| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * KCSAN core runtime. |
| * |
| * Copyright (C) 2019, Google LLC. |
| */ |
| |
| #define pr_fmt(fmt) "kcsan: " fmt |
| |
| #include <linux/atomic.h> |
| #include <linux/bug.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/moduleparam.h> |
| #include <linux/percpu.h> |
| #include <linux/preempt.h> |
| #include <linux/sched.h> |
| #include <linux/uaccess.h> |
| |
| #include "encoding.h" |
| #include "kcsan.h" |
| #include "permissive.h" |
| |
| static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE); |
| unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK; |
| unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT; |
| static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH; |
| static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER); |
| |
| #ifdef MODULE_PARAM_PREFIX |
| #undef MODULE_PARAM_PREFIX |
| #endif |
| #define MODULE_PARAM_PREFIX "kcsan." |
| module_param_named(early_enable, kcsan_early_enable, bool, 0); |
| module_param_named(udelay_task, kcsan_udelay_task, uint, 0644); |
| module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644); |
| module_param_named(skip_watch, kcsan_skip_watch, long, 0644); |
| module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444); |
| |
| #ifdef CONFIG_KCSAN_WEAK_MEMORY |
| static bool kcsan_weak_memory = true; |
| module_param_named(weak_memory, kcsan_weak_memory, bool, 0644); |
| #else |
| #define kcsan_weak_memory false |
| #endif |
| |
| bool kcsan_enabled; |
| |
| /* Per-CPU kcsan_ctx for interrupts */ |
| static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = { |
| .scoped_accesses = {LIST_POISON1, NULL}, |
| }; |
| |
| /* |
| * Helper macros to index into adjacent slots, starting from address slot |
| * itself, followed by the right and left slots. |
| * |
| * The purpose is 2-fold: |
| * |
| * 1. if during insertion the address slot is already occupied, check if |
| * any adjacent slots are free; |
| * 2. accesses that straddle a slot boundary due to size that exceeds a |
| * slot's range may check adjacent slots if any watchpoint matches. |
| * |
| * Note that accesses with very large size may still miss a watchpoint; however, |
| * given this should be rare, this is a reasonable trade-off to make, since this |
| * will avoid: |
| * |
| * 1. excessive contention between watchpoint checks and setup; |
| * 2. larger number of simultaneous watchpoints without sacrificing |
| * performance. |
| * |
| * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]: |
| * |
| * slot=0: [ 1, 2, 0] |
| * slot=9: [10, 11, 9] |
| * slot=63: [64, 65, 63] |
| */ |
| #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS)) |
| |
| /* |
| * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary |
| * slot (middle) is fine if we assume that races occur rarely. The set of |
| * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to |
| * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}. |
| */ |
| #define SLOT_IDX_FAST(slot, i) (slot + i) |
| |
| /* |
| * Watchpoints, with each entry encoded as defined in encoding.h: in order to be |
| * able to safely update and access a watchpoint without introducing locking |
| * overhead, we encode each watchpoint as a single atomic long. The initial |
| * zero-initialized state matches INVALID_WATCHPOINT. |
| * |
| * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to |
| * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path. |
| */ |
| static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1]; |
| |
| /* |
| * Instructions to skip watching counter, used in should_watch(). We use a |
| * per-CPU counter to avoid excessive contention. |
| */ |
| static DEFINE_PER_CPU(long, kcsan_skip); |
| |
| /* For kcsan_prandom_u32_max(). */ |
| static DEFINE_PER_CPU(u32, kcsan_rand_state); |
| |
| static __always_inline atomic_long_t *find_watchpoint(unsigned long addr, |
| size_t size, |
| bool expect_write, |
| long *encoded_watchpoint) |
| { |
| const int slot = watchpoint_slot(addr); |
| const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK; |
| atomic_long_t *watchpoint; |
| unsigned long wp_addr_masked; |
| size_t wp_size; |
| bool is_write; |
| int i; |
| |
| BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS); |
| |
| for (i = 0; i < NUM_SLOTS; ++i) { |
| watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)]; |
| *encoded_watchpoint = atomic_long_read(watchpoint); |
| if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked, |
| &wp_size, &is_write)) |
| continue; |
| |
| if (expect_write && !is_write) |
| continue; |
| |
| /* Check if the watchpoint matches the access. */ |
| if (matching_access(wp_addr_masked, wp_size, addr_masked, size)) |
| return watchpoint; |
| } |
| |
| return NULL; |
| } |
| |
| static inline atomic_long_t * |
| insert_watchpoint(unsigned long addr, size_t size, bool is_write) |
| { |
| const int slot = watchpoint_slot(addr); |
| const long encoded_watchpoint = encode_watchpoint(addr, size, is_write); |
| atomic_long_t *watchpoint; |
| int i; |
| |
| /* Check slot index logic, ensuring we stay within array bounds. */ |
| BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT); |
| BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0); |
| BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1); |
| BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS); |
| |
| for (i = 0; i < NUM_SLOTS; ++i) { |
| long expect_val = INVALID_WATCHPOINT; |
| |
| /* Try to acquire this slot. */ |
| watchpoint = &watchpoints[SLOT_IDX(slot, i)]; |
