. |
| */ |
| if (val == 0) |
| static_branch_inc(&rdpmc_never_available_key); |
| else if (x86_pmu.attr_rdpmc == 0) |
| static_branch_dec(&rdpmc_never_available_key); |
| |
| if (val == 2) |
| static_branch_inc(&rdpmc_always_available_key); |
| else if (x86_pmu.attr_rdpmc == 2) |
| static_branch_dec(&rdpmc_always_available_key); |
| |
| on_each_cpu(cr4_update_pce, NULL, 1); |
| x86_pmu.attr_rdpmc = val; |
| } |
| |
| return count; |
| } |
| |
| static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); |
| |
| static struct attribute *x86_pmu_attrs[] = { |
| &dev_attr_rdpmc.attr, |
| NULL, |
| }; |
| |
| static struct attribute_group x86_pmu_attr_group __ro_after_init = { |
| .attrs = x86_pmu_attrs, |
| }; |
| |
| static ssize_t max_precise_show(struct device *cdev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise()); |
| } |
| |
| static DEVICE_ATTR_RO(max_precise); |
| |
| static struct attribute *x86_pmu_caps_attrs[] = { |
| &dev_attr_max_precise.attr, |
| NULL |
| }; |
| |
| static struct attribute_group x86_pmu_caps_group __ro_after_init = { |
| .name = "caps", |
| .attrs = x86_pmu_caps_attrs, |
| }; |
| |
| static const struct attribute_group *x86_pmu_attr_groups[] = { |
| &x86_pmu_attr_group, |
| &x86_pmu_format_group, |
| &x86_pmu_events_group, |
| &x86_pmu_caps_group, |
| NULL, |
| }; |
| |
| static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) |
| { |
| static_call_cond(x86_pmu_sched_task)(ctx, sched_in); |
| } |
| |
| static void x86_pmu_swap_task_ctx(struct perf_event_context *prev, |
| struct perf_event_context *next) |
| { |
| static_call_cond(x86_pmu_swap_task_ctx)(prev, next); |
| } |
| |
| void perf_check_microcode(void) |
| { |
| if (x86_pmu.check_microcode) |
| x86_pmu.check_microcode(); |
| } |
| |
| static int x86_pmu_check_period(struct perf_event *event, u64 value) |
| { |
| if (x86_pmu.check_period && x86_pmu.check_period(event, value)) |
| return -EINVAL; |
| |
| if (value && x86_pmu.limit_period) { |
| if (x86_pmu.limit_period(event, value) > value) |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int x86_pmu_aux_output_match(struct perf_event *event) |
| { |
| if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT)) |
| return 0; |
| |
| if (x86_pmu.aux_output_match) |
| return x86_pmu.aux_output_match(event); |
| |
| return 0; |
| } |
| |
| static int x86_pmu_filter_match(struct perf_event *event) |
| { |
| if (x86_pmu.filter_match) |
| return x86_pmu.filter_match(event); |
| |
| return 1; |
| } |
| |
| static struct pmu pmu = { |
| .pmu_enable = x86_pmu_enable, |
| .pmu_disable = x86_pmu_disable, |
| |
| .attr_groups = x86_pmu_attr_groups, |
| |
| .event_init = x86_pmu_event_init, |
| |
| .event_mapped = x86_pmu_event_mapped, |
| .event_unmapped = x86_pmu_event_unmapped, |
| |
| .add = x86_pmu_add, |
| .del = x86_pmu_del, |
| .start = x86_pmu_start, |
| .stop = x86_pmu_stop, |
| .read = x86_pmu_read, |
| |
| .start_txn = x86_pmu_start_txn, |
| .cancel_txn = x86_pmu_cancel_txn, |
| .commit_txn = x86_pmu_commit_txn, |
| |
| .event_idx = x86_pmu_event_idx, |
| .sched_task = x86_pmu_sched_task, |
| .swap_task_ctx = x86_pmu_swap_task_ctx, |
| .check_period = x86_pmu_check_period, |
| |
| .aux_output_match = x86_pmu_aux_output_match, |
| |
| .filter_match = x86_pmu_filter_match, |
| }; |
| |
| void arch_perf_update_userpage(struct perf_event *event, |
| struct perf_event_mmap_page *userpg, u64 now) |
| { |
| struct cyc2ns_data data; |
| u64 offset; |
| |
| userpg->cap_user_time = 0; |
| userpg->cap_user_time_zero = 0; |
| userpg->cap_user_rdpmc = |
| !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT); |
| userpg->pmc_width = x86_pmu.cntval_bits; |
| |
