blob: ea762e28c1cc6ece32f624740d6cf8b74013651e [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2021, HiSilicon Ltd.
*/
#include <linux/device.h>
#include <linux/eventfd.h>
#include <linux/file.h>
#include <linux/hisi_acc_qm.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/vfio.h>
#include <linux/vfio_pci_core.h>
#include <linux/anon_inodes.h>
#include "hisi_acc_vfio_pci.h"
/* return 0 on VM acc device ready, -ETIMEDOUT hardware timeout */
static int qm_wait_dev_not_ready(struct hisi_qm *qm)
{
u32 val;
return readl_relaxed_poll_timeout(qm->io_base + QM_VF_STATE,
val, !(val & 0x1), MB_POLL_PERIOD_US,
MB_POLL_TIMEOUT_US);
}
/*
* Each state Reg is checked 100 times,
* with a delay of 100 microseconds after each check
*/
static u32 qm_check_reg_state(struct hisi_qm *qm, u32 regs)
{
int check_times = 0;
u32 state;
state = readl(qm->io_base + regs);
while (state && check_times < ERROR_CHECK_TIMEOUT) {
udelay(CHECK_DELAY_TIME);
state = readl(qm->io_base + regs);
check_times++;
}
return state;
}
static int qm_read_regs(struct hisi_qm *qm, u32 reg_addr,
u32 *data, u8 nums)
{
int i;
if (nums < 1 || nums > QM_REGS_MAX_LEN)
return -EINVAL;
for (i = 0; i < nums; i++) {
data[i] = readl(qm->io_base + reg_addr);
reg_addr += QM_REG_ADDR_OFFSET;
}
return 0;
}
static int qm_write_regs(struct hisi_qm *qm, u32 reg,
u32 *data, u8 nums)
{
int i;
if (nums < 1 || nums > QM_REGS_MAX_LEN)
return -EINVAL;
for (i = 0; i < nums; i++)
writel(data[i], qm->io_base + reg + i * QM_REG_ADDR_OFFSET);
return 0;
}
static int qm_get_vft(struct hisi_qm *qm, u32 *base)
{
u64 sqc_vft;
u32 qp_num;
int ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_VFT_V2, 0, 0, 1);
if (ret)
return ret;
sqc_vft = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) <<
QM_XQC_ADDR_OFFSET);
*base = QM_SQC_VFT_BASE_MASK_V2 & (sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
qp_num = (QM_SQC_VFT_NUM_MASK_V2 &
(sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
return qp_num;
}
static int qm_get_sqc(struct hisi_qm *qm, u64 *addr)
{
int ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, 0, 0, 1);
if (ret)
return ret;
*addr = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) <<
QM_XQC_ADDR_OFFSET);
return 0;
}
static int qm_get_cqc(struct hisi_qm *qm, u64 *addr)
{
int ret;
ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, 0, 0, 1);
if (ret)
return ret;
*addr = readl(qm->io_base + QM_MB_CMD_DATA_ADDR_L) |
((u64)readl(qm->io_base + QM_MB_CMD_DATA_ADDR_H) <<
QM_XQC_ADDR_OFFSET);
return 0;
}
static int qm_get_regs(struct hisi_qm *qm, struct acc_vf_data *vf_data)
{
struct device *dev = &qm->pdev->dev;
int ret;
ret = qm_read_regs(qm, QM_VF_AEQ_INT_MASK, &vf_data->aeq_int_mask, 1);
if (ret) {
dev_err(dev, "failed to read QM_VF_AEQ_INT_MASK\n");
return ret;
}
ret = qm_read_regs(qm, QM_VF_EQ_INT_MASK, &vf_data->eq_int_mask, 1);
if (ret) {
dev_err(dev, "failed to read QM_VF_EQ_INT_MASK\n");
return ret;
}
ret = qm_read_regs(qm, QM_IFC_INT_SOURCE_V,
&vf_data->ifc_int_source, 1);
if (ret) {
dev_err(dev, "failed to read QM_IFC_INT_SOURCE_V\n");
return ret;
}
ret = qm_read_regs(qm, QM_IFC_INT_MASK, &vf_data->ifc_int_mask, 1);
if (ret) {
dev_err(dev, "failed to read QM_IFC_INT_MASK\n");
return ret;
}
ret = qm_read_regs(qm, QM_IFC_INT_SET_V, &vf_data->ifc_int_set, 1);
if (ret) {
dev_err(dev, "failed to read QM_IFC_INT_SET_V\n");
return ret;
}
ret = qm_read_regs(qm, QM_PAGE_SIZE, &vf_data->page_size, 1);
if (ret) {
dev_err(dev, "failed to read QM_PAGE_SIZE\n");
return ret;
}
/* QM_EQC_DW has 7 regs */
ret = qm_read_regs(qm, QM_EQC_DW0, vf_data->qm_eqc_dw, 7);
if (ret) {
dev_err(dev, "failed to read QM_EQC_DW\n");
return ret;
}
/* QM_AEQC_DW has 7 regs */