| if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint)) |
| return watchpoint; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Return true if watchpoint was successfully consumed, false otherwise. |
| * |
| * This may return false if: |
| * |
| * 1. another thread already consumed the watchpoint; |
| * 2. the thread that set up the watchpoint already removed it; |
| * 3. the watchpoint was removed and then re-used. |
| */ |
| static __always_inline bool |
| try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint) |
| { |
| return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT); |
| } |
| |
| /* Return true if watchpoint was not touched, false if already consumed. */ |
| static inline bool consume_watchpoint(atomic_long_t *watchpoint) |
| { |
| return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT; |
| } |
| |
| /* Remove the watchpoint -- its slot may be reused after. */ |
| static inline void remove_watchpoint(atomic_long_t *watchpoint) |
| { |
| atomic_long_set(watchpoint, INVALID_WATCHPOINT); |
| } |
| |
| static __always_inline struct kcsan_ctx *get_ctx(void) |
| { |
| /* |
| * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would |
| * also result in calls that generate warnings in uaccess regions. |
| */ |
| return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx); |
| } |
| |
| static __always_inline void |
| check_access(const volatile void *ptr, size_t size, int type, unsigned long ip); |
| |
| /* Check scoped accesses; never inline because this is a slow-path! */ |
| static noinline void kcsan_check_scoped_accesses(void) |
| { |
| struct kcsan_ctx *ctx = get_ctx(); |
| struct kcsan_scoped_access *scoped_access; |
| |
| if (ctx->disable_scoped) |
| return; |
| |
| ctx->disable_scoped++; |
| list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) { |
| check_access(scoped_access->ptr, scoped_access->size, |
| scoped_access->type, scoped_access->ip); |
| } |
| ctx->disable_scoped--; |
| } |
| |
| /* Rules for generic atomic accesses. Called from fast-path. */ |
| static __always_inline bool |
| is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type) |
| { |
| if (type & KCSAN_ACCESS_ATOMIC) |
| return true; |
| |
| /* |
| * Unless explicitly declared atomic, never consider an assertion access |
| * as atomic. This allows using them also in atomic regions, such as |
| * seqlocks, without implicitly changing their semantics. |
| */ |
| if (type & KCSAN_ACCESS_ASSERT) |
| return false; |
| |
| if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) && |
| (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) && |
| !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size)) |
| return true; /* Assume aligned writes up to word size are atomic. */ |
| |
| if (ctx->atomic_next > 0) { |
| /* |
| * Because we do not have separate contexts for nested |
| * interrupts, in case atomic_next is set, we simply assume that |
| * the outer interrupt set atomic_next. In the worst case, we |
| * will conservatively consider operations as atomic. This is a |
| * reasonable trade-off to make, since this case should be |
| * extremely rare; however, even if extremely rare, it could |
| * lead to false positives otherwise. |
| */ |
| if ((hardirq_count() >> HARDIRQ_SHIFT) < 2) |
| --ctx->atomic_next; /* in task, or outer interrupt */ |
| return true; |
| } |
| |
| return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic; |
| } |
| |
| static __always_inline bool |
| should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type) |
| { |
| /* |
| * Never set up watchpoints when memory operations are atomic. |
| * |
| * Need to check this first, before kcsan_skip check below: (1) atomics |
| * should not count towards skipped instructions, and (2) to actually |
| * decrement kcsan_atomic_next for consecutive instruction stream. |
| */ |
| if (is_atomic(ctx, ptr, size, type)) |
| return false; |
| |
| if (this_cpu_dec_return(kcsan_skip) >= 0) |
| return false; |
| |
| /* |
| * NOTE: If we get here, kcsan_skip must always be reset in slow path |
| * via reset_kcsan_skip() to avoid underflow. |
| */ |
| |
| /* this operation should be watched */ |
| return true; |
| } |
| |
| /* |
| * Returns a pseudo-random number in interval [0, ep_ro). Simple linear |
| * congruential generator, using constants from "Numerical Recipes". |
| */ |
| static u32 kcsan_prandom_u32_max(u32 ep_ro) |
| { |
| u32 state = this_cpu_read(kcsan_rand_state); |
| |
| state = 1664525 * state + 1013904223; |
| this_cpu_write(kcsan_rand_state, state); |
| |
| return state % ep_ro; |
| } |
| |
| static inline void reset_kcsan_skip(void) |
| { |
| long skip_count = kcsan_skip_watch - |
| (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ? |
| kcsan_prandom_u32_max(kcsan_skip_watch) : |
| 0); |
| this_cpu_write(kcsan_skip, skip_count); |
| } |
| |
| static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx) |
| { |
| return READ_ONCE(kcsan_enabled) && !ctx->disable_count; |
| } |
| |
| /* Introduce delay depending on context and configuration. */ |
| static void delay_access(int type) |
| { |
| unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt; |
| /* For certain access types, skew the random delay to be longer. */ |
| unsigned int skew_delay_order = |
| (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0; |
| |
| delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ? |
| kcsan_prandom_u32_max(delay >> skew_delay_order) : |
| 0; |
| udelay(delay); |
| } |
| |
| /* |
