blob: 97e1856641b4b73abbc9c2152e1b96f72c60305c [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/* Copyright 2014-2016 Freescale Semiconductor Inc.
* Copyright 2016-2022 NXP
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/etherdevice.h>
#include <linux/of_net.h>
#include <linux/interrupt.h>
#include <linux/kthread.h>
#include <linux/iommu.h>
#include <linux/fsl/mc.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/fsl/ptp_qoriq.h>
#include <linux/ptp_classify.h>
#include <net/pkt_cls.h>
#include <net/sock.h>
#include <net/tso.h>
#include <net/xdp_sock_drv.h>
#include "dpaa2-eth.h"
/* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files
* using trace events only need to #include <trace/events/sched.h>
*/
#define CREATE_TRACE_POINTS
#include "dpaa2-eth-trace.h"
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Freescale Semiconductor, Inc");
MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver");
struct ptp_qoriq *dpaa2_ptp;
EXPORT_SYMBOL(dpaa2_ptp);
static void dpaa2_eth_detect_features(struct dpaa2_eth_priv *priv)
{
priv->features = 0;
if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_PTP_ONESTEP_VER_MAJOR,
DPNI_PTP_ONESTEP_VER_MINOR) >= 0)
priv->features |= DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT;
}
static void dpaa2_update_ptp_onestep_indirect(struct dpaa2_eth_priv *priv,
u32 offset, u8 udp)
{
struct dpni_single_step_cfg cfg;
cfg.en = 1;
cfg.ch_update = udp;
cfg.offset = offset;
cfg.peer_delay = 0;
if (dpni_set_single_step_cfg(priv->mc_io, 0, priv->mc_token, &cfg))
WARN_ONCE(1, "Failed to set single step register");
}
static void dpaa2_update_ptp_onestep_direct(struct dpaa2_eth_priv *priv,
u32 offset, u8 udp)
{
u32 val = 0;
val = DPAA2_PTP_SINGLE_STEP_ENABLE |
DPAA2_PTP_SINGLE_CORRECTION_OFF(offset);
if (udp)
val |= DPAA2_PTP_SINGLE_STEP_CH;
if (priv->onestep_reg_base)
writel(val, priv->onestep_reg_base);
}
static void dpaa2_ptp_onestep_reg_update_method(struct dpaa2_eth_priv *priv)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_single_step_cfg ptp_cfg;
priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_indirect;
if (!(priv->features & DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT))
return;
if (dpni_get_single_step_cfg(priv->mc_io, 0,
priv->mc_token, &ptp_cfg)) {
dev_err(dev, "dpni_get_single_step_cfg cannot retrieve onestep reg, falling back to indirect update\n");
return;
}
if (!ptp_cfg.ptp_onestep_reg_base) {
dev_err(dev, "1588 onestep reg not available, falling back to indirect update\n");
return;
}
priv->onestep_reg_base = ioremap(ptp_cfg.ptp_onestep_reg_base,
sizeof(u32));
if (!priv->onestep_reg_base) {
dev_err(dev, "1588 onestep reg cannot be mapped, falling back to indirect update\n");
return;
}
priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_direct;
}
void *dpaa2_iova_to_virt(struct iommu_domain *domain,
dma_addr_t iova_addr)
{
phys_addr_t phys_addr;
phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
return phys_to_virt(phys_addr);
}
static void dpaa2_eth_validate_rx_csum(struct dpaa2_eth_priv *priv,
u32 fd_status,
struct sk_buff *skb)
{
skb_checksum_none_assert(skb);
/* HW checksum validation is disabled, nothing to do here */
if (!(priv->net_dev->features & NETIF_F_RXCSUM))
return;
/* Read checksum validation bits */
if (!((fd_status & DPAA2_FAS_L3CV) &&
(fd_status & DPAA2_FAS_L4CV)))
return;
/* Inform the stack there's no need to compute L3/L4 csum anymore */
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
/* Free a received FD.
* Not to be used for Tx conf FDs or on any other paths.
*/
static void dpaa2_eth_free_rx_fd(struct dpaa2_eth_priv *priv,
const struct dpaa2_fd *fd,
void *vaddr)
{
struct device *dev = priv->net_dev->dev.parent;
dma_addr_t addr = dpaa2_fd_get_addr(fd);
u8 fd_format = dpaa2_fd_get_format(fd);
struct dpaa2_sg_entry *sgt;
void *sg_vaddr;
int i;
/* If single buffer frame, just free the data buffer */
if (fd_format == dpaa2_fd_single)
goto free_buf;
else if (fd_format != dpaa2_fd_sg)
/* We don't support any other format */
return;
/* For S/G frames, we first need to free all SG entries
* except the first one, which was taken care of already
*/
sgt = vaddr + dpaa2_fd_get_offset(fd);
for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) {
addr = dpaa2_sg_get_addr(&sgt[i]);
sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr);
dma_unmap_page(dev, addr, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
free_pages((unsigned long)sg_vaddr, 0);
if (dpaa2_sg_is_final(&sgt[i]))
break;
}
free_buf:
free_pages((unsigned long)vaddr, 0);
}
/* Build a linear skb based on a single-buffer frame descriptor */
static struct sk_buff *dpaa2_eth_build_linear_skb(struct dpaa2_eth_channel *ch,
const struct dpaa2_fd *fd,
void *fd_vaddr)
{
struct sk_buff *skb = NULL;
u16 fd_offset = dpaa2_fd_get_offset(fd);
u32 fd_length = dpaa2_fd_get_len(fd);
ch->buf_count--;
skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, fd_offset);
skb_put(skb, fd_length);
return skb;
}
/* Build a non linear (fragmented) skb based on a S/G table */
static struct sk_buff *dpaa2_eth_build_frag_skb(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
struct dpaa2_sg_entry *sgt)
{
struct sk_buff *skb = NULL;
struct device *dev = priv->net_dev->dev.parent;
void *sg_vaddr;
dma_addr_t sg_addr;
u16 sg_offset;
u32 sg_length;
struct page *page, *head_page;
int page_offset;
int i;
for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) {
struct dpaa2_sg_entry *sge = &sgt[i];
/* NOTE: We only support SG entries in dpaa2_sg_single format,
* but this is the only format we may receive from HW anyway
*/
/* Get the address and length from the S/G entry */
sg_addr = dpaa2_sg_get_addr(sge);
sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr);
dma_unmap_page(dev, sg_addr, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
sg_length = dpaa2_sg_get_len(sge);
if (i == 0) {
/* We build the skb around the first data buffer */
skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE);
if (unlikely(!skb)) {
/* Free the first SG entry now, since we already
* unmapped it and obtained the virtual address
*/
free_pages((unsigned long)sg_vaddr, 0);
/* We still need to subtract the buffers used
* by this FD from our software counter
*/
while (!dpaa2_sg_is_final(&sgt[i]) &&
i < DPAA2_ETH_MAX_SG_ENTRIES)
i++;
break;
}
sg_offset = dpaa2_sg_get_offset(sge);
skb_reserve(skb, sg_offset);
skb_put(skb, sg_length);
} else {
/* Rest of the data buffers are stored as skb frags */
page = virt_to_page(sg_vaddr);
head_page = virt_to_head_page(sg_vaddr);
/* Offset in page (which may be compound).
* Data in subsequent SG entries is stored from the
* beginning of the buffer, so we don't need to add the
* sg_offset.