| if (!using_native_sched_clock() || !sched_clock_stable()) |
| return; |
| |
| cyc2ns_read_begin(&data); |
| |
| offset = data.cyc2ns_offset + __sched_clock_offset; |
| |
| /* |
| * Internal timekeeping for enabled/running/stopped times |
| * is always in the local_clock domain. |
| */ |
| userpg->cap_user_time = 1; |
| userpg->time_mult = data.cyc2ns_mul; |
| userpg->time_shift = data.cyc2ns_shift; |
| userpg->time_offset = offset - now; |
| |
| /* |
| * cap_user_time_zero doesn't make sense when we're using a different |
| * time base for the records. |
| */ |
| if (!event->attr.use_clockid) { |
| userpg->cap_user_time_zero = 1; |
| userpg->time_zero = offset; |
| } |
| |
| cyc2ns_read_end(); |
| } |
| |
| /* |
| * Determine whether the regs were taken from an irq/exception handler rather |
| * than from perf_arch_fetch_caller_regs(). |
| */ |
| static bool perf_hw_regs(struct pt_regs *regs) |
| { |
| return regs->flags & X86_EFLAGS_FIXED; |
| } |
| |
| void |
| perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) |
| { |
| struct unwind_state state; |
| unsigned long addr; |
| |
| if (perf_guest_state()) { |
| /* TODO: We don't support guest os callchain now */ |
| return; |
| } |
| |
| if (perf_callchain_store(entry, regs->ip)) |
| return; |
| |
| if (perf_hw_regs(regs)) |
| unwind_start(&state, current, regs, NULL); |
| else |
| unwind_start(&state, current, NULL, (void *)regs->sp); |
| |
| for (; !unwind_done(&state); unwind_next_frame(&state)) { |
| addr = unwind_get_return_address(&state); |
| if (!addr || perf_callchain_store(entry, addr)) |
| return; |
| } |
| } |
| |
| static inline int |
| valid_user_frame(const void __user *fp, unsigned long size) |
| { |
| return __access_ok(fp, size); |
| } |
| |
| static unsigned long get_segment_base(unsigned int segment) |
| { |
| struct desc_struct *desc; |
| unsigned int idx = segment >> 3; |
| |
| if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { |
| #ifdef CONFIG_MODIFY_LDT_SYSCALL |
| struct ldt_struct *ldt; |
| |
| /* IRQs are off, so this synchronizes with smp_store_release */ |
| ldt = READ_ONCE(current->active_mm->context.ldt); |
| if (!ldt || idx >= ldt->nr_entries) |
| return 0; |
| |
| desc = &ldt->entries[idx]; |
| #else |
| return 0; |
| #endif |
| } else { |
| if (idx >= GDT_ENTRIES) |
| return 0; |
| |
| desc = raw_cpu_ptr(gdt_page.gdt) + idx; |
| } |
| |
| return get_desc_base(desc); |
| } |
| |
| #ifdef CONFIG_IA32_EMULATION |
| |
| #include <linux/compat.h> |
| |
| static inline int |
| perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) |
| { |
| /* 32-bit process in 64-bit kernel. */ |
| unsigned long ss_base, cs_base; |
| struct stack_frame_ia32 frame; |
| const struct stack_frame_ia32 __user *fp; |
| |
| if (user_64bit_mode(regs)) |
| return 0; |
| |
| cs_base = get_segment_base(regs->cs); |
| ss_base = get_segment_base(regs->ss); |
| |
| fp = compat_ptr(ss_base + regs->bp); |
| pagefault_disable(); |
| while (entry->nr < entry->max_stack) { |
| if (!valid_user_frame(fp, sizeof(frame))) |
| break; |
| |
| if (__get_user(frame.next_frame, &fp->next_frame)) |
| break; |
| if (__get_user(frame.return_address, &fp->return_address)) |
| break; |
| |
| perf_callchain_store(entry, cs_base + frame.return_address); |
| fp = compat_ptr(ss_base + frame.next_frame); |
| } |
| pagefault_enable(); |
| return 1; |
| } |
| #else |
| static inline int |
| perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry) |
| { |
| return 0; |
| } |
| #endif |
| |
| void |
| perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs) |
| { |
| struct stack_frame frame; |
| const struct stack_frame __user *fp; |
| |
| if (perf_guest_state()) { |