| * Reads the instrumented memory for value change detection; value change |
| * detection is currently done for accesses up to a size of 8 bytes. |
| */ |
| static __always_inline u64 read_instrumented_memory(const volatile void *ptr, size_t size) |
| { |
| switch (size) { |
| case 1: return READ_ONCE(*(const u8 *)ptr); |
| case 2: return READ_ONCE(*(const u16 *)ptr); |
| case 4: return READ_ONCE(*(const u32 *)ptr); |
| case 8: return READ_ONCE(*(const u64 *)ptr); |
| default: return 0; /* Ignore; we do not diff the values. */ |
| } |
| } |
| |
| void kcsan_save_irqtrace(struct task_struct *task) |
| { |
| #ifdef CONFIG_TRACE_IRQFLAGS |
| task->kcsan_save_irqtrace = task->irqtrace; |
| #endif |
| } |
| |
| void kcsan_restore_irqtrace(struct task_struct *task) |
| { |
| #ifdef CONFIG_TRACE_IRQFLAGS |
| task->irqtrace = task->kcsan_save_irqtrace; |
| #endif |
| } |
| |
| static __always_inline int get_kcsan_stack_depth(void) |
| { |
| #ifdef CONFIG_KCSAN_WEAK_MEMORY |
| return current->kcsan_stack_depth; |
| #else |
| BUILD_BUG(); |
| return 0; |
| #endif |
| } |
| |
| static __always_inline void add_kcsan_stack_depth(int val) |
| { |
| #ifdef CONFIG_KCSAN_WEAK_MEMORY |
| current->kcsan_stack_depth += val; |
| #else |
| BUILD_BUG(); |
| #endif |
| } |
| |
| static __always_inline struct kcsan_scoped_access *get_reorder_access(struct kcsan_ctx *ctx) |
| { |
| #ifdef CONFIG_KCSAN_WEAK_MEMORY |
| return ctx->disable_scoped ? NULL : &ctx->reorder_access; |
| #else |
| return NULL; |
| #endif |
| } |
| |
| static __always_inline bool |
| find_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, |
| int type, unsigned long ip) |
| { |
| struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx); |
| |
| if (!reorder_access) |
| return false; |
| |
| /* |
| * Note: If accesses are repeated while reorder_access is identical, |
| * never matches the new access, because !(type & KCSAN_ACCESS_SCOPED). |
| */ |
| return reorder_access->ptr == ptr && reorder_access->size == size && |
| reorder_access->type == type && reorder_access->ip == ip; |
| } |
| |
| static inline void |
| set_reorder_access(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, |
| int type, unsigned long ip) |
| { |
| struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx); |
| |
| if (!reorder_access || !kcsan_weak_memory) |
| return; |
| |
| /* |
| * To avoid nested interrupts or scheduler (which share kcsan_ctx) |
| * reading an inconsistent reorder_access, ensure that the below has |
| * exclusive access to reorder_access by disallowing concurrent use. |
| */ |
| ctx->disable_scoped++; |
| barrier(); |
| reorder_access->ptr = ptr; |
| reorder_access->size = size; |
| reorder_access->type = type | KCSAN_ACCESS_SCOPED; |
| reorder_access->ip = ip; |
| reorder_access->stack_depth = get_kcsan_stack_depth(); |
| barrier(); |
| ctx->disable_scoped--; |
| } |
| |
| /* |
| * Pull everything together: check_access() below contains the performance |
| * critical operations; the fast-path (including check_access) functions should |
| * all be inlinable by the instrumentation functions. |
| * |
| * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are |
| * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can |
| * be filtered from the stacktrace, as well as give them unique names for the |
| * UACCESS whitelist of objtool. Each function uses user_access_save/restore(), |
| * since they do not access any user memory, but instrumentation is still |
| * emitted in UACCESS regions. |
| */ |
| |
| static noinline void kcsan_found_watchpoint(const volatile void *ptr, |
| size_t size, |
| int type, |
| unsigned long ip, |
| atomic_long_t *watchpoint, |
| long encoded_watchpoint) |
| { |
| const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0; |
| struct kcsan_ctx *ctx = get_ctx(); |
| unsigned long flags; |
| bool consumed; |
| |
| /* |
| * We know a watchpoint exists. Let's try to keep the race-window |
| * between here and finally consuming the watchpoint below as small as |
| * possible -- avoid unneccessarily complex code until consumed. |
| */ |
| |
| if (!kcsan_is_enabled(ctx)) |
| return; |
| |
| /* |
| * The access_mask check relies on value-change comparison. To avoid |
| * reporting a race where e.g. the writer set up the watchpoint, but the |
| * reader has access_mask!=0, we have to ignore the found watchpoint. |
| * |
| * reorder_access is never created from an access with access_mask set. |
| */ |
| if (ctx->access_mask && !find_reorder_access(ctx, ptr, size, type, ip)) |
| return; |
| |
| /* |
| * If the other thread does not want to ignore the access, and there was |
| * a value change as a result of this thread's operation, we will still |
| * generate a report of unknown origin. |
| * |
| * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter. |
| */ |
| if (!is_assert && kcsan_ignore_address(ptr)) |
| return; |
| |
| /* |
| * Consuming the watchpoint must be guarded by kcsan_is_enabled() to |
| * avoid erroneously triggering reports if the context is disabled. |
| */ |
| consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint); |
| |
| /* keep this after try_consume_watchpoint */ |
| flags = user_access_save(); |
| |
| if (consumed) { |
| kcsan_save_irqtrace(current); |
| kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints); |
| kcsan_restore_irqtrace(current); |
| } else { |
| /* |
| * The other thread may not print any diagnostics, as it has |
| * already removed the watchpoint, or another thread consumed |
| * the watchpoint before this thread. |