*/
page_offset = ((unsigned long)sg_vaddr &
(PAGE_SIZE - 1)) +
(page_address(page) - page_address(head_page));
skb_add_rx_frag(skb, i - 1, head_page, page_offset,
sg_length, priv->rx_buf_size);
}
if (dpaa2_sg_is_final(sge))
break;
}
WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT");
/* Count all data buffers + SG table buffer */
ch->buf_count -= i + 2;
return skb;
}
/* Free buffers acquired from the buffer pool or which were meant to
* be released in the pool
*/
static void dpaa2_eth_free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array,
int count, bool xsk_zc)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpaa2_eth_swa *swa;
struct xdp_buff *xdp_buff;
void *vaddr;
int i;
for (i = 0; i < count; i++) {
vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]);
if (!xsk_zc) {
dma_unmap_page(dev, buf_array[i], priv->rx_buf_size,
DMA_BIDIRECTIONAL);
free_pages((unsigned long)vaddr, 0);
} else {
swa = (struct dpaa2_eth_swa *)
(vaddr + DPAA2_ETH_RX_HWA_SIZE);
xdp_buff = swa->xsk.xdp_buff;
xsk_buff_free(xdp_buff);
}
}
}
void dpaa2_eth_recycle_buf(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
dma_addr_t addr)
{
int retries = 0;
int err;
ch->recycled_bufs[ch->recycled_bufs_cnt++] = addr;
if (ch->recycled_bufs_cnt < DPAA2_ETH_BUFS_PER_CMD)
return;
while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid,
ch->recycled_bufs,
ch->recycled_bufs_cnt)) == -EBUSY) {
if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES)
break;
cpu_relax();
}
if (err) {
dpaa2_eth_free_bufs(priv, ch->recycled_bufs,
ch->recycled_bufs_cnt, ch->xsk_zc);
ch->buf_count -= ch->recycled_bufs_cnt;
}
ch->recycled_bufs_cnt = 0;
}
static int dpaa2_eth_xdp_flush(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_fq *fq,
struct dpaa2_eth_xdp_fds *xdp_fds)
{
int total_enqueued = 0, retries = 0, enqueued;
struct dpaa2_eth_drv_stats *percpu_extras;
int num_fds, err, max_retries;
struct dpaa2_fd *fds;
percpu_extras = this_cpu_ptr(priv->percpu_extras);
/* try to enqueue all the FDs until the max number of retries is hit */
fds = xdp_fds->fds;
num_fds = xdp_fds->num;
max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES;
while (total_enqueued < num_fds && retries < max_retries) {
err = priv->enqueue(priv, fq, &fds[total_enqueued],
0, num_fds - total_enqueued, &enqueued);
if (err == -EBUSY) {
percpu_extras->tx_portal_busy += ++retries;
continue;
}
total_enqueued += enqueued;
}
xdp_fds->num = 0;
return total_enqueued;
}
static void dpaa2_eth_xdp_tx_flush(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
struct dpaa2_eth_fq *fq)
{
struct rtnl_link_stats64 *percpu_stats;
struct dpaa2_fd *fds;
int enqueued, i;
percpu_stats = this_cpu_ptr(priv->percpu_stats);
// enqueue the array of XDP_TX frames
enqueued = dpaa2_eth_xdp_flush(priv, fq, &fq->xdp_tx_fds);
/* update statistics */
percpu_stats->tx_packets += enqueued;
fds = fq->xdp_tx_fds.fds;
for (i = 0; i < enqueued; i++) {
percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]);
ch->stats.xdp_tx++;
}
for (i = enqueued; i < fq->xdp_tx_fds.num; i++) {
dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(&fds[i]));
percpu_stats->tx_errors++;
ch->stats.xdp_tx_err++;
}
fq->xdp_tx_fds.num = 0;
}
void dpaa2_eth_xdp_enqueue(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
struct dpaa2_fd *fd,
void *buf_start, u16 queue_id)
{
struct dpaa2_faead *faead;
struct dpaa2_fd *dest_fd;
struct dpaa2_eth_fq *fq;
u32 ctrl, frc;
/* Mark the egress frame hardware annotation area as valid */
frc = dpaa2_fd_get_frc(fd);
dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV);
dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL);
/* Instruct hardware to release the FD buffer directly into
* the buffer pool once transmission is completed, instead of
* sending a Tx confirmation frame to us
*/
ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV;
faead = dpaa2_get_faead(buf_start, false);
faead->ctrl = cpu_to_le32(ctrl);
faead->conf_fqid = 0;
fq = &priv->fq[queue_id];
dest_fd = &fq->xdp_tx_fds.fds[fq->xdp_tx_fds.num++];
memcpy(dest_fd, fd, sizeof(*dest_fd));
if (fq->xdp_tx_fds.num < DEV_MAP_BULK_SIZE)
return;
dpaa2_eth_xdp_tx_flush(priv, ch, fq);
}
static u32 dpaa2_eth_run_xdp(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
struct dpaa2_eth_fq *rx_fq,
struct dpaa2_fd *fd, void *vaddr)
{
dma_addr_t addr = dpaa2_fd_get_addr(fd);
struct bpf_prog *xdp_prog;
struct xdp_buff xdp;
u32 xdp_act = XDP_PASS;
int err, offset;
xdp_prog = READ_ONCE(ch->xdp.prog);
if (!xdp_prog)
goto out;
offset = dpaa2_fd_get_offset(fd) - XDP_PACKET_HEADROOM;
xdp_init_buff(&xdp, DPAA2_ETH_RX_BUF_RAW_SIZE - offset, &ch->xdp_rxq);
xdp_prepare_buff(&xdp, vaddr + offset, XDP_PACKET_HEADROOM,
dpaa2_fd_get_len(fd), false);
xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
/* xdp.data pointer may have changed */
dpaa2_fd_set_offset(fd, xdp.data - vaddr);
dpaa2_fd_set_len(fd, xdp.data_end - xdp.data);
switch (xdp_act) {
case XDP_PASS:
break;
case XDP_TX:
dpaa2_eth_xdp_enqueue(priv, ch, fd, vaddr, rx_fq->flowid);
break;
default:
bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
fallthrough;
case XDP_DROP:
dpaa2_eth_recycle_buf(priv, ch, addr);
ch->stats.xdp_drop++;
break;
case XDP_REDIRECT:
dma_unmap_page(priv->net_dev->dev.parent, addr,
priv->rx_buf_size, DMA_BIDIRECTIONAL);
ch->buf_count--;
/* Allow redirect use of full headroom */
xdp.data_hard_start = vaddr;
xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE;
err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
if (unlikely(err)) {
addr = dma_map_page(priv->net_dev->dev.parent,
virt_to_page(vaddr), 0,
priv->rx_buf_size, DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(priv->net_dev->dev.parent, addr))) {
free_pages((unsigned long)vaddr, 0);
} else {
ch->buf_count++;
dpaa2_eth_recycle_buf(priv, ch, addr);
}
ch->stats.xdp_drop++;
} else {
ch->stats.xdp_redirect++;
}
break;
}
ch->xdp.res |= xdp_act;
out:
return xdp_act;
}
struct sk_buff *dpaa2_eth_alloc_skb(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
const struct dpaa2_fd *fd, u32 fd_length,
void *fd_vaddr)
{
u16 fd_offset = dpaa2_fd_get_offset(fd);
struct sk_buff *skb = NULL;
unsigned int skb_len;