ret = qm_read_regs(qm, QM_AEQC_DW0, vf_data->qm_aeqc_dw, 7);
if (ret) {
dev_err(dev, "failed to read QM_AEQC_DW\n");
return ret;
}
return 0;
}
static int qm_set_regs(struct hisi_qm *qm, struct acc_vf_data *vf_data)
{
struct device *dev = &qm->pdev->dev;
int ret;
/* check VF state */
if (unlikely(hisi_qm_wait_mb_ready(qm))) {
dev_err(&qm->pdev->dev, "QM device is not ready to write\n");
return -EBUSY;
}
ret = qm_write_regs(qm, QM_VF_AEQ_INT_MASK, &vf_data->aeq_int_mask, 1);
if (ret) {
dev_err(dev, "failed to write QM_VF_AEQ_INT_MASK\n");
return ret;
}
ret = qm_write_regs(qm, QM_VF_EQ_INT_MASK, &vf_data->eq_int_mask, 1);
if (ret) {
dev_err(dev, "failed to write QM_VF_EQ_INT_MASK\n");
return ret;
}
ret = qm_write_regs(qm, QM_IFC_INT_SOURCE_V,
&vf_data->ifc_int_source, 1);
if (ret) {
dev_err(dev, "failed to write QM_IFC_INT_SOURCE_V\n");
return ret;
}
ret = qm_write_regs(qm, QM_IFC_INT_MASK, &vf_data->ifc_int_mask, 1);
if (ret) {
dev_err(dev, "failed to write QM_IFC_INT_MASK\n");
return ret;
}
ret = qm_write_regs(qm, QM_IFC_INT_SET_V, &vf_data->ifc_int_set, 1);
if (ret) {
dev_err(dev, "failed to write QM_IFC_INT_SET_V\n");
return ret;
}
ret = qm_write_regs(qm, QM_QUE_ISO_CFG_V, &vf_data->que_iso_cfg, 1);
if (ret) {
dev_err(dev, "failed to write QM_QUE_ISO_CFG_V\n");
return ret;
}
ret = qm_write_regs(qm, QM_PAGE_SIZE, &vf_data->page_size, 1);
if (ret) {
dev_err(dev, "failed to write QM_PAGE_SIZE\n");
return ret;
}
/* QM_EQC_DW has 7 regs */
ret = qm_write_regs(qm, QM_EQC_DW0, vf_data->qm_eqc_dw, 7);
if (ret) {
dev_err(dev, "failed to write QM_EQC_DW\n");
return ret;
}
/* QM_AEQC_DW has 7 regs */
ret = qm_write_regs(qm, QM_AEQC_DW0, vf_data->qm_aeqc_dw, 7);
if (ret) {
dev_err(dev, "failed to write QM_AEQC_DW\n");
return ret;
}
return 0;
}
static void qm_db(struct hisi_qm *qm, u16 qn, u8 cmd,
u16 index, u8 priority)
{
u64 doorbell;
u64 dbase;
u16 randata = 0;
if (cmd == QM_DOORBELL_CMD_SQ || cmd == QM_DOORBELL_CMD_CQ)
dbase = QM_DOORBELL_SQ_CQ_BASE_V2;
else
dbase = QM_DOORBELL_EQ_AEQ_BASE_V2;
doorbell = qn | ((u64)cmd << QM_DB_CMD_SHIFT_V2) |
((u64)randata << QM_DB_RAND_SHIFT_V2) |
((u64)index << QM_DB_INDEX_SHIFT_V2) |
((u64)priority << QM_DB_PRIORITY_SHIFT_V2);
writeq(doorbell, qm->io_base + dbase);
}
static int pf_qm_get_qp_num(struct hisi_qm *qm, int vf_id, u32 *rbase)
{
unsigned int val;
u64 sqc_vft;
u32 qp_num;
int ret;
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), MB_POLL_PERIOD_US,
MB_POLL_TIMEOUT_US);
if (ret)
return ret;
writel(0x1, qm->io_base + QM_VFT_CFG_OP_WR);
/* 0 mean SQC VFT */
writel(0x0, qm->io_base + QM_VFT_CFG_TYPE);
writel(vf_id, qm->io_base + QM_VFT_CFG);
writel(0x0, qm->io_base + QM_VFT_CFG_RDY);
writel(0x1, qm->io_base + QM_VFT_CFG_OP_ENABLE);
ret = readl_relaxed_poll_timeout(qm->io_base + QM_VFT_CFG_RDY, val,
val & BIT(0), MB_POLL_PERIOD_US,
MB_POLL_TIMEOUT_US);
if (ret)
return ret;
sqc_vft = readl(qm->io_base + QM_VFT_CFG_DATA_L) |
((u64)readl(qm->io_base + QM_VFT_CFG_DATA_H) <<
QM_XQC_ADDR_OFFSET);
*rbase = QM_SQC_VFT_BASE_MASK_V2 &
(sqc_vft >> QM_SQC_VFT_BASE_SHIFT_V2);
qp_num = (QM_SQC_VFT_NUM_MASK_V2 &
(sqc_vft >> QM_SQC_VFT_NUM_SHIFT_V2)) + 1;
return qp_num;
}
static void qm_dev_cmd_init(struct hisi_qm *qm)
{
/* Clear VF communication status registers. */
writel(0x1, qm->io_base + QM_IFC_INT_SOURCE_V);
/* Enable pf and vf communication. */
writel(0x0, qm->io_base + QM_IFC_INT_MASK);
}
static int vf_qm_cache_wb(struct hisi_qm *qm)
{
unsigned int val;
writel(0x1, qm->io_base + QM_CACHE_WB_START);
if (readl_relaxed_poll_timeout(qm->io_base + QM_CACHE_WB_DONE,
val, val & BIT(0), MB_POLL_PERIOD_US,
MB_POLL_TIMEOUT_US)) {
dev_err(&qm->pdev->dev, "vf QM writeback sqc cache fail\n");