| */ |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]); |
| } |
| |
| if (is_assert) |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); |
| else |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]); |
| |
| user_access_restore(flags); |
| } |
| |
| static noinline void |
| kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip) |
| { |
| const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0; |
| const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0; |
| atomic_long_t *watchpoint; |
| u64 old, new, diff; |
| enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE; |
| bool interrupt_watcher = kcsan_interrupt_watcher; |
| unsigned long ua_flags = user_access_save(); |
| struct kcsan_ctx *ctx = get_ctx(); |
| unsigned long access_mask = ctx->access_mask; |
| unsigned long irq_flags = 0; |
| bool is_reorder_access; |
| |
| /* |
| * Always reset kcsan_skip counter in slow-path to avoid underflow; see |
| * should_watch(). |
| */ |
| reset_kcsan_skip(); |
| |
| if (!kcsan_is_enabled(ctx)) |
| goto out; |
| |
| /* |
| * Check to-ignore addresses after kcsan_is_enabled(), as we may access |
| * memory that is not yet initialized during early boot. |
| */ |
| if (!is_assert && kcsan_ignore_address(ptr)) |
| goto out; |
| |
| if (!check_encodable((unsigned long)ptr, size)) { |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]); |
| goto out; |
| } |
| |
| /* |
| * The local CPU cannot observe reordering of its own accesses, and |
| * therefore we need to take care of 2 cases to avoid false positives: |
| * |
| * 1. Races of the reordered access with interrupts. To avoid, if |
| * the current access is reorder_access, disable interrupts. |
| * 2. Avoid races of scoped accesses from nested interrupts (below). |
| */ |
| is_reorder_access = find_reorder_access(ctx, ptr, size, type, ip); |
| if (is_reorder_access) |
| interrupt_watcher = false; |
| /* |
| * Avoid races of scoped accesses from nested interrupts (or scheduler). |
| * Assume setting up a watchpoint for a non-scoped (normal) access that |
| * also conflicts with a current scoped access. In a nested interrupt, |
| * which shares the context, it would check a conflicting scoped access. |
| * To avoid, disable scoped access checking. |
| */ |
| ctx->disable_scoped++; |
| |
| /* |
| * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's |
| * runtime is entered for every memory access, and potentially useful |
| * information is lost if dirtied by KCSAN. |
| */ |
| kcsan_save_irqtrace(current); |
| if (!interrupt_watcher) |
| local_irq_save(irq_flags); |
| |
| watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write); |
| if (watchpoint == NULL) { |
| /* |
| * Out of capacity: the size of 'watchpoints', and the frequency |
| * with which should_watch() returns true should be tweaked so |
| * that this case happens very rarely. |
| */ |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]); |
| goto out_unlock; |
| } |
| |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]); |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]); |
| |
| /* |
| * Read the current value, to later check and infer a race if the data |
| * was modified via a non-instrumented access, e.g. from a device. |
| */ |
| old = is_reorder_access ? 0 : read_instrumented_memory(ptr, size); |
| |
| /* |
| * Delay this thread, to increase probability of observing a racy |
| * conflicting access. |
| */ |
| delay_access(type); |
| |
| /* |
| * Re-read value, and check if it is as expected; if not, we infer a |
| * racy access. |
| */ |
| if (!is_reorder_access) { |
| new = read_instrumented_memory(ptr, size); |
| } else { |
| /* |
| * Reordered accesses cannot be used for value change detection, |
| * because the memory location may no longer be accessible and |
| * could result in a fault. |
| */ |
| new = 0; |
| access_mask = 0; |
| } |
| |
| diff = old ^ new; |
| if (access_mask) |
| diff &= access_mask; |
| |
| /* |
| * Check if we observed a value change. |
| * |
| * Also check if the data race should be ignored (the rules depend on |
| * non-zero diff); if it is to be ignored, the below rules for |
| * KCSAN_VALUE_CHANGE_MAYBE apply. |
| */ |
| if (diff && !kcsan_ignore_data_race(size, type, old, new, diff)) |
| value_change = KCSAN_VALUE_CHANGE_TRUE; |
| |
| /* Check if this access raced with another. */ |
| if (!consume_watchpoint(watchpoint)) { |
| /* |
| * Depending on the access type, map a value_change of MAYBE to |
| * TRUE (always report) or FALSE (never report). |
| */ |
| if (value_change == KCSAN_VALUE_CHANGE_MAYBE) { |
| if (access_mask != 0) { |
| /* |
| * For access with access_mask, we require a |
| * value-change, as it is likely that races on |
| * ~access_mask bits are expected. |
| */ |
| value_change = KCSAN_VALUE_CHANGE_FALSE; |
| } else if (size > 8 || is_assert) { |
| /* Always assume a value-change. */ |
| value_change = KCSAN_VALUE_CHANGE_TRUE; |
| } |
| } |
| |
| /* |
| * No need to increment 'data_races' counter, as the racing |
| * thread already did. |
| * |
| * Count 'assert_failures' for each failed ASSERT access, |
| * therefore both this thread and the racing thread may |
| * increment this counter. |
| */ |
| if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE) |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); |
| |
| kcsan_report_known_origin(ptr, size, type, ip, |
| value_change, watchpoint - watchpoints, |
| old, new, access_mask); |
| } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) { |