skb_len = fd_length + dpaa2_eth_needed_headroom(NULL);
skb = napi_alloc_skb(&ch->napi, skb_len);
if (!skb)
return NULL;
skb_reserve(skb, dpaa2_eth_needed_headroom(NULL));
skb_put(skb, fd_length);
memcpy(skb->data, fd_vaddr + fd_offset, fd_length);
dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(fd));
return skb;
}
static struct sk_buff *dpaa2_eth_copybreak(struct dpaa2_eth_channel *ch,
const struct dpaa2_fd *fd,
void *fd_vaddr)
{
struct dpaa2_eth_priv *priv = ch->priv;
u32 fd_length = dpaa2_fd_get_len(fd);
if (fd_length > priv->rx_copybreak)
return NULL;
return dpaa2_eth_alloc_skb(priv, ch, fd, fd_length, fd_vaddr);
}
void dpaa2_eth_receive_skb(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
const struct dpaa2_fd *fd, void *vaddr,
struct dpaa2_eth_fq *fq,
struct rtnl_link_stats64 *percpu_stats,
struct sk_buff *skb)
{
struct dpaa2_fas *fas;
u32 status = 0;
fas = dpaa2_get_fas(vaddr, false);
prefetch(fas);
prefetch(skb->data);
/* Get the timestamp value */
if (priv->rx_tstamp) {
struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
__le64 *ts = dpaa2_get_ts(vaddr, false);
u64 ns;
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts);
shhwtstamps->hwtstamp = ns_to_ktime(ns);
}
/* Check if we need to validate the L4 csum */
if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) {
status = le32_to_cpu(fas->status);
dpaa2_eth_validate_rx_csum(priv, status, skb);
}
skb->protocol = eth_type_trans(skb, priv->net_dev);
skb_record_rx_queue(skb, fq->flowid);
percpu_stats->rx_packets++;
percpu_stats->rx_bytes += dpaa2_fd_get_len(fd);
ch->stats.bytes_per_cdan += dpaa2_fd_get_len(fd);
list_add_tail(&skb->list, ch->rx_list);
}
/* Main Rx frame processing routine */
void dpaa2_eth_rx(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
const struct dpaa2_fd *fd,
struct dpaa2_eth_fq *fq)
{
dma_addr_t addr = dpaa2_fd_get_addr(fd);
u8 fd_format = dpaa2_fd_get_format(fd);
void *vaddr;
struct sk_buff *skb;
struct rtnl_link_stats64 *percpu_stats;
struct dpaa2_eth_drv_stats *percpu_extras;
struct device *dev = priv->net_dev->dev.parent;
void *buf_data;
u32 xdp_act;
/* Tracing point */
trace_dpaa2_rx_fd(priv->net_dev, fd);
vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr);
dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
buf_data = vaddr + dpaa2_fd_get_offset(fd);
prefetch(buf_data);
percpu_stats = this_cpu_ptr(priv->percpu_stats);
percpu_extras = this_cpu_ptr(priv->percpu_extras);
if (fd_format == dpaa2_fd_single) {
xdp_act = dpaa2_eth_run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr);
if (xdp_act != XDP_PASS) {
percpu_stats->rx_packets++;
percpu_stats->rx_bytes += dpaa2_fd_get_len(fd);
return;
}
skb = dpaa2_eth_copybreak(ch, fd, vaddr);
if (!skb) {
dma_unmap_page(dev, addr, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr);
}
} else if (fd_format == dpaa2_fd_sg) {
WARN_ON(priv->xdp_prog);
dma_unmap_page(dev, addr, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data);
free_pages((unsigned long)vaddr, 0);
percpu_extras->rx_sg_frames++;
percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd);
} else {
/* We don't support any other format */
goto err_frame_format;
}
if (unlikely(!skb))
goto err_build_skb;
dpaa2_eth_receive_skb(priv, ch, fd, vaddr, fq, percpu_stats, skb);
return;
err_build_skb:
dpaa2_eth_free_rx_fd(priv, fd, vaddr);
err_frame_format:
percpu_stats->rx_dropped++;
}
/* Processing of Rx frames received on the error FQ
* We check and print the error bits and then free the frame
*/
static void dpaa2_eth_rx_err(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
const struct dpaa2_fd *fd,
struct dpaa2_eth_fq *fq __always_unused)
{
struct device *dev = priv->net_dev->dev.parent;
dma_addr_t addr = dpaa2_fd_get_addr(fd);
u8 fd_format = dpaa2_fd_get_format(fd);
struct rtnl_link_stats64 *percpu_stats;
struct dpaa2_eth_trap_item *trap_item;
struct dpaa2_fapr *fapr;
struct sk_buff *skb;
void *buf_data;
void *vaddr;
vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr);
dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
buf_data = vaddr + dpaa2_fd_get_offset(fd);
if (fd_format == dpaa2_fd_single) {
dma_unmap_page(dev, addr, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr);
} else if (fd_format == dpaa2_fd_sg) {
dma_unmap_page(dev, addr, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data);
free_pages((unsigned long)vaddr, 0);
} else {
/* We don't support any other format */
dpaa2_eth_free_rx_fd(priv, fd, vaddr);
goto err_frame_format;
}
fapr = dpaa2_get_fapr(vaddr, false);
trap_item = dpaa2_eth_dl_get_trap(priv, fapr);
if (trap_item)
devlink_trap_report(priv->devlink, skb, trap_item->trap_ctx,
&priv->devlink_port, NULL);
consume_skb(skb);
err_frame_format:
percpu_stats = this_cpu_ptr(priv->percpu_stats);
percpu_stats->rx_errors++;
ch->buf_count--;
}
/* Consume all frames pull-dequeued into the store. This is the simplest way to
* make sure we don't accidentally issue another volatile dequeue which would
* overwrite (leak) frames already in the store.
*
* Observance of NAPI budget is not our concern, leaving that to the caller.
*/
static int dpaa2_eth_consume_frames(struct dpaa2_eth_channel *ch,
struct dpaa2_eth_fq **src)
{
struct dpaa2_eth_priv *priv = ch->priv;
struct dpaa2_eth_fq *fq = NULL;
struct dpaa2_dq *dq;
const struct dpaa2_fd *fd;
int cleaned = 0, retries = 0;
int is_last;
do {
dq = dpaa2_io_store_next(ch->store, &is_last);
if (unlikely(!dq)) {
/* If we're here, we *must* have placed a
* volatile dequeue comnmand, so keep reading through
* the store until we get some sort of valid response
* token (either a valid frame or an "empty dequeue")
*/
if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) {
netdev_err_once(priv->net_dev,
"Unable to read a valid dequeue response\n");
return -ETIMEDOUT;
}
continue;
}
fd = dpaa2_dq_fd(dq);
fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq);
fq->consume(priv, ch, fd, fq);
cleaned++;
retries = 0;
} while (!is_last);
if (!cleaned)
return 0;
fq->stats.frames += cleaned;
ch->stats.frames += cleaned;
ch->stats.frames_per_cdan += cleaned;
/* A dequeue operation only pulls frames from a single queue
* into the store. Return the frame queue as an out param.