return -EINVAL;
}
return 0;
}
static struct hisi_acc_vf_core_device *hssi_acc_drvdata(struct pci_dev *pdev)
{
struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
return container_of(core_device, struct hisi_acc_vf_core_device,
core_device);
}
static void vf_qm_fun_reset(struct hisi_acc_vf_core_device *hisi_acc_vdev,
struct hisi_qm *qm)
{
int i;
for (i = 0; i < qm->qp_num; i++)
qm_db(qm, i, QM_DOORBELL_CMD_SQ, 0, 1);
}
static int vf_qm_func_stop(struct hisi_qm *qm)
{
return hisi_qm_mb(qm, QM_MB_CMD_PAUSE_QM, 0, 0, 0);
}
static int vf_qm_check_match(struct hisi_acc_vf_core_device *hisi_acc_vdev,
struct hisi_acc_vf_migration_file *migf)
{
struct acc_vf_data *vf_data = &migf->vf_data;
struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
struct hisi_qm *pf_qm = hisi_acc_vdev->pf_qm;
struct device *dev = &vf_qm->pdev->dev;
u32 que_iso_state;
int ret;
if (migf->total_length < QM_MATCH_SIZE)
return -EINVAL;
if (vf_data->acc_magic != ACC_DEV_MAGIC) {
dev_err(dev, "failed to match ACC_DEV_MAGIC\n");
return -EINVAL;
}
if (vf_data->dev_id != hisi_acc_vdev->vf_dev->device) {
dev_err(dev, "failed to match VF devices\n");
return -EINVAL;
}
/* vf qp num check */
ret = qm_get_vft(vf_qm, &vf_qm->qp_base);
if (ret <= 0) {
dev_err(dev, "failed to get vft qp nums\n");
return -EINVAL;
}
if (ret != vf_data->qp_num) {
dev_err(dev, "failed to match VF qp num\n");
return -EINVAL;
}
vf_qm->qp_num = ret;
/* vf isolation state check */
ret = qm_read_regs(pf_qm, QM_QUE_ISO_CFG_V, &que_iso_state, 1);
if (ret) {
dev_err(dev, "failed to read QM_QUE_ISO_CFG_V\n");
return ret;
}
if (vf_data->que_iso_cfg != que_iso_state) {
dev_err(dev, "failed to match isolation state\n");
return ret;
}
ret = qm_write_regs(vf_qm, QM_VF_STATE, &vf_data->vf_qm_state, 1);
if (ret) {
dev_err(dev, "failed to write QM_VF_STATE\n");
return ret;
}
hisi_acc_vdev->vf_qm_state = vf_data->vf_qm_state;
return 0;
}
static int vf_qm_get_match_data(struct hisi_acc_vf_core_device *hisi_acc_vdev,
struct acc_vf_data *vf_data)
{
struct hisi_qm *pf_qm = hisi_acc_vdev->pf_qm;
struct device *dev = &pf_qm->pdev->dev;
int vf_id = hisi_acc_vdev->vf_id;
int ret;
vf_data->acc_magic = ACC_DEV_MAGIC;
/* save device id */
vf_data->dev_id = hisi_acc_vdev->vf_dev->device;
/* vf qp num save from PF */
ret = pf_qm_get_qp_num(pf_qm, vf_id, &vf_data->qp_base);
if (ret <= 0) {
dev_err(dev, "failed to get vft qp nums!\n");
return -EINVAL;
}
vf_data->qp_num = ret;
/* VF isolation state save from PF */
ret = qm_read_regs(pf_qm, QM_QUE_ISO_CFG_V, &vf_data->que_iso_cfg, 1);
if (ret) {
dev_err(dev, "failed to read QM_QUE_ISO_CFG_V!\n");
return ret;
}
return 0;
}
static int vf_qm_load_data(struct hisi_acc_vf_core_device *hisi_acc_vdev,
struct hisi_acc_vf_migration_file *migf)
{
struct hisi_qm *qm = &hisi_acc_vdev->vf_qm;
struct device *dev = &qm->pdev->dev;
struct acc_vf_data *vf_data = &migf->vf_data;
int ret;
/* Return if only match data was transferred */
if (migf->total_length == QM_MATCH_SIZE)
return 0;
if (migf->total_length < sizeof(struct acc_vf_data))
return -EINVAL;
qm->eqe_dma = vf_data->eqe_dma;
qm->aeqe_dma = vf_data->aeqe_dma;
qm->sqc_dma = vf_data->sqc_dma;
qm->cqc_dma = vf_data->cqc_dma;
qm->qp_base = vf_data->qp_base;
qm->qp_num = vf_data->qp_num;
ret = qm_set_regs(qm, vf_data);
if (ret) {
dev_err(dev, "Set VF regs failed\n");
return ret;
}
ret = hisi_qm_mb(qm, QM_MB_CMD_SQC_BT, qm->sqc_dma, 0, 0);
if (ret) {
dev_err(dev, "Set sqc failed\n");
return ret;
}
ret = hisi_qm_mb(qm, QM_MB_CMD_CQC_BT, qm->cqc_dma, 0, 0);
if (ret) {
dev_err(dev, "Set cqc failed\n");
return ret;
}
qm_dev_cmd_init(qm);
return 0;
}
static int vf_qm_state_save(struct hisi_acc_vf_core_device *hisi_acc_vdev,