| /* Inferring a race, since the value should not have changed. */ |
| |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]); |
| if (is_assert) |
| atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]); |
| |
| if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) { |
| kcsan_report_unknown_origin(ptr, size, type, ip, |
| old, new, access_mask); |
| } |
| } |
| |
| /* |
| * Remove watchpoint; must be after reporting, since the slot may be |
| * reused after this point. |
| */ |
| remove_watchpoint(watchpoint); |
| atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]); |
| |
| out_unlock: |
| if (!interrupt_watcher) |
| local_irq_restore(irq_flags); |
| kcsan_restore_irqtrace(current); |
| ctx->disable_scoped--; |
| |
| /* |
| * Reordered accesses cannot be used for value change detection, |
| * therefore never consider for reordering if access_mask is set. |
| * ASSERT_EXCLUSIVE are not real accesses, ignore them as well. |
| */ |
| if (!access_mask && !is_assert) |
| set_reorder_access(ctx, ptr, size, type, ip); |
| out: |
| user_access_restore(ua_flags); |
| } |
| |
| static __always_inline void |
| check_access(const volatile void *ptr, size_t size, int type, unsigned long ip) |
| { |
| atomic_long_t *watchpoint; |
| long encoded_watchpoint; |
| |
| /* |
| * Do nothing for 0 sized check; this comparison will be optimized out |
| * for constant sized instrumentation (__tsan_{read,write}N). |
| */ |
| if (unlikely(size == 0)) |
| return; |
| |
| again: |
| /* |
| * Avoid user_access_save in fast-path: find_watchpoint is safe without |
| * user_access_save, as the address that ptr points to is only used to |
| * check if a watchpoint exists; ptr is never dereferenced. |
| */ |
| watchpoint = find_watchpoint((unsigned long)ptr, size, |
| !(type & KCSAN_ACCESS_WRITE), |
| &encoded_watchpoint); |
| /* |
| * It is safe to check kcsan_is_enabled() after find_watchpoint in the |
| * slow-path, as long as no state changes that cause a race to be |
| * detected and reported have occurred until kcsan_is_enabled() is |
| * checked. |
| */ |
| |
| if (unlikely(watchpoint != NULL)) |
| kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint); |
| else { |
| struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */ |
| |
| if (unlikely(should_watch(ctx, ptr, size, type))) { |
| kcsan_setup_watchpoint(ptr, size, type, ip); |
| return; |
| } |
| |
| if (!(type & KCSAN_ACCESS_SCOPED)) { |
| struct kcsan_scoped_access *reorder_access = get_reorder_access(ctx); |
| |
| if (reorder_access) { |
| /* |
| * reorder_access check: simulates reordering of |
| * the access after subsequent operations. |
| */ |
| ptr = reorder_access->ptr; |
| type = reorder_access->type; |
| ip = reorder_access->ip; |
| /* |
| * Upon a nested interrupt, this context's |
| * reorder_access can be modified (shared ctx). |
| * We know that upon return, reorder_access is |
| * always invalidated by setting size to 0 via |
| * __tsan_func_exit(). Therefore we must read |
| * and check size after the other fields. |
| */ |
| barrier(); |
| size = READ_ONCE(reorder_access->size); |
| if (size) |
| goto again; |
| } |
| } |
| |
| /* |
| * Always checked last, right before returning from runtime; |
| * if reorder_access is valid, checked after it was checked. |
| */ |
| if (unlikely(ctx->scoped_accesses.prev)) |
| kcsan_check_scoped_accesses(); |
| } |
| } |
| |
| /* === Public interface ===================================================== */ |
| |
| void __init kcsan_init(void) |
| { |
| int cpu; |
| |
| BUG_ON(!in_task()); |
| |
| for_each_possible_cpu(cpu) |
| per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles(); |
| |
| /* |
| * We are in the init task, and no other tasks should be running; |
| * WRITE_ONCE without memory barrier is sufficient. |
| */ |
| if (kcsan_early_enable) { |
| pr_info("enabled early\n"); |
| WRITE_ONCE(kcsan_enabled, true); |
| } |
| |
| if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) || |
| IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) || |
| IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) || |
| IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { |
| pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n"); |
| } else { |
| pr_info("strict mode configured\n"); |
| } |
| } |
| |
| /* === Exported interface =================================================== */ |
| |
| void kcsan_disable_current(void) |
| { |
| ++get_ctx()->disable_count; |
| } |
| EXPORT_SYMBOL(kcsan_disable_current); |
| |
| void kcsan_enable_current(void) |
| { |
| if (get_ctx()->disable_count-- == 0) { |
| /* |
| * Warn if kcsan_enable_current() calls are unbalanced with |
| * kcsan_disable_current() calls, which causes disable_count to |
| * become negative and should not happen. |
| */ |
| kcsan_disable_current(); /* restore to 0, KCSAN still enabled */ |
| kcsan_disable_current(); /* disable to generate warning */ |
| WARN(1, "Unbalanced %s()", __func__); |
| kcsan_enable_current(); |
| } |
| } |
| EXPORT_SYMBOL(kcsan_enable_current); |
| |
| void kcsan_enable_current_nowarn(void) |
| { |
| if (get_ctx()->disable_count-- == 0) |
| kcsan_disable_current(); |
| } |
| EXPORT_SYMBOL(kcsan_enable_current_nowarn); |
| |
| void kcsan_nestable_atomic_begin(void) |
| { |
| /* |
| * Do *not* check and warn if we are in a flat atomic region: nestable |
| * and flat atomic regions are independent from each other. |
| * See include/linux/kcsan.h: struct kcsan_ctx comments for more |
| * comments. |
| */ |
| |
| ++get_ctx()->atomic_nest_count; |