*/
if (src)
*src = fq;
return cleaned;
}
static int dpaa2_eth_ptp_parse(struct sk_buff *skb,
u8 *msgtype, u8 *twostep, u8 *udp,
u16 *correction_offset,
u16 *origintimestamp_offset)
{
unsigned int ptp_class;
struct ptp_header *hdr;
unsigned int type;
u8 *base;
ptp_class = ptp_classify_raw(skb);
if (ptp_class == PTP_CLASS_NONE)
return -EINVAL;
hdr = ptp_parse_header(skb, ptp_class);
if (!hdr)
return -EINVAL;
*msgtype = ptp_get_msgtype(hdr, ptp_class);
*twostep = hdr->flag_field[0] & 0x2;
type = ptp_class & PTP_CLASS_PMASK;
if (type == PTP_CLASS_IPV4 ||
type == PTP_CLASS_IPV6)
*udp = 1;
else
*udp = 0;
base = skb_mac_header(skb);
*correction_offset = (u8 *)&hdr->correction - base;
*origintimestamp_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
return 0;
}
/* Configure the egress frame annotation for timestamp update */
static void dpaa2_eth_enable_tx_tstamp(struct dpaa2_eth_priv *priv,
struct dpaa2_fd *fd,
void *buf_start,
struct sk_buff *skb)
{
struct ptp_tstamp origin_timestamp;
u8 msgtype, twostep, udp;
struct dpaa2_faead *faead;
struct dpaa2_fas *fas;
struct timespec64 ts;
u16 offset1, offset2;
u32 ctrl, frc;
__le64 *ns;
u8 *data;
/* Mark the egress frame annotation area as valid */
frc = dpaa2_fd_get_frc(fd);
dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV);
/* Set hardware annotation size */
ctrl = dpaa2_fd_get_ctrl(fd);
dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL);
/* enable UPD (update prepanded data) bit in FAEAD field of
* hardware frame annotation area
*/
ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD;
faead = dpaa2_get_faead(buf_start, true);
faead->ctrl = cpu_to_le32(ctrl);
if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) {
if (dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp,
&offset1, &offset2) ||
msgtype != PTP_MSGTYPE_SYNC || twostep) {
WARN_ONCE(1, "Bad packet for one-step timestamping\n");
return;
}
/* Mark the frame annotation status as valid */
frc = dpaa2_fd_get_frc(fd);
dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FASV);
/* Mark the PTP flag for one step timestamping */
fas = dpaa2_get_fas(buf_start, true);
fas->status = cpu_to_le32(DPAA2_FAS_PTP);
dpaa2_ptp->caps.gettime64(&dpaa2_ptp->caps, &ts);
ns = dpaa2_get_ts(buf_start, true);
*ns = cpu_to_le64(timespec64_to_ns(&ts) /
DPAA2_PTP_CLK_PERIOD_NS);
/* Update current time to PTP message originTimestamp field */
ns_to_ptp_tstamp(&origin_timestamp, le64_to_cpup(ns));
data = skb_mac_header(skb);
*(__be16 *)(data + offset2) = htons(origin_timestamp.sec_msb);
*(__be32 *)(data + offset2 + 2) =
htonl(origin_timestamp.sec_lsb);
*(__be32 *)(data + offset2 + 6) = htonl(origin_timestamp.nsec);
if (priv->ptp_correction_off == offset1)
return;
priv->dpaa2_set_onestep_params_cb(priv, offset1, udp);
priv->ptp_correction_off = offset1;
}
}
void *dpaa2_eth_sgt_get(struct dpaa2_eth_priv *priv)
{
struct dpaa2_eth_sgt_cache *sgt_cache;
void *sgt_buf = NULL;
int sgt_buf_size;
sgt_cache = this_cpu_ptr(priv->sgt_cache);
sgt_buf_size = priv->tx_data_offset +
DPAA2_ETH_SG_ENTRIES_MAX * sizeof(struct dpaa2_sg_entry);
if (sgt_cache->count == 0)
sgt_buf = napi_alloc_frag_align(sgt_buf_size, DPAA2_ETH_TX_BUF_ALIGN);
else
sgt_buf = sgt_cache->buf[--sgt_cache->count];
if (!sgt_buf)
return NULL;
memset(sgt_buf, 0, sgt_buf_size);
return sgt_buf;
}
void dpaa2_eth_sgt_recycle(struct dpaa2_eth_priv *priv, void *sgt_buf)
{
struct dpaa2_eth_sgt_cache *sgt_cache;
sgt_cache = this_cpu_ptr(priv->sgt_cache);
if (sgt_cache->count >= DPAA2_ETH_SGT_CACHE_SIZE)
skb_free_frag(sgt_buf);
else
sgt_cache->buf[sgt_cache->count++] = sgt_buf;
}
/* Create a frame descriptor based on a fragmented skb */
static int dpaa2_eth_build_sg_fd(struct dpaa2_eth_priv *priv,
struct sk_buff *skb,
struct dpaa2_fd *fd,
void **swa_addr)
{
struct device *dev = priv->net_dev->dev.parent;
void *sgt_buf = NULL;
dma_addr_t addr;
int nr_frags = skb_shinfo(skb)->nr_frags;
struct dpaa2_sg_entry *sgt;
int i, err;
int sgt_buf_size;
struct scatterlist *scl, *crt_scl;
int num_sg;
int num_dma_bufs;
struct dpaa2_eth_swa *swa;
/* Create and map scatterlist.
* We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have
* to go beyond nr_frags+1.
* Note: We don't support chained scatterlists
*/
if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1))
return -EINVAL;
scl = kmalloc_array(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC);
if (unlikely(!scl))
return -ENOMEM;
sg_init_table(scl, nr_frags + 1);
num_sg = skb_to_sgvec(skb, scl, 0, skb->len);
if (unlikely(num_sg < 0)) {
err = -ENOMEM;
goto dma_map_sg_failed;
}
num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL);
if (unlikely(!num_dma_bufs)) {
err = -ENOMEM;
goto dma_map_sg_failed;
}
/* Prepare the HW SGT structure */
sgt_buf_size = priv->tx_data_offset +
sizeof(struct dpaa2_sg_entry) * num_dma_bufs;
sgt_buf = dpaa2_eth_sgt_get(priv);
if (unlikely(!sgt_buf)) {
err = -ENOMEM;
goto sgt_buf_alloc_failed;
}
sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset);
/* Fill in the HW SGT structure.
*
* sgt_buf is zeroed out, so the following fields are implicit
* in all sgt entries:
* - offset is 0
* - format is 'dpaa2_sg_single'
*/
for_each_sg(scl, crt_scl, num_dma_bufs, i) {
dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl));
dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl));
}
dpaa2_sg_set_final(&sgt[i - 1], true);
/* Store the skb backpointer in the SGT buffer.
* Fit the scatterlist and the number of buffers alongside the
* skb backpointer in the software annotation area. We'll need
* all of them on Tx Conf.
*/
*swa_addr = (void *)sgt_buf;
swa = (struct dpaa2_eth_swa *)sgt_buf;
swa->type = DPAA2_ETH_SWA_SG;
swa->sg.skb = skb;
swa->sg.scl = scl;
swa->sg.num_sg = num_sg;
swa->sg.sgt_size = sgt_buf_size;
/* Separately map the SGT buffer */
addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, addr))) {
err = -ENOMEM;
goto dma_map_single_failed;
}
memset(fd, 0, sizeof(struct dpaa2_fd));
dpaa2_fd_set_offset(fd, priv->tx_data_offset);
dpaa2_fd_set_format(fd, dpaa2_fd_sg);
dpaa2_fd_set_addr(fd, addr);
dpaa2_fd_set_len(fd, skb->len);
dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA);
return 0;
dma_map_single_failed:
dpaa2_eth_sgt_recycle(priv, sgt_buf);
sgt_buf_alloc_failed:
dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL);
dma_map_sg_failed:
kfree(scl);
return err;
}
/* Create a SG frame descriptor based on a linear skb.
*
* This function is used on the Tx path when the skb headroom is not large
* enough for the HW requirements, thus instead of realloc-ing the skb we
* create a SG frame descriptor with only one entry.
*/
static int dpaa2_eth_build_sg_fd_single_buf(struct dpaa2_eth_priv *priv,
struct sk_buff *skb,
struct dpaa2_fd *fd,
void **swa_addr)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpaa2_sg_entry *sgt;
struct dpaa2_eth_swa *swa;
dma_addr_t addr, sgt_addr;
void *sgt_buf = NULL;
int sgt_buf_size;
int err;
/* Prepare the HW SGT structure */
sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry);
sgt_buf = dpaa2_eth_sgt_get(priv);
if (unlikely(!sgt_buf))
return -ENOMEM;
sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset);
addr = dma_map_single(dev, skb->data, skb->len, DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, addr))) {
err = -ENOMEM;
goto data_map_failed;
}
/* Fill in the HW SGT structure */
dpaa2_sg_set_addr(sgt, addr);
dpaa2_sg_set_len(sgt, skb->len);
dpaa2_sg_set_final(sgt, true);
/* Store the skb backpointer in the SGT buffer */
*swa_addr = (void *)sgt_buf;
swa = (struct dpaa2_eth_swa *)sgt_buf;
swa->type = DPAA2_ETH_SWA_SINGLE;
swa->single.skb = skb;
swa->single.sgt_size = sgt_buf_size;
/* Separately map the SGT buffer */
sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, sgt_addr))) {
err = -ENOMEM;
goto sgt_map_failed;
}
memset(fd, 0, sizeof(struct dpaa2_fd));
dpaa2_fd_set_offset(fd, priv->tx_data_offset);
dpaa2_fd_set_format(fd, dpaa2_fd_sg);
dpaa2_fd_set_addr(fd, sgt_addr);
dpaa2_fd_set_len(fd, skb->len);
dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA);
return 0;
sgt_map_failed:
dma_unmap_single(dev, addr, skb->len, DMA_BIDIRECTIONAL);
data_map_failed:
dpaa2_eth_sgt_recycle(priv, sgt_buf);
return err;
}
/* Create a frame descriptor based on a linear skb */
static int dpaa2_eth_build_single_fd(struct dpaa2_eth_priv *priv,
struct sk_buff *skb,
struct dpaa2_fd *fd,
void **swa_addr)
{
struct device *dev = priv->net_dev->dev.parent;
u8 *buffer_start, *aligned_start;
struct dpaa2_eth_swa *swa;
dma_addr_t addr;
buffer_start = skb->data - dpaa2_eth_needed_headroom(skb);
/* If there's enough room to align the FD address, do it.