struct hisi_acc_vf_migration_file *migf)
{
struct acc_vf_data *vf_data = &migf->vf_data;
struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
struct device *dev = &vf_qm->pdev->dev;
int ret;
ret = vf_qm_get_match_data(hisi_acc_vdev, vf_data);
if (ret)
return ret;
if (unlikely(qm_wait_dev_not_ready(vf_qm))) {
/* Update state and return with match data */
vf_data->vf_qm_state = QM_NOT_READY;
hisi_acc_vdev->vf_qm_state = vf_data->vf_qm_state;
migf->total_length = QM_MATCH_SIZE;
return 0;
}
vf_data->vf_qm_state = QM_READY;
hisi_acc_vdev->vf_qm_state = vf_data->vf_qm_state;
ret = vf_qm_cache_wb(vf_qm);
if (ret) {
dev_err(dev, "failed to writeback QM Cache!\n");
return ret;
}
ret = qm_get_regs(vf_qm, vf_data);
if (ret)
return -EINVAL;
/* Every reg is 32 bit, the dma address is 64 bit. */
vf_data->eqe_dma = vf_data->qm_eqc_dw[2];
vf_data->eqe_dma <<= QM_XQC_ADDR_OFFSET;
vf_data->eqe_dma |= vf_data->qm_eqc_dw[1];
vf_data->aeqe_dma = vf_data->qm_aeqc_dw[2];
vf_data->aeqe_dma <<= QM_XQC_ADDR_OFFSET;
vf_data->aeqe_dma |= vf_data->qm_aeqc_dw[1];
/* Through SQC_BT/CQC_BT to get sqc and cqc address */
ret = qm_get_sqc(vf_qm, &vf_data->sqc_dma);
if (ret) {
dev_err(dev, "failed to read SQC addr!\n");
return -EINVAL;
}
ret = qm_get_cqc(vf_qm, &vf_data->cqc_dma);
if (ret) {
dev_err(dev, "failed to read CQC addr!\n");
return -EINVAL;
}
migf->total_length = sizeof(struct acc_vf_data);
return 0;
}
/* Check the PF's RAS state and Function INT state */
static int
hisi_acc_check_int_state(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
struct hisi_qm *vfqm = &hisi_acc_vdev->vf_qm;
struct hisi_qm *qm = hisi_acc_vdev->pf_qm;
struct pci_dev *vf_pdev = hisi_acc_vdev->vf_dev;
struct device *dev = &qm->pdev->dev;
u32 state;
/* Check RAS state */
state = qm_check_reg_state(qm, QM_ABNORMAL_INT_STATUS);
if (state) {
dev_err(dev, "failed to check QM RAS state!\n");
return -EBUSY;
}
/* Check Function Communication state between PF and VF */
state = qm_check_reg_state(vfqm, QM_IFC_INT_STATUS);
if (state) {
dev_err(dev, "failed to check QM IFC INT state!\n");
return -EBUSY;
}
state = qm_check_reg_state(vfqm, QM_IFC_INT_SET_V);
if (state) {
dev_err(dev, "failed to check QM IFC INT SET state!\n");
return -EBUSY;
}
/* Check submodule task state */
switch (vf_pdev->device) {
case PCI_DEVICE_ID_HUAWEI_SEC_VF:
state = qm_check_reg_state(qm, SEC_CORE_INT_STATUS);
if (state) {
dev_err(dev, "failed to check QM SEC Core INT state!\n");
return -EBUSY;
}
return 0;
case PCI_DEVICE_ID_HUAWEI_HPRE_VF:
state = qm_check_reg_state(qm, HPRE_HAC_INT_STATUS);
if (state) {
dev_err(dev, "failed to check QM HPRE HAC INT state!\n");
return -EBUSY;
}
return 0;
case PCI_DEVICE_ID_HUAWEI_ZIP_VF:
state = qm_check_reg_state(qm, HZIP_CORE_INT_STATUS);
if (state) {
dev_err(dev, "failed to check QM ZIP Core INT state!\n");
return -EBUSY;
}
return 0;
default:
dev_err(dev, "failed to detect acc module type!\n");
return -EINVAL;
}
}
static void hisi_acc_vf_disable_fd(struct hisi_acc_vf_migration_file *migf)
{
mutex_lock(&migf->lock);
migf->disabled = true;
migf->total_length = 0;
migf->filp->f_pos = 0;
mutex_unlock(&migf->lock);
}
static void hisi_acc_vf_disable_fds(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
if (hisi_acc_vdev->resuming_migf) {
hisi_acc_vf_disable_fd(hisi_acc_vdev->resuming_migf);
fput(hisi_acc_vdev->resuming_migf->filp);
hisi_acc_vdev->resuming_migf = NULL;
}
if (hisi_acc_vdev->saving_migf) {
hisi_acc_vf_disable_fd(hisi_acc_vdev->saving_migf);
fput(hisi_acc_vdev->saving_migf->filp);
hisi_acc_vdev->saving_migf = NULL;
}
}
/*
* This function is called in all state_mutex unlock cases to
* handle a 'deferred_reset' if exists.