| } |
| EXPORT_SYMBOL(kcsan_nestable_atomic_begin); |
| |
| void kcsan_nestable_atomic_end(void) |
| { |
| if (get_ctx()->atomic_nest_count-- == 0) { |
| /* |
| * Warn if kcsan_nestable_atomic_end() calls are unbalanced with |
| * kcsan_nestable_atomic_begin() calls, which causes |
| * atomic_nest_count to become negative and should not happen. |
| */ |
| kcsan_nestable_atomic_begin(); /* restore to 0 */ |
| kcsan_disable_current(); /* disable to generate warning */ |
| WARN(1, "Unbalanced %s()", __func__); |
| kcsan_enable_current(); |
| } |
| } |
| EXPORT_SYMBOL(kcsan_nestable_atomic_end); |
| |
| void kcsan_flat_atomic_begin(void) |
| { |
| get_ctx()->in_flat_atomic = true; |
| } |
| EXPORT_SYMBOL(kcsan_flat_atomic_begin); |
| |
| void kcsan_flat_atomic_end(void) |
| { |
| get_ctx()->in_flat_atomic = false; |
| } |
| EXPORT_SYMBOL(kcsan_flat_atomic_end); |
| |
| void kcsan_atomic_next(int n) |
| { |
| get_ctx()->atomic_next = n; |
| } |
| EXPORT_SYMBOL(kcsan_atomic_next); |
| |
| void kcsan_set_access_mask(unsigned long mask) |
| { |
| get_ctx()->access_mask = mask; |
| } |
| EXPORT_SYMBOL(kcsan_set_access_mask); |
| |
| struct kcsan_scoped_access * |
| kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type, |
| struct kcsan_scoped_access *sa) |
| { |
| struct kcsan_ctx *ctx = get_ctx(); |
| |
| check_access(ptr, size, type, _RET_IP_); |
| |
| ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ |
| |
| INIT_LIST_HEAD(&sa->list); |
| sa->ptr = ptr; |
| sa->size = size; |
| sa->type = type; |
| sa->ip = _RET_IP_; |
| |
| if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */ |
| INIT_LIST_HEAD(&ctx->scoped_accesses); |
| list_add(&sa->list, &ctx->scoped_accesses); |
| |
| ctx->disable_count--; |
| return sa; |
| } |
| EXPORT_SYMBOL(kcsan_begin_scoped_access); |
| |
| void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) |
| { |
| struct kcsan_ctx *ctx = get_ctx(); |
| |
| if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__)) |
| return; |
| |
| ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */ |
| |
| list_del(&sa->list); |
| if (list_empty(&ctx->scoped_accesses)) |
| /* |
| * Ensure we do not enter kcsan_check_scoped_accesses() |
| * slow-path if unnecessary, and avoids requiring list_empty() |
| * in the fast-path (to avoid a READ_ONCE() and potential |
| * uaccess warning). |
| */ |
| ctx->scoped_accesses.prev = NULL; |
| |
| ctx->disable_count--; |
| |
| check_access(sa->ptr, sa->size, sa->type, sa->ip); |
| } |
| EXPORT_SYMBOL(kcsan_end_scoped_access); |
| |
| void __kcsan_check_access(const volatile void *ptr, size_t size, int type) |
| { |
| check_access(ptr, size, type, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__kcsan_check_access); |
| |
| #define DEFINE_MEMORY_BARRIER(name, order_before_cond) \ |
| void __kcsan_##name(void) \ |
| { \ |
| struct kcsan_scoped_access *sa = get_reorder_access(get_ctx()); \ |
| if (!sa) \ |
| return; \ |
| if (order_before_cond) \ |
| sa->size = 0; \ |
| } \ |
| EXPORT_SYMBOL(__kcsan_##name) |
| |
| DEFINE_MEMORY_BARRIER(mb, true); |
| DEFINE_MEMORY_BARRIER(wmb, sa->type & (KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)); |
| DEFINE_MEMORY_BARRIER(rmb, !(sa->type & KCSAN_ACCESS_WRITE) || (sa->type & KCSAN_ACCESS_COMPOUND)); |
| DEFINE_MEMORY_BARRIER(release, true); |
| |
| /* |
| * KCSAN uses the same instrumentation that is emitted by supported compilers |
| * for ThreadSanitizer (TSAN). |
| * |
| * When enabled, the compiler emits instrumentation calls (the functions |
| * prefixed with "__tsan" below) for all loads and stores that it generated; |
| * inline asm is not instrumented. |
| * |
| * Note that, not all supported compiler versions distinguish aligned/unaligned |
| * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned |
| * version to the generic version, which can handle both. |
| */ |
| |
| #define DEFINE_TSAN_READ_WRITE(size) \ |
| void __tsan_read##size(void *ptr); \ |
| void __tsan_read##size(void *ptr) \ |
| { \ |
| check_access(ptr, size, 0, _RET_IP_); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_read##size); \ |
| void __tsan_unaligned_read##size(void *ptr) \ |
| __alias(__tsan_read##size); \ |
| EXPORT_SYMBOL(__tsan_unaligned_read##size); \ |
| void __tsan_write##size(void *ptr); \ |
| void __tsan_write##size(void *ptr) \ |
| { \ |
| check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_write##size); \ |
| void __tsan_unaligned_write##size(void *ptr) \ |
| __alias(__tsan_write##size); \ |
| EXPORT_SYMBOL(__tsan_unaligned_write##size); \ |
| void __tsan_read_write##size(void *ptr); \ |
| void __tsan_read_write##size(void *ptr) \ |
| { \ |
| check_access(ptr, size, \ |
| KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE, \ |
| _RET_IP_); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_read_write##size); \ |
| void __tsan_unaligned_read_write##size(void *ptr) \ |
| __alias(__tsan_read_write##size); \ |
| EXPORT_SYMBOL(__tsan_unaligned_read_write##size) |
| |
| DEFINE_TSAN_READ_WRITE(1); |
| DEFINE_TSAN_READ_WRITE(2); |
| DEFINE_TSAN_READ_WRITE(4); |
| DEFINE_TSAN_READ_WRITE(8); |
| DEFINE_TSAN_READ_WRITE(16); |
| |
| void __tsan_read_range(void *ptr, size_t size); |
| void __tsan_read_range(void *ptr, size_t size) |
| { |
| check_access(ptr, size, 0, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__tsan_read_range); |
| |
| void __tsan_write_range(void *ptr, size_t size); |
| void __tsan_write_range(void *ptr, size_t size) |
| { |
| check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_); |