* It will help hardware optimize accesses.
*/
aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN,
DPAA2_ETH_TX_BUF_ALIGN);
if (aligned_start >= skb->head)
buffer_start = aligned_start;
/* Store a backpointer to the skb at the beginning of the buffer
* (in the private data area) such that we can release it
* on Tx confirm
*/
*swa_addr = (void *)buffer_start;
swa = (struct dpaa2_eth_swa *)buffer_start;
swa->type = DPAA2_ETH_SWA_SINGLE;
swa->single.skb = skb;
addr = dma_map_single(dev, buffer_start,
skb_tail_pointer(skb) - buffer_start,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, addr)))
return -ENOMEM;
memset(fd, 0, sizeof(struct dpaa2_fd));
dpaa2_fd_set_addr(fd, addr);
dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start));
dpaa2_fd_set_len(fd, skb->len);
dpaa2_fd_set_format(fd, dpaa2_fd_single);
dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA);
return 0;
}
/* FD freeing routine on the Tx path
*
* DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb
* back-pointed to is also freed.
* This can be called either from dpaa2_eth_tx_conf() or on the error path of
* dpaa2_eth_tx().
*/
void dpaa2_eth_free_tx_fd(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
struct dpaa2_eth_fq *fq,
const struct dpaa2_fd *fd, bool in_napi)
{
struct device *dev = priv->net_dev->dev.parent;
dma_addr_t fd_addr, sg_addr;
struct sk_buff *skb = NULL;
unsigned char *buffer_start;
struct dpaa2_eth_swa *swa;
u8 fd_format = dpaa2_fd_get_format(fd);
u32 fd_len = dpaa2_fd_get_len(fd);
struct dpaa2_sg_entry *sgt;
int should_free_skb = 1;
void *tso_hdr;
int i;
fd_addr = dpaa2_fd_get_addr(fd);
buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr);
swa = (struct dpaa2_eth_swa *)buffer_start;
if (fd_format == dpaa2_fd_single) {
if (swa->type == DPAA2_ETH_SWA_SINGLE) {
skb = swa->single.skb;
/* Accessing the skb buffer is safe before dma unmap,
* because we didn't map the actual skb shell.
*/
dma_unmap_single(dev, fd_addr,
skb_tail_pointer(skb) - buffer_start,
DMA_BIDIRECTIONAL);
} else {
WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type");
dma_unmap_single(dev, fd_addr, swa->xdp.dma_size,
DMA_BIDIRECTIONAL);
}
} else if (fd_format == dpaa2_fd_sg) {
if (swa->type == DPAA2_ETH_SWA_SG) {
skb = swa->sg.skb;
/* Unmap the scatterlist */
dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg,
DMA_BIDIRECTIONAL);
kfree(swa->sg.scl);
/* Unmap the SGT buffer */
dma_unmap_single(dev, fd_addr, swa->sg.sgt_size,
DMA_BIDIRECTIONAL);
} else if (swa->type == DPAA2_ETH_SWA_SW_TSO) {
skb = swa->tso.skb;
sgt = (struct dpaa2_sg_entry *)(buffer_start +
priv->tx_data_offset);
/* Unmap the SGT buffer */
dma_unmap_single(dev, fd_addr, swa->tso.sgt_size,
DMA_BIDIRECTIONAL);
/* Unmap and free the header */
tso_hdr = dpaa2_iova_to_virt(priv->iommu_domain, dpaa2_sg_get_addr(sgt));
dma_unmap_single(dev, dpaa2_sg_get_addr(sgt), TSO_HEADER_SIZE,
DMA_TO_DEVICE);
kfree(tso_hdr);
/* Unmap the other SG entries for the data */
for (i = 1; i < swa->tso.num_sg; i++)
dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]),
dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE);
if (!swa->tso.is_last_fd)
should_free_skb = 0;
} else if (swa->type == DPAA2_ETH_SWA_XSK) {
/* Unmap the SGT Buffer */
dma_unmap_single(dev, fd_addr, swa->xsk.sgt_size,
DMA_BIDIRECTIONAL);
} else {
skb = swa->single.skb;
/* Unmap the SGT Buffer */
dma_unmap_single(dev, fd_addr, swa->single.sgt_size,
DMA_BIDIRECTIONAL);
sgt = (struct dpaa2_sg_entry *)(buffer_start +
priv->tx_data_offset);
sg_addr = dpaa2_sg_get_addr(sgt);
dma_unmap_single(dev, sg_addr, skb->len, DMA_BIDIRECTIONAL);
}
} else {
netdev_dbg(priv->net_dev, "Invalid FD format\n");
return;
}
if (swa->type == DPAA2_ETH_SWA_XSK) {
ch->xsk_tx_pkts_sent++;
dpaa2_eth_sgt_recycle(priv, buffer_start);
return;
}
if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) {
fq->dq_frames++;
fq->dq_bytes += fd_len;
}
if (swa->type == DPAA2_ETH_SWA_XDP) {
xdp_return_frame(swa->xdp.xdpf);
return;
}
/* Get the timestamp value */
if (swa->type != DPAA2_ETH_SWA_SW_TSO) {
if (skb->cb[0] == TX_TSTAMP) {
struct skb_shared_hwtstamps shhwtstamps;
__le64 *ts = dpaa2_get_ts(buffer_start, true);
u64 ns;
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts);
shhwtstamps.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(skb, &shhwtstamps);
} else if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) {
mutex_unlock(&priv->onestep_tstamp_lock);
}
}
/* Free SGT buffer allocated on tx */
if (fd_format != dpaa2_fd_single)
dpaa2_eth_sgt_recycle(priv, buffer_start);
/* Move on with skb release. If we are just confirming multiple FDs
* from the same TSO skb then only the last one will need to free the
* skb.