| /* TODO: We don't support guest os callchain now */ |
| return; |
| } |
| |
| /* |
| * We don't know what to do with VM86 stacks.. ignore them for now. |
| */ |
| if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) |
| return; |
| |
| fp = (void __user *)regs->bp; |
| |
| perf_callchain_store(entry, regs->ip); |
| |
| if (!nmi_uaccess_okay()) |
| return; |
| |
| if (perf_callchain_user32(regs, entry)) |
| return; |
| |
| pagefault_disable(); |
| while (entry->nr < entry->max_stack) { |
| if (!valid_user_frame(fp, sizeof(frame))) |
| break; |
| |
| if (__get_user(frame.next_frame, &fp->next_frame)) |
| break; |
| if (__get_user(frame.return_address, &fp->return_address)) |
| break; |
| |
| perf_callchain_store(entry, frame.return_address); |
| fp = (void __user *)frame.next_frame; |
| } |
| pagefault_enable(); |
| } |
| |
| /* |
| * Deal with code segment offsets for the various execution modes: |
| * |
| * VM86 - the good olde 16 bit days, where the linear address is |
| * 20 bits and we use regs->ip + 0x10 * regs->cs. |
| * |
| * IA32 - Where we need to look at GDT/LDT segment descriptor tables |
| * to figure out what the 32bit base address is. |
| * |
| * X32 - has TIF_X32 set, but is running in x86_64 |
| * |
| * X86_64 - CS,DS,SS,ES are all zero based. |
| */ |
| static unsigned long code_segment_base(struct pt_regs *regs) |
| { |
| /* |
| * For IA32 we look at the GDT/LDT segment base to convert the |
| * effective IP to a linear address. |
| */ |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * If we are in VM86 mode, add the segment offset to convert to a |
| * linear address. |
| */ |
| if (regs->flags & X86_VM_MASK) |
| return 0x10 * regs->cs; |
| |
| if (user_mode(regs) && regs->cs != __USER_CS) |
| return get_segment_base(regs->cs); |
| #else |
| if (user_mode(regs) && !user_64bit_mode(regs) && |
| regs->cs != __USER32_CS) |
| return get_segment_base(regs->cs); |
| #endif |
| return 0; |
| } |
| |
| unsigned long perf_instruction_pointer(struct pt_regs *regs) |
| { |
| if (perf_guest_state()) |
| return perf_guest_get_ip(); |
| |
| return regs->ip + code_segment_base(regs); |
| } |
| |
| unsigned long perf_misc_flags(struct pt_regs *regs) |
| { |
| unsigned int guest_state = perf_guest_state(); |
| int misc = 0; |
| |
| if (guest_state) { |
| if (guest_state & PERF_GUEST_USER) |
| misc |= PERF_RECORD_MISC_GUEST_USER; |
| else |
| misc |= PERF_RECORD_MISC_GUEST_KERNEL; |
| } else { |
| if (user_mode(regs)) |
| misc |= PERF_RECORD_MISC_USER; |
| else |
| misc |= PERF_RECORD_MISC_KERNEL; |
| } |
| |
| if (regs->flags & PERF_EFLAGS_EXACT) |
| misc |= PERF_RECORD_MISC_EXACT_IP; |
| |
| return misc; |
| } |
| |
| void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) |
| { |
| if (!x86_pmu_initialized()) { |
| memset(cap, 0, sizeof(*cap)); |
| return; |
| } |
| |
| cap->version = x86_pmu.version; |
| /* |
| * KVM doesn't support the hybrid PMU yet. |
| * Return the common value in global x86_pmu, |
| * which available for all cores. |
| */ |
| cap->num_counters_gp = x86_pmu.num_counters; |
| cap->num_counters_fixed = x86_pmu.num_counters_fixed; |
| cap->bit_width_gp = x86_pmu.cntval_bits; |
| cap->bit_width_fixed = x86_pmu.cntval_bits; |
| cap->events_mask = (unsigned int)x86_pmu.events_maskl; |
| cap->events_mask_len = x86_pmu.events_mask_len; |
| cap->pebs_ept = x86_pmu.pebs_ept; |
| } |
| EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); |
| |
| u64 perf_get_hw_event_config(int hw_event) |
| { |
| int max = x86_pmu.max_events; |
| |
| if (hw_event < max) |
| return x86_pmu.event_map(array_index_nospec(hw_event, max)); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(perf_get_hw_event_config); |