| } |
| EXPORT_SYMBOL(__tsan_write_range); |
| |
| /* |
| * Use of explicit volatile is generally disallowed [1], however, volatile is |
| * still used in various concurrent context, whether in low-level |
| * synchronization primitives or for legacy reasons. |
| * [1] https://lwn.net/Articles/233479/ |
| * |
| * We only consider volatile accesses atomic if they are aligned and would pass |
| * the size-check of compiletime_assert_rwonce_type(). |
| */ |
| #define DEFINE_TSAN_VOLATILE_READ_WRITE(size) \ |
| void __tsan_volatile_read##size(void *ptr); \ |
| void __tsan_volatile_read##size(void *ptr) \ |
| { \ |
| const bool is_atomic = size <= sizeof(long long) && \ |
| IS_ALIGNED((unsigned long)ptr, size); \ |
| if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ |
| return; \ |
| check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0, \ |
| _RET_IP_); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_volatile_read##size); \ |
| void __tsan_unaligned_volatile_read##size(void *ptr) \ |
| __alias(__tsan_volatile_read##size); \ |
| EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size); \ |
| void __tsan_volatile_write##size(void *ptr); \ |
| void __tsan_volatile_write##size(void *ptr) \ |
| { \ |
| const bool is_atomic = size <= sizeof(long long) && \ |
| IS_ALIGNED((unsigned long)ptr, size); \ |
| if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic) \ |
| return; \ |
| check_access(ptr, size, \ |
| KCSAN_ACCESS_WRITE | \ |
| (is_atomic ? KCSAN_ACCESS_ATOMIC : 0), \ |
| _RET_IP_); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_volatile_write##size); \ |
| void __tsan_unaligned_volatile_write##size(void *ptr) \ |
| __alias(__tsan_volatile_write##size); \ |
| EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size) |
| |
| DEFINE_TSAN_VOLATILE_READ_WRITE(1); |
| DEFINE_TSAN_VOLATILE_READ_WRITE(2); |
| DEFINE_TSAN_VOLATILE_READ_WRITE(4); |
| DEFINE_TSAN_VOLATILE_READ_WRITE(8); |
| DEFINE_TSAN_VOLATILE_READ_WRITE(16); |
| |
| /* |
| * Function entry and exit are used to determine the validty of reorder_access. |
| * Reordering of the access ends at the end of the function scope where the |
| * access happened. This is done for two reasons: |
| * |
| * 1. Artificially limits the scope where missing barriers are detected. |
| * This minimizes false positives due to uninstrumented functions that |
| * contain the required barriers but were missed. |
| * |
| * 2. Simplifies generating the stack trace of the access. |
| */ |
| void __tsan_func_entry(void *call_pc); |
| noinline void __tsan_func_entry(void *call_pc) |
| { |
| if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY)) |
| return; |
| |
| add_kcsan_stack_depth(1); |
| } |
| EXPORT_SYMBOL(__tsan_func_entry); |
| |
| void __tsan_func_exit(void); |
| noinline void __tsan_func_exit(void) |
| { |
| struct kcsan_scoped_access *reorder_access; |
| |
| if (!IS_ENABLED(CONFIG_KCSAN_WEAK_MEMORY)) |
| return; |
| |
| reorder_access = get_reorder_access(get_ctx()); |
| if (!reorder_access) |
| goto out; |
| |
| if (get_kcsan_stack_depth() <= reorder_access->stack_depth) { |
| /* |
| * Access check to catch cases where write without a barrier |
| * (supposed release) was last access in function: because |
| * instrumentation is inserted before the real access, a data |
| * race due to the write giving up a c-s would only be caught if |
| * we do the conflicting access after. |
| */ |
| check_access(reorder_access->ptr, reorder_access->size, |
| reorder_access->type, reorder_access->ip); |
| reorder_access->size = 0; |
| reorder_access->stack_depth = INT_MIN; |
| } |
| out: |
| add_kcsan_stack_depth(-1); |
| } |
| EXPORT_SYMBOL(__tsan_func_exit); |
| |
| void __tsan_init(void); |
| void __tsan_init(void) |
| { |
| } |
| EXPORT_SYMBOL(__tsan_init); |
| |
| /* |
| * Instrumentation for atomic builtins (__atomic_*, __sync_*). |
| * |
| * Normal kernel code _should not_ be using them directly, but some |
| * architectures may implement some or all atomics using the compilers' |
| * builtins. |
| * |
| * Note: If an architecture decides to fully implement atomics using the |
| * builtins, because they are implicitly instrumented by KCSAN (and KASAN, |
| * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via |
| * atomic-instrumented) is no longer necessary. |
| * |
| * TSAN instrumentation replaces atomic accesses with calls to any of the below |
| * functions, whose job is to also execute the operation itself. |
| */ |
| |
| static __always_inline void kcsan_atomic_builtin_memorder(int memorder) |
| { |
| if (memorder == __ATOMIC_RELEASE || |
| memorder == __ATOMIC_SEQ_CST || |
| memorder == __ATOMIC_ACQ_REL) |
| __kcsan_release(); |
| } |
| |
| #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits) \ |
| u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder); \ |
| u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder) \ |
| { \ |
| kcsan_atomic_builtin_memorder(memorder); \ |
| if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_); \ |
| } \ |
| return __atomic_load_n(ptr, memorder); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_atomic##bits##_load); \ |
| void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder); \ |
| void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder) \ |
| { \ |
| kcsan_atomic_builtin_memorder(memorder); \ |
| if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| check_access(ptr, bits / BITS_PER_BYTE, \ |
| KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_); \ |
| } \ |