*/
if (should_free_skb)
napi_consume_skb(skb, in_napi);
}
static int dpaa2_eth_build_gso_fd(struct dpaa2_eth_priv *priv,
struct sk_buff *skb, struct dpaa2_fd *fd,
int *num_fds, u32 *total_fds_len)
{
struct device *dev = priv->net_dev->dev.parent;
int hdr_len, total_len, data_left, fd_len;
int num_sge, err, i, sgt_buf_size;
struct dpaa2_fd *fd_start = fd;
struct dpaa2_sg_entry *sgt;
struct dpaa2_eth_swa *swa;
dma_addr_t sgt_addr, addr;
dma_addr_t tso_hdr_dma;
unsigned int index = 0;
struct tso_t tso;
char *tso_hdr;
void *sgt_buf;
/* Initialize the TSO handler, and prepare the first payload */
hdr_len = tso_start(skb, &tso);
*total_fds_len = 0;
total_len = skb->len - hdr_len;
while (total_len > 0) {
/* Prepare the HW SGT structure for this frame */
sgt_buf = dpaa2_eth_sgt_get(priv);
if (unlikely(!sgt_buf)) {
netdev_err(priv->net_dev, "dpaa2_eth_sgt_get() failed\n");
err = -ENOMEM;
goto err_sgt_get;
}
sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset);
/* Determine the data length of this frame */
data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_left;
fd_len = data_left + hdr_len;
/* Prepare packet headers: MAC + IP + TCP */
tso_hdr = kmalloc(TSO_HEADER_SIZE, GFP_ATOMIC);
if (!tso_hdr) {
err = -ENOMEM;
goto err_alloc_tso_hdr;
}
tso_build_hdr(skb, tso_hdr, &tso, data_left, total_len == 0);
tso_hdr_dma = dma_map_single(dev, tso_hdr, TSO_HEADER_SIZE, DMA_TO_DEVICE);
if (dma_mapping_error(dev, tso_hdr_dma)) {
netdev_err(priv->net_dev, "dma_map_single(tso_hdr) failed\n");
err = -ENOMEM;
goto err_map_tso_hdr;
}
/* Setup the SG entry for the header */
dpaa2_sg_set_addr(sgt, tso_hdr_dma);
dpaa2_sg_set_len(sgt, hdr_len);
dpaa2_sg_set_final(sgt, data_left <= 0);
/* Compose the SG entries for each fragment of data */
num_sge = 1;
while (data_left > 0) {
int size;
/* Move to the next SG entry */
sgt++;
size = min_t(int, tso.size, data_left);
addr = dma_map_single(dev, tso.data, size, DMA_TO_DEVICE);
if (dma_mapping_error(dev, addr)) {
netdev_err(priv->net_dev, "dma_map_single(tso.data) failed\n");
err = -ENOMEM;
goto err_map_data;
}
dpaa2_sg_set_addr(sgt, addr);
dpaa2_sg_set_len(sgt, size);
dpaa2_sg_set_final(sgt, size == data_left);
num_sge++;
/* Build the data for the __next__ fragment */
data_left -= size;
tso_build_data(skb, &tso, size);
}
/* Store the skb backpointer in the SGT buffer */
sgt_buf_size = priv->tx_data_offset + num_sge * sizeof(struct dpaa2_sg_entry);
swa = (struct dpaa2_eth_swa *)sgt_buf;
swa->type = DPAA2_ETH_SWA_SW_TSO;
swa->tso.skb = skb;
swa->tso.num_sg = num_sge;
swa->tso.sgt_size = sgt_buf_size;
swa->tso.is_last_fd = total_len == 0 ? 1 : 0;
/* Separately map the SGT buffer */
sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, sgt_addr))) {
netdev_err(priv->net_dev, "dma_map_single(sgt_buf) failed\n");
err = -ENOMEM;
goto err_map_sgt;
}
/* Setup the frame descriptor */
memset(fd, 0, sizeof(struct dpaa2_fd));
dpaa2_fd_set_offset(fd, priv->tx_data_offset);
dpaa2_fd_set_format(fd, dpaa2_fd_sg);
dpaa2_fd_set_addr(fd, sgt_addr);
dpaa2_fd_set_len(fd, fd_len);
dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA);
*total_fds_len += fd_len;
/* Advance to the next frame descriptor */
fd++;
index++;
}
*num_fds = index;
return 0;
err_map_sgt:
err_map_data:
/* Unmap all the data S/G entries for the current FD */
sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset);
for (i = 1; i < num_sge; i++)
dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]),
dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE);
/* Unmap the header entry */
dma_unmap_single(dev, tso_hdr_dma, TSO_HEADER_SIZE, DMA_TO_DEVICE);
err_map_tso_hdr:
kfree(tso_hdr);
err_alloc_tso_hdr:
dpaa2_eth_sgt_recycle(priv, sgt_buf);
err_sgt_get:
/* Free all the other FDs that were already fully created */
for (i = 0; i < index; i++)
dpaa2_eth_free_tx_fd(priv, NULL, NULL, &fd_start[i], false);
return err;
}
static netdev_tx_t __dpaa2_eth_tx(struct sk_buff *skb,
struct net_device *net_dev)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
int total_enqueued = 0, retries = 0, enqueued;
struct dpaa2_eth_drv_stats *percpu_extras;
struct rtnl_link_stats64 *percpu_stats;
unsigned int needed_headroom;
int num_fds = 1, max_retries;
struct dpaa2_eth_fq *fq;
struct netdev_queue *nq;
struct dpaa2_fd *fd;
u16 queue_mapping;
void *swa = NULL;
u8 prio = 0;
int err, i;
u32 fd_len;
percpu_stats = this_cpu_ptr(priv->percpu_stats);
percpu_extras = this_cpu_ptr(priv->percpu_extras);
fd = (this_cpu_ptr(priv->fd))->array;
needed_headroom = dpaa2_eth_needed_headroom(skb);
/* We'll be holding a back-reference to the skb until Tx Confirmation;
* we don't want that overwritten by a concurrent Tx with a cloned skb.
*/
skb = skb_unshare(skb, GFP_ATOMIC);
if (unlikely(!skb)) {
/* skb_unshare() has already freed the skb */
percpu_stats->tx_dropped++;
return NETDEV_TX_OK;
}
/* Setup the FD fields */
if (skb_is_gso(skb)) {
err = dpaa2_eth_build_gso_fd(priv, skb, fd, &num_fds, &fd_len);
percpu_extras->tx_sg_frames += num_fds;
percpu_extras->tx_sg_bytes += fd_len;
percpu_extras->tx_tso_frames += num_fds;
percpu_extras->tx_tso_bytes += fd_len;
} else if (skb_is_nonlinear(skb)) {
err = dpaa2_eth_build_sg_fd(priv, skb, fd, &swa);
percpu_extras->tx_sg_frames++;
percpu_extras->tx_sg_bytes += skb->len;
fd_len = dpaa2_fd_get_len(fd);
} else if (skb_headroom(skb) < needed_headroom) {
err = dpaa2_eth_build_sg_fd_single_buf(priv, skb, fd, &swa);
percpu_extras->tx_sg_frames++;
percpu_extras->tx_sg_bytes += skb->len;
percpu_extras->tx_converted_sg_frames++;
percpu_extras->tx_converted_sg_bytes += skb->len;
fd_len = dpaa2_fd_get_len(fd);
} else {
err = dpaa2_eth_build_single_fd(priv, skb, fd, &swa);
fd_len = dpaa2_fd_get_len(fd);
}
if (unlikely(err)) {
percpu_stats->tx_dropped++;
goto err_build_fd;
}
if (swa && skb->cb[0])
dpaa2_eth_enable_tx_tstamp(priv, fd, swa, skb);
/* Tracing point */
for (i = 0; i < num_fds; i++)
trace_dpaa2_tx_fd(net_dev, &fd[i]);
/* TxConf FQ selection relies on queue id from the stack.
* In case of a forwarded frame from another DPNI interface, we choose
* a queue affined to the same core that processed the Rx frame
*/
queue_mapping = skb_get_queue_mapping(skb);
if (net_dev->num_tc) {
prio = netdev_txq_to_tc(net_dev, queue_mapping);
/* Hardware interprets priority level 0 as being the highest,
* so we need to do a reverse mapping to the netdev tc index
*/
prio = net_dev->num_tc - prio - 1;
/* We have only one FQ array entry for all Tx hardware queues
* with the same flow id (but different priority levels)
*/
queue_mapping %= dpaa2_eth_queue_count(priv);
}
fq = &priv->fq[queue_mapping];
nq = netdev_get_tx_queue(net_dev, queue_mapping);
netdev_tx_sent_queue(nq, fd_len);
/* Everything that happens after this enqueues might race with
* the Tx confirmation callback for this frame
*/
max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES;
while (total_enqueued < num_fds && retries < max_retries) {
err = priv->enqueue(priv, fq, &fd[total_enqueued],
prio, num_fds - total_enqueued, &enqueued);
if (err == -EBUSY) {
retries++;
continue;
}
total_enqueued += enqueued;
}
percpu_extras->tx_portal_busy += retries;
if (unlikely(err < 0)) {
percpu_stats->tx_errors++;
/* Clean up everything, including freeing the skb */
dpaa2_eth_free_tx_fd(priv, NULL, fq, fd, false);
netdev_tx_completed_queue(nq, 1, fd_len);
} else {
percpu_stats->tx_packets += total_enqueued;
percpu_stats->tx_bytes += fd_len;
}
return NETDEV_TX_OK;
err_build_fd:
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
static void dpaa2_eth_tx_onestep_tstamp(struct work_struct *work)
{
struct dpaa2_eth_priv *priv = container_of(work, struct dpaa2_eth_priv,
tx_onestep_tstamp);
struct sk_buff *skb;
while (true) {
skb = skb_dequeue(&priv->tx_skbs);
if (!skb)
return;
/* Lock just before TX one-step timestamping packet,
* and release the lock in dpaa2_eth_free_tx_fd when
* confirm the packet has been sent on hardware, or
* when clean up during transmit failure.