*/
static void
hisi_acc_vf_state_mutex_unlock(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
again:
spin_lock(&hisi_acc_vdev->reset_lock);
if (hisi_acc_vdev->deferred_reset) {
hisi_acc_vdev->deferred_reset = false;
spin_unlock(&hisi_acc_vdev->reset_lock);
hisi_acc_vdev->vf_qm_state = QM_NOT_READY;
hisi_acc_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING;
hisi_acc_vf_disable_fds(hisi_acc_vdev);
goto again;
}
mutex_unlock(&hisi_acc_vdev->state_mutex);
spin_unlock(&hisi_acc_vdev->reset_lock);
}
static void hisi_acc_vf_start_device(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
if (hisi_acc_vdev->vf_qm_state != QM_READY)
return;
vf_qm_fun_reset(hisi_acc_vdev, vf_qm);
}
static int hisi_acc_vf_load_state(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
struct device *dev = &hisi_acc_vdev->vf_dev->dev;
struct hisi_acc_vf_migration_file *migf = hisi_acc_vdev->resuming_migf;
int ret;
/* Check dev compatibility */
ret = vf_qm_check_match(hisi_acc_vdev, migf);
if (ret) {
dev_err(dev, "failed to match the VF!\n");
return ret;
}
/* Recover data to VF */
ret = vf_qm_load_data(hisi_acc_vdev, migf);
if (ret) {
dev_err(dev, "failed to recover the VF!\n");
return ret;
}
return 0;
}
static int hisi_acc_vf_release_file(struct inode *inode, struct file *filp)
{
struct hisi_acc_vf_migration_file *migf = filp->private_data;
hisi_acc_vf_disable_fd(migf);
mutex_destroy(&migf->lock);
kfree(migf);
return 0;
}
static ssize_t hisi_acc_vf_resume_write(struct file *filp, const char __user *buf,
size_t len, loff_t *pos)
{
struct hisi_acc_vf_migration_file *migf = filp->private_data;
loff_t requested_length;
ssize_t done = 0;
int ret;
if (pos)
return -ESPIPE;
pos = &filp->f_pos;
if (*pos < 0 ||
check_add_overflow((loff_t)len, *pos, &requested_length))
return -EINVAL;
if (requested_length > sizeof(struct acc_vf_data))
return -ENOMEM;
mutex_lock(&migf->lock);
if (migf->disabled) {
done = -ENODEV;
goto out_unlock;
}
ret = copy_from_user(&migf->vf_data, buf, len);
if (ret) {
done = -EFAULT;
goto out_unlock;
}
*pos += len;
done = len;
migf->total_length += len;
out_unlock:
mutex_unlock(&migf->lock);
return done;
}
static const struct file_operations hisi_acc_vf_resume_fops = {
.owner = THIS_MODULE,
.write = hisi_acc_vf_resume_write,
.release = hisi_acc_vf_release_file,
.llseek = no_llseek,
};
static struct hisi_acc_vf_migration_file *
hisi_acc_vf_pci_resume(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
struct hisi_acc_vf_migration_file *migf;
migf = kzalloc(sizeof(*migf), GFP_KERNEL);
if (!migf)
return ERR_PTR(-ENOMEM);
migf->filp = anon_inode_getfile("hisi_acc_vf_mig", &hisi_acc_vf_resume_fops, migf,
O_WRONLY);
if (IS_ERR(migf->filp)) {
int err = PTR_ERR(migf->filp);
kfree(migf);
return ERR_PTR(err);
}
stream_open(migf->filp->f_inode, migf->filp);
mutex_init(&migf->lock);
return migf;
}
static ssize_t hisi_acc_vf_save_read(struct file *filp, char __user *buf, size_t len,
loff_t *pos)
{
struct hisi_acc_vf_migration_file *migf = filp->private_data;
ssize_t done = 0;
int ret;
if (pos)
return -ESPIPE;
pos = &filp->f_pos;
mutex_lock(&migf->lock);
if (*pos > migf->total_length) {
done = -EINVAL;
goto out_unlock;
}
if (migf->disabled) {
done = -ENODEV;
goto out_unlock;
}
len = min_t(size_t, migf->total_length - *pos, len);
if (len) {
ret = copy_to_user(buf, &migf->vf_data, len);
if (ret) {
done = -EFAULT;
goto out_unlock;
}
*pos += len;
done = len;
}
out_unlock:
mutex_unlock(&migf->lock);
return done;
}
static const struct file_operations hisi_acc_vf_save_fops = {
.owner = THIS_MODULE,
.read = hisi_acc_vf_save_read,
.release = hisi_acc_vf_release_file,
.llseek = no_llseek,
};
static struct hisi_acc_vf_migration_file *
hisi_acc_vf_stop_copy(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
struct hisi_acc_vf_migration_file *migf;
int ret;
migf = kzalloc(sizeof(*migf), GFP_KERNEL);
if (!migf)
return ERR_PTR(-ENOMEM);
migf->filp = anon_inode_getfile("hisi_acc_vf_mig", &hisi_acc_vf_save_fops, migf,
O_RDONLY);
if (IS_ERR(migf->filp)) {
int err = PTR_ERR(migf->filp);
kfree(migf);
return ERR_PTR(err);
}
stream_open(migf->filp->f_inode, migf->filp);
mutex_init(&migf->lock);
ret = vf_qm_state_save(hisi_acc_vdev, migf);
if (ret) {
fput(migf->filp);
return ERR_PTR(ret);
}
return migf;
}
static int hisi_acc_vf_stop_device(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
struct device *dev = &hisi_acc_vdev->vf_dev->dev;
struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
int ret;
ret = vf_qm_func_stop(vf_qm);
if (ret) {
dev_err(dev, "failed to stop QM VF function!\n");
return ret;
}
ret = hisi_acc_check_int_state(hisi_acc_vdev);
if (ret) {
dev_err(dev, "failed to check QM INT state!\n");
return ret;
}
return 0;
}
static struct file *
hisi_acc_vf_set_device_state(struct hisi_acc_vf_core_device *hisi_acc_vdev,
u32 new)
{
u32 cur = hisi_acc_vdev->mig_state;
int ret;
if (cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_STOP) {
ret = hisi_acc_vf_stop_device(hisi_acc_vdev);
if (ret)
return ERR_PTR(ret);
return NULL;
}
if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_STOP_COPY) {
struct hisi_acc_vf_migration_file *migf;
migf = hisi_acc_vf_stop_copy(hisi_acc_vdev);
if (IS_ERR(migf))
return ERR_CAST(migf);
get_file(migf->filp);
hisi_acc_vdev->saving_migf = migf;
return migf->filp;
}
if ((cur == VFIO_DEVICE_STATE_STOP_COPY && new == VFIO_DEVICE_STATE_STOP)) {
hisi_acc_vf_disable_fds(hisi_acc_vdev);
return NULL;
}
if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RESUMING) {
struct hisi_acc_vf_migration_file *migf;
migf = hisi_acc_vf_pci_resume(hisi_acc_vdev);
if (IS_ERR(migf))
return ERR_CAST(migf);
get_file(migf->filp);
hisi_acc_vdev->resuming_migf = migf;
return migf->filp;
}
if (cur == VFIO_DEVICE_STATE_RESUMING && new == VFIO_DEVICE_STATE_STOP) {
ret = hisi_acc_vf_load_state(hisi_acc_vdev);
if (ret)
return ERR_PTR(ret);
hisi_acc_vf_disable_fds(hisi_acc_vdev);
return NULL;
}
if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RUNNING) {
hisi_acc_vf_start_device(hisi_acc_vdev);
return NULL;
}
/*
* vfio_mig_get_next_state() does not use arcs other than the above
*/
WARN_ON(true);
return ERR_PTR(-EINVAL);
}
static struct file *
hisi_acc_vfio_pci_set_device_state(struct vfio_device *vdev,
enum vfio_device_mig_state new_state)
{
struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(vdev,
struct hisi_acc_vf_core_device, core_device.vdev);
enum vfio_device_mig_state next_state;
struct file *res = NULL;
int ret;
mutex_lock(&hisi_acc_vdev->state_mutex);
while (new_state != hisi_acc_vdev->mig_state) {
ret = vfio_mig_get_next_state(vdev,
hisi_acc_vdev->mig_state,
new_state, &next_state);
if (ret) {
res = ERR_PTR(-EINVAL);
break;
}
res = hisi_acc_vf_set_device_state(hisi_acc_vdev, next_state);
if (IS_ERR(res))
break;
hisi_acc_vdev->mig_state = next_state;
if (WARN_ON(res && new_state != hisi_acc_vdev->mig_state)) {
fput(res);
res = ERR_PTR(-EINVAL);
break;
}
}
hisi_acc_vf_state_mutex_unlock(hisi_acc_vdev);
return res;
}
static int
hisi_acc_vfio_pci_get_device_state(struct vfio_device *vdev,
enum vfio_device_mig_state *curr_state)
{
struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(vdev,
struct hisi_acc_vf_core_device, core_device.vdev);
mutex_lock(&hisi_acc_vdev->state_mutex);
*curr_state = hisi_acc_vdev->mig_state;
hisi_acc_vf_state_mutex_unlock(hisi_acc_vdev);
return 0;
}
static void hisi_acc_vf_pci_aer_reset_done(struct pci_dev *pdev)
{
struct hisi_acc_vf_core_device *hisi_acc_vdev = hssi_acc_drvdata(pdev);
if (hisi_acc_vdev->core_device.vdev.migration_flags !=
VFIO_MIGRATION_STOP_COPY)
return;
/*
* As the higher VFIO layers are holding locks across reset and using
* those same locks with the mm_lock we need to prevent ABBA deadlock
* with the state_mutex and mm_lock.
* In case the state_mutex was taken already we defer the cleanup work
* to the unlock flow of the other running context.
*/
spin_lock(&hisi_acc_vdev->reset_lock);
hisi_acc_vdev->deferred_reset = true;
if (!mutex_trylock(&hisi_acc_vdev->state_mutex)) {
spin_unlock(&hisi_acc_vdev->reset_lock);
return;
}
spin_unlock(&hisi_acc_vdev->reset_lock);
hisi_acc_vf_state_mutex_unlock(hisi_acc_vdev);
}
static int hisi_acc_vf_qm_init(struct hisi_acc_vf_core_device *hisi_acc_vdev)
{
struct vfio_pci_core_device *vdev = &hisi_acc_vdev->core_device;
struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
struct pci_dev *vf_dev = vdev->pdev;
/*
* ACC VF dev BAR2 region consists of both functional register space
* and migration control register space. For migration to work, we
* need access to both. Hence, we map the entire BAR2 region here.
* But unnecessarily exposing the migration BAR region to the Guest
* has the potential to prevent/corrupt the Guest migration. Hence,
* we restrict access to the migration control space from
* Guest(Please see mmap/ioctl/read/write override functions).