| __atomic_store_n(ptr, v, memorder); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_atomic##bits##_store) |
| |
| #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix) \ |
| u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder); \ |
| u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder) \ |
| { \ |
| kcsan_atomic_builtin_memorder(memorder); \ |
| if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| check_access(ptr, bits / BITS_PER_BYTE, \ |
| KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ |
| KCSAN_ACCESS_ATOMIC, _RET_IP_); \ |
| } \ |
| return __atomic_##op##suffix(ptr, v, memorder); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_atomic##bits##_##op) |
| |
| /* |
| * Note: CAS operations are always classified as write, even in case they |
| * fail. We cannot perform check_access() after a write, as it might lead to |
| * false positives, in cases such as: |
| * |
| * T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...) |
| * |
| * T1: if (__atomic_load_n(&p->flag, ...)) { |
| * modify *p; |
| * p->flag = 0; |
| * } |
| * |
| * The only downside is that, if there are 3 threads, with one CAS that |
| * succeeds, another CAS that fails, and an unmarked racing operation, we may |
| * point at the wrong CAS as the source of the race. However, if we assume that |
| * all CAS can succeed in some other execution, the data race is still valid. |
| */ |
| #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak) \ |
| int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \ |
| u##bits val, int mo, int fail_mo); \ |
| int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp, \ |
| u##bits val, int mo, int fail_mo) \ |
| { \ |
| kcsan_atomic_builtin_memorder(mo); \ |
| if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| check_access(ptr, bits / BITS_PER_BYTE, \ |
| KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ |
| KCSAN_ACCESS_ATOMIC, _RET_IP_); \ |
| } \ |
| return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo); \ |
| } \ |
| EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength) |
| |
| #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) \ |
| u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \ |
| int mo, int fail_mo); \ |
| u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \ |
| int mo, int fail_mo) \ |
| { \ |
| kcsan_atomic_builtin_memorder(mo); \ |
| if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) { \ |
| check_access(ptr, bits / BITS_PER_BYTE, \ |
| KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | \ |
| KCSAN_ACCESS_ATOMIC, _RET_IP_); \ |
| } \ |
| __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo); \ |
| return exp; \ |
| } \ |
| EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val) |
| |
| #define DEFINE_TSAN_ATOMIC_OPS(bits) \ |
| DEFINE_TSAN_ATOMIC_LOAD_STORE(bits); \ |
| DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n); \ |
| DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, ); \ |
| DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, ); \ |
| DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, ); \ |
| DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, ); \ |
| DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, ); \ |
| DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, ); \ |
| DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0); \ |
| DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1); \ |
| DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits) |
| |
| DEFINE_TSAN_ATOMIC_OPS(8); |
| DEFINE_TSAN_ATOMIC_OPS(16); |
| DEFINE_TSAN_ATOMIC_OPS(32); |
| DEFINE_TSAN_ATOMIC_OPS(64); |
| |
| void __tsan_atomic_thread_fence(int memorder); |
| void __tsan_atomic_thread_fence(int memorder) |
| { |
| kcsan_atomic_builtin_memorder(memorder); |
| __atomic_thread_fence(memorder); |
| } |
| EXPORT_SYMBOL(__tsan_atomic_thread_fence); |
| |
| /* |
| * In instrumented files, we emit instrumentation for barriers by mapping the |
| * kernel barriers to an __atomic_signal_fence(), which is interpreted specially |
| * and otherwise has no relation to a real __atomic_signal_fence(). No known |
| * kernel code uses __atomic_signal_fence(). |
| * |
| * Since fsanitize=thread instrumentation handles __atomic_signal_fence(), which |
| * are turned into calls to __tsan_atomic_signal_fence(), such instrumentation |
| * can be disabled via the __no_kcsan function attribute (vs. an explicit call |
| * which could not). When __no_kcsan is requested, __atomic_signal_fence() |
| * generates no code. |
| * |
| * Note: The result of using __atomic_signal_fence() with KCSAN enabled is |
| * potentially limiting the compiler's ability to reorder operations; however, |
| * if barriers were instrumented with explicit calls (without LTO), the compiler |
| * couldn't optimize much anyway. The result of a hypothetical architecture |
| * using __atomic_signal_fence() in normal code would be KCSAN false negatives. |
| */ |
| void __tsan_atomic_signal_fence(int memorder); |
| noinline void __tsan_atomic_signal_fence(int memorder) |
| { |
| switch (memorder) { |
| case __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb: |
| __kcsan_mb(); |
| break; |
| case __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb: |
| __kcsan_wmb(); |
| break; |
| case __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb: |
| __kcsan_rmb(); |
| break; |
| case __KCSAN_BARRIER_TO_SIGNAL_FENCE_release: |
| __kcsan_release(); |
| break; |
| default: |
| break; |
| } |
| } |
| EXPORT_SYMBOL(__tsan_atomic_signal_fence); |