*/
mutex_lock(&priv->onestep_tstamp_lock);
__dpaa2_eth_tx(skb, priv->net_dev);
}
}
static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
u8 msgtype, twostep, udp;
u16 offset1, offset2;
/* Utilize skb->cb[0] for timestamping request per skb */
skb->cb[0] = 0;
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && dpaa2_ptp) {
if (priv->tx_tstamp_type == HWTSTAMP_TX_ON)
skb->cb[0] = TX_TSTAMP;
else if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC)
skb->cb[0] = TX_TSTAMP_ONESTEP_SYNC;
}
/* TX for one-step timestamping PTP Sync packet */
if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) {
if (!dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp,
&offset1, &offset2))
if (msgtype == PTP_MSGTYPE_SYNC && twostep == 0) {
skb_queue_tail(&priv->tx_skbs, skb);
queue_work(priv->dpaa2_ptp_wq,
&priv->tx_onestep_tstamp);
return NETDEV_TX_OK;
}
/* Use two-step timestamping if not one-step timestamping
* PTP Sync packet
*/
skb->cb[0] = TX_TSTAMP;
}
/* TX for other packets */
return __dpaa2_eth_tx(skb, net_dev);
}
/* Tx confirmation frame processing routine */
static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch,
const struct dpaa2_fd *fd,
struct dpaa2_eth_fq *fq)
{
struct rtnl_link_stats64 *percpu_stats;
struct dpaa2_eth_drv_stats *percpu_extras;
u32 fd_len = dpaa2_fd_get_len(fd);
u32 fd_errors;
/* Tracing point */
trace_dpaa2_tx_conf_fd(priv->net_dev, fd);
percpu_extras = this_cpu_ptr(priv->percpu_extras);
percpu_extras->tx_conf_frames++;
percpu_extras->tx_conf_bytes += fd_len;
ch->stats.bytes_per_cdan += fd_len;
/* Check frame errors in the FD field */
fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK;
dpaa2_eth_free_tx_fd(priv, ch, fq, fd, true);
if (likely(!fd_errors))
return;
if (net_ratelimit())
netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n",
fd_errors);
percpu_stats = this_cpu_ptr(priv->percpu_stats);
/* Tx-conf logically pertains to the egress path. */
percpu_stats->tx_errors++;
}
static int dpaa2_eth_set_rx_vlan_filtering(struct dpaa2_eth_priv *priv,
bool enable)
{
int err;
err = dpni_enable_vlan_filter(priv->mc_io, 0, priv->mc_token, enable);
if (err) {
netdev_err(priv->net_dev,
"dpni_enable_vlan_filter failed\n");
return err;
}
return 0;
}
static int dpaa2_eth_set_rx_csum(struct dpaa2_eth_priv *priv, bool enable)
{
int err;
err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
DPNI_OFF_RX_L3_CSUM, enable);
if (err) {
netdev_err(priv->net_dev,
"dpni_set_offload(RX_L3_CSUM) failed\n");
return err;
}
err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
DPNI_OFF_RX_L4_CSUM, enable);
if (err) {
netdev_err(priv->net_dev,
"dpni_set_offload(RX_L4_CSUM) failed\n");
return err;
}
return 0;
}
static int dpaa2_eth_set_tx_csum(struct dpaa2_eth_priv *priv, bool enable)
{
int err;
err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
DPNI_OFF_TX_L3_CSUM, enable);
if (err) {
netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n");
return err;
}
err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
DPNI_OFF_TX_L4_CSUM, enable);
if (err) {
netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n");
return err;
}
return 0;
}
/* Perform a single release command to add buffers
* to the specified buffer pool
*/
static int dpaa2_eth_add_bufs(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch)
{
struct xdp_buff *xdp_buffs[DPAA2_ETH_BUFS_PER_CMD];
struct device *dev = priv->net_dev->dev.parent;
u64 buf_array[DPAA2_ETH_BUFS_PER_CMD];
struct dpaa2_eth_swa *swa;
struct page *page;
dma_addr_t addr;
int retries = 0;
int i = 0, err;
u32 batch;
/* Allocate buffers visible to WRIOP */
if (!ch->xsk_zc) {
for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) {
/* Also allocate skb shared info and alignment padding.
* There is one page for each Rx buffer. WRIOP sees
* the entire page except for a tailroom reserved for
* skb shared info
*/
page = dev_alloc_pages(0);
if (!page)
goto err_alloc;
addr = dma_map_page(dev, page, 0, priv->rx_buf_size,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, addr)))
goto err_map;
buf_array[i] = addr;
/* tracing point */
trace_dpaa2_eth_buf_seed(priv->net_dev,
page_address(page),
DPAA2_ETH_RX_BUF_RAW_SIZE,
addr, priv->rx_buf_size,
ch->bp->bpid);
}
} else if (xsk_buff_can_alloc(ch->xsk_pool, DPAA2_ETH_BUFS_PER_CMD)) {
/* Allocate XSK buffers for AF_XDP fast path in batches
* of DPAA2_ETH_BUFS_PER_CMD. Bail out if the UMEM cannot
* provide enough buffers at the moment
*/
batch = xsk_buff_alloc_batch(ch->xsk_pool, xdp_buffs,
DPAA2_ETH_BUFS_PER_CMD);
if (!batch)
goto err_alloc;
for (i = 0; i < batch; i++) {
swa = (struct dpaa2_eth_swa *)(xdp_buffs[i]->data_hard_start +
DPAA2_ETH_RX_HWA_SIZE);
swa->xsk.xdp_buff = xdp_buffs[i];
addr = xsk_buff_xdp_get_frame_dma(xdp_buffs[i]);
if (unlikely(dma_mapping_error(dev, addr)))
goto err_map;
buf_array[i] = addr;
trace_dpaa2_xsk_buf_seed(priv->net_dev,
xdp_buffs[i]->data_hard_start,
DPAA2_ETH_RX_BUF_RAW_SIZE,
addr, priv->rx_buf_size,
ch->bp->bpid);
}
}
release_bufs:
/* In case the portal is busy, retry until successful */
while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid,
buf_array, i)) == -EBUSY) {
if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES)
break;
cpu_relax();
}
/* If release command failed, clean up and bail out;
* not much else we can do about it
*/
if (err) {
dpaa2_eth_free_bufs(priv, buf_array, i, ch->xsk_zc);
return 0;
}
return i;
err_map:
if (!ch->xsk_zc) {
__free_pages(page, 0);
} else {
for (; i < batch; i++)
xsk_buff_free(xdp_buffs[i]);
}
err_alloc:
/* If we managed to allocate at least some buffers,
* release them to hardware
*/
if (i)
goto release_bufs;
return 0;
}
static int dpaa2_eth_seed_pool(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch)
{
int i;
int new_count;
for (i = 0; i < DPAA2_ETH_NUM_BUFS; i += DPAA2_ETH_BUFS_PER_CMD) {
new_count = dpaa2_eth_add_bufs(priv, ch);
ch->buf_count += new_count;
if (new_count < DPAA2_ETH_BUFS_PER_CMD)
return -ENOMEM;
}
return 0;
}
static void dpaa2_eth_seed_pools(struct dpaa2_eth_priv *priv)
{
struct net_device *net_dev = priv->net_dev;
struct dpaa2_eth_channel *channel;
int i, err = 0;
for (i = 0; i < priv->num_channels; i++) {
channel = priv->channel[i];
err = dpaa2_eth_seed_pool(priv, channel);
/* Not much to do; the buffer pool, though not filled up,
* may still contain some buffers which would enable us
* to limp on.