*
* Please note that it is OK to expose the entire VF BAR if migration
* is not supported or required as this cannot affect the ACC PF
* configurations.
*
* Also the HiSilicon ACC VF devices supported by this driver on
* HiSilicon hardware platforms are integrated end point devices
* and the platform lacks the capability to perform any PCIe P2P
* between these devices.
*/
vf_qm->io_base =
ioremap(pci_resource_start(vf_dev, VFIO_PCI_BAR2_REGION_INDEX),
pci_resource_len(vf_dev, VFIO_PCI_BAR2_REGION_INDEX));
if (!vf_qm->io_base)
return -EIO;
vf_qm->fun_type = QM_HW_VF;
vf_qm->pdev = vf_dev;
mutex_init(&vf_qm->mailbox_lock);
return 0;
}
static struct hisi_qm *hisi_acc_get_pf_qm(struct pci_dev *pdev)
{
struct hisi_qm *pf_qm;
struct pci_driver *pf_driver;
if (!pdev->is_virtfn)
return NULL;
switch (pdev->device) {
case PCI_DEVICE_ID_HUAWEI_SEC_VF:
pf_driver = hisi_sec_get_pf_driver();
break;
case PCI_DEVICE_ID_HUAWEI_HPRE_VF:
pf_driver = hisi_hpre_get_pf_driver();
break;
case PCI_DEVICE_ID_HUAWEI_ZIP_VF:
pf_driver = hisi_zip_get_pf_driver();
break;
default:
return NULL;
}
if (!pf_driver)
return NULL;
pf_qm = pci_iov_get_pf_drvdata(pdev, pf_driver);
return !IS_ERR(pf_qm) ? pf_qm : NULL;
}
static int hisi_acc_pci_rw_access_check(struct vfio_device *core_vdev,
size_t count, loff_t *ppos,
size_t *new_count)
{
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
if (index == VFIO_PCI_BAR2_REGION_INDEX) {
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
resource_size_t end = pci_resource_len(vdev->pdev, index) / 2;
/* Check if access is for migration control region */
if (pos >= end)
return -EINVAL;
*new_count = min(count, (size_t)(end - pos));
}
return 0;
}
static int hisi_acc_vfio_pci_mmap(struct vfio_device *core_vdev,
struct vm_area_struct *vma)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
unsigned int index;
index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
if (index == VFIO_PCI_BAR2_REGION_INDEX) {
u64 req_len, pgoff, req_start;
resource_size_t end = pci_resource_len(vdev->pdev, index) / 2;
req_len = vma->vm_end - vma->vm_start;
pgoff = vma->vm_pgoff &
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
req_start = pgoff << PAGE_SHIFT;
if (req_start + req_len > end)
return -EINVAL;
}
return vfio_pci_core_mmap(core_vdev, vma);
}
static ssize_t hisi_acc_vfio_pci_write(struct vfio_device *core_vdev,
const char __user *buf, size_t count,
loff_t *ppos)
{
size_t new_count = count;
int ret;
ret = hisi_acc_pci_rw_access_check(core_vdev, count, ppos, &new_count);
if (ret)
return ret;
return vfio_pci_core_write(core_vdev, buf, new_count, ppos);
}
static ssize_t hisi_acc_vfio_pci_read(struct vfio_device *core_vdev,
char __user *buf, size_t count,
loff_t *ppos)
{
size_t new_count = count;
int ret;
ret = hisi_acc_pci_rw_access_check(core_vdev, count, ppos, &new_count);
if (ret)
return ret;
return vfio_pci_core_read(core_vdev, buf, new_count, ppos);
}
static long hisi_acc_vfio_pci_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
unsigned long arg)
{
if (cmd == VFIO_DEVICE_GET_REGION_INFO) {
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
struct pci_dev *pdev = vdev->pdev;
struct vfio_region_info info;
unsigned long minsz;
minsz = offsetofend(struct vfio_region_info, offset);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
if (info.index == VFIO_PCI_BAR2_REGION_INDEX) {
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
/*
* ACC VF dev BAR2 region consists of both functional
* register space and migration control register space.
* Report only the functional region to Guest.
*/
info.size = pci_resource_len(pdev, info.index) / 2;
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE |
VFIO_REGION_INFO_FLAG_MMAP;
return copy_to_user((void __user *)arg, &info, minsz) ?
-EFAULT : 0;
}
}
return vfio_pci_core_ioctl(core_vdev, cmd, arg);
}
static int hisi_acc_vfio_pci_open_device(struct vfio_device *core_vdev)
{
struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(core_vdev,
struct hisi_acc_vf_core_device, core_device.vdev);
struct vfio_pci_core_device *vdev = &hisi_acc_vdev->core_device;
int ret;
ret = vfio_pci_core_enable(vdev);
if (ret)
return ret;
if (core_vdev->mig_ops) {
ret = hisi_acc_vf_qm_init(hisi_acc_vdev);
if (ret) {
vfio_pci_core_disable(vdev);
return ret;
}
hisi_acc_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING;
}
vfio_pci_core_finish_enable(vdev);
return 0;
}
static void hisi_acc_vfio_pci_close_device(struct vfio_device *core_vdev)
{
struct hisi_acc_vf_core_device *hisi_acc_vdev = container_of(core_vdev,
struct hisi_acc_vf_core_device, core_device.vdev);
struct hisi_qm *vf_qm = &hisi_acc_vdev->vf_qm;
iounmap(vf_qm->io_base);
vfio_pci_core_close_device(core_vdev);
}
static const struct vfio_migration_ops hisi_acc_vfio_pci_migrn_state_ops = {
.migration_set_state = hisi_acc_vfio_pci_set_device_state,
.migration_get_state = hisi_acc_vfio_pci_get_device_state,
};
static const struct vfio_device_ops hisi_acc_vfio_pci_migrn_ops = {
.name = "hisi-acc-vfio-pci-migration",
.open_device = hisi_acc_vfio_pci_open_device,
.close_device = hisi_acc_vfio_pci_close_device,
.ioctl = hisi_acc_vfio_pci_ioctl,
.device_feature = vfio_pci_core_ioctl_feature,
.read = hisi_acc_vfio_pci_read,
.write = hisi_acc_vfio_pci_write,
.mmap = hisi_acc_vfio_pci_mmap,
.request = vfio_pci_core_request,
.match = vfio_pci_core_match,
};
static const struct vfio_device_ops hisi_acc_vfio_pci_ops = {
.name = "hisi-acc-vfio-pci",
.open_device = hisi_acc_vfio_pci_open_device,
.close_device = vfio_pci_core_close_device,
.ioctl = vfio_pci_core_ioctl,
.device_feature = vfio_pci_core_ioctl_feature,
.read = vfio_pci_core_read,
.write = vfio_pci_core_write,
.mmap = vfio_pci_core_mmap,
.request = vfio_pci_core_request,
.match = vfio_pci_core_match,
};
static int
hisi_acc_vfio_pci_migrn_init(struct hisi_acc_vf_core_device *hisi_acc_vdev,
struct pci_dev *pdev, struct hisi_qm *pf_qm)
{
int vf_id;
vf_id = pci_iov_vf_id(pdev);
if (vf_id < 0)
return vf_id;
hisi_acc_vdev->vf_id = vf_id + 1;
hisi_acc_vdev->core_device.vdev.migration_flags =
VFIO_MIGRATION_STOP_COPY;
hisi_acc_vdev->pf_qm = pf_qm;
hisi_acc_vdev->vf_dev = pdev;
mutex_init(&hisi_acc_vdev->state_mutex);
return 0;
}
static int hisi_acc_vfio_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct hisi_acc_vf_core_device *hisi_acc_vdev;
struct hisi_qm *pf_qm;
int ret;
hisi_acc_vdev = kzalloc(sizeof(*hisi_acc_vdev), GFP_KERNEL);
if (!hisi_acc_vdev)
return -ENOMEM;
pf_qm = hisi_acc_get_pf_qm(pdev);
if (pf_qm && pf_qm->ver >= QM_HW_V3) {
ret = hisi_acc_vfio_pci_migrn_init(hisi_acc_vdev, pdev, pf_qm);
if (!ret) {
vfio_pci_core_init_device(&hisi_acc_vdev->core_device, pdev,
&hisi_acc_vfio_pci_migrn_ops);
hisi_acc_vdev->core_device.vdev.mig_ops =
&hisi_acc_vfio_pci_migrn_state_ops;
} else {
pci_warn(pdev, "migration support failed, continue with generic interface\n");
vfio_pci_core_init_device(&hisi_acc_vdev->core_device, pdev,
&hisi_acc_vfio_pci_ops);
}
} else {
vfio_pci_core_init_device(&hisi_acc_vdev->core_device, pdev,
&hisi_acc_vfio_pci_ops);
}
dev_set_drvdata(&pdev->dev, &hisi_acc_vdev->core_device);
ret = vfio_pci_core_register_device(&hisi_acc_vdev->core_device);
if (ret)
goto out_free;
return 0;
out_free:
vfio_pci_core_uninit_device(&hisi_acc_vdev->core_device);
kfree(hisi_acc_vdev);
return ret;
}
static void hisi_acc_vfio_pci_remove(struct pci_dev *pdev)
{
struct hisi_acc_vf_core_device *hisi_acc_vdev = hssi_acc_drvdata(pdev);
vfio_pci_core_unregister_device(&hisi_acc_vdev->core_device);
vfio_pci_core_uninit_device(&hisi_acc_vdev->core_device);
kfree(hisi_acc_vdev);
}
static const struct pci_device_id hisi_acc_vfio_pci_table[] = {
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_SEC_VF) },
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_HPRE_VF) },
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_ZIP_VF) },
{ }
};
MODULE_DEVICE_TABLE(pci, hisi_acc_vfio_pci_table);
static const struct pci_error_handlers hisi_acc_vf_err_handlers = {
.reset_done = hisi_acc_vf_pci_aer_reset_done,
.error_detected = vfio_pci_core_aer_err_detected,
};
static struct pci_driver hisi_acc_vfio_pci_driver = {
.name = KBUILD_MODNAME,
.id_table = hisi_acc_vfio_pci_table,
.probe = hisi_acc_vfio_pci_probe,
.remove = hisi_acc_vfio_pci_remove,
.err_handler = &hisi_acc_vf_err_handlers,
.driver_managed_dma = true,
};
module_pci_driver(hisi_acc_vfio_pci_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Liu Longfang <liulongfang@huawei.com>");
MODULE_AUTHOR("Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>");
MODULE_DESCRIPTION("HiSilicon VFIO PCI - VFIO PCI driver with live migration support for HiSilicon ACC device family");