*/
if (err)
netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n",
channel->bp->dev->obj_desc.id,
channel->bp->bpid);
}
}
/*
* Drain the specified number of buffers from one of the DPNI's private buffer
* pools.
* @count must not exceeed DPAA2_ETH_BUFS_PER_CMD
*/
static void dpaa2_eth_drain_bufs(struct dpaa2_eth_priv *priv, int bpid,
int count)
{
u64 buf_array[DPAA2_ETH_BUFS_PER_CMD];
bool xsk_zc = false;
int retries = 0;
int i, ret;
for (i = 0; i < priv->num_channels; i++)
if (priv->channel[i]->bp->bpid == bpid)
xsk_zc = priv->channel[i]->xsk_zc;
do {
ret = dpaa2_io_service_acquire(NULL, bpid, buf_array, count);
if (ret < 0) {
if (ret == -EBUSY &&
retries++ < DPAA2_ETH_SWP_BUSY_RETRIES)
continue;
netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n");
return;
}
dpaa2_eth_free_bufs(priv, buf_array, ret, xsk_zc);
retries = 0;
} while (ret);
}
static void dpaa2_eth_drain_pool(struct dpaa2_eth_priv *priv, int bpid)
{
int i;
/* Drain the buffer pool */
dpaa2_eth_drain_bufs(priv, bpid, DPAA2_ETH_BUFS_PER_CMD);
dpaa2_eth_drain_bufs(priv, bpid, 1);
/* Setup to zero the buffer count of all channels which were
* using this buffer pool.
*/
for (i = 0; i < priv->num_channels; i++)
if (priv->channel[i]->bp->bpid == bpid)
priv->channel[i]->buf_count = 0;
}
static void dpaa2_eth_drain_pools(struct dpaa2_eth_priv *priv)
{
int i;
for (i = 0; i < priv->num_bps; i++)
dpaa2_eth_drain_pool(priv, priv->bp[i]->bpid);
}
/* Function is called from softirq context only, so we don't need to guard
* the access to percpu count
*/
static int dpaa2_eth_refill_pool(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *ch)
{
int new_count;
if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH))
return 0;
do {
new_count = dpaa2_eth_add_bufs(priv, ch);
if (unlikely(!new_count)) {
/* Out of memory; abort for now, we'll try later on */
break;
}
ch->buf_count += new_count;
} while (ch->buf_count < DPAA2_ETH_NUM_BUFS);
if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS))
return -ENOMEM;
return 0;
}
static void dpaa2_eth_sgt_cache_drain(struct dpaa2_eth_priv *priv)
{
struct dpaa2_eth_sgt_cache *sgt_cache;
u16 count;
int k, i;
for_each_possible_cpu(k) {
sgt_cache = per_cpu_ptr(priv->sgt_cache, k);
count = sgt_cache->count;
for (i = 0; i < count; i++)
skb_free_frag(sgt_cache->buf[i]);
sgt_cache->count = 0;
}
}
static int dpaa2_eth_pull_channel(struct dpaa2_eth_channel *ch)
{
int err;
int dequeues = -1;
/* Retry while portal is busy */
do {
err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id,
ch->store);
dequeues++;
cpu_relax();
} while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES);
ch->stats.dequeue_portal_busy += dequeues;
if (unlikely(err))
ch->stats.pull_err++;
return err;
}
/* NAPI poll routine
*
* Frames are dequeued from the QMan channel associated with this NAPI context.
* Rx, Tx confirmation and (if configured) Rx error frames all count
* towards the NAPI budget.
*/
static int dpaa2_eth_poll(struct napi_struct *napi, int budget)
{
struct dpaa2_eth_channel *ch;
struct dpaa2_eth_priv *priv;
int rx_cleaned = 0, txconf_cleaned = 0;
struct dpaa2_eth_fq *fq, *txc_fq = NULL;
struct netdev_queue *nq;
int store_cleaned, work_done;
bool work_done_zc = false;
struct list_head rx_list;
int retries = 0;
u16 flowid;
int err;
ch = container_of(napi, struct dpaa2_eth_channel, napi);
ch->xdp.res = 0;
priv = ch->priv;
INIT_LIST_HEAD(&rx_list);
ch->rx_list = &rx_list;
if (ch->xsk_zc) {
work_done_zc = dpaa2_xsk_tx(priv, ch);
/* If we reached the XSK Tx per NAPI threshold, we're done */
if (work_done_zc) {
work_done = budget;
goto out;
}
}
do {
err = dpaa2_eth_pull_channel(ch);
if (unlikely(err))
break;
/* Refill pool if appropriate */
dpaa2_eth_refill_pool(priv, ch);
store_cleaned = dpaa2_eth_consume_frames(ch, &fq);
if (store_cleaned <= 0)
break;
if (fq->type == DPAA2_RX_FQ) {
rx_cleaned += store_cleaned;
flowid = fq->flowid;
} else {
txconf_cleaned += store_cleaned;
/* We have a single Tx conf FQ on this channel */
txc_fq = fq;
}
/* If we either consumed the whole NAPI budget with Rx frames
* or we reached the Tx confirmations threshold, we're done.
*/
if (rx_cleaned >= budget ||
txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) {
work_done = budget;
goto out;
}
} while (store_cleaned);
/* Update NET DIM with the values for this CDAN */
dpaa2_io_update_net_dim(ch->dpio, ch->stats.frames_per_cdan,
ch->stats.bytes_per_cdan);
ch->stats.frames_per_cdan = 0;
ch->stats.bytes_per_cdan = 0;
/* We didn't consume the entire budget, so finish napi and
* re-enable data availability notifications
*/
napi_complete_done(napi, rx_cleaned);
do {
err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx);
cpu_relax();
} while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES);
WARN_ONCE(err, "CDAN notifications rearm failed on core %d",
ch->nctx.desired_cpu);
work_done = max(rx_cleaned, 1);
out:
netif_receive_skb_list(ch->rx_list);
if (ch->xsk_tx_pkts_sent) {
xsk_tx_completed(ch->xsk_pool, ch->xsk_tx_pkts_sent);
ch->xsk_tx_pkts_sent = 0;
}
if (txc_fq && txc_fq->dq_frames) {
nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid);
netdev_tx_completed_queue(nq, txc_fq->dq_frames,
txc_fq->dq_bytes);
txc_fq->dq_frames = 0;
txc_fq->dq_bytes = 0;
}
if (ch->xdp.res & XDP_REDIRECT)
xdp_do_flush_map();
else if (rx_cleaned && ch->xdp.res & XDP_TX)
dpaa2_eth_xdp_tx_flush(priv, ch, &priv->fq[flowid]);
return work_done;
}
static void dpaa2_eth_enable_ch_napi(struct dpaa2_eth_priv *priv)
{
struct dpaa2_eth_channel *ch;
int i;
for (i = 0; i < priv->num_channels; i++) {
ch = priv->channel[i];
napi_enable(&ch->napi);
}
}
static void dpaa2_eth_disable_ch_napi(struct dpaa2_eth_priv *priv)
{
struct dpaa2_eth_channel *ch;
int i;
for (i = 0; i < priv->num_channels; i++) {
ch = priv->channel[i];
napi_disable(&ch->napi);
}
}
void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv,
bool tx_pause, bool pfc)
{
struct dpni_taildrop td = {0};
struct dpaa2_eth_fq *fq;
int i, err;
/* FQ taildrop: threshold is in bytes, per frame queue. Enabled if
* flow control is disabled (as it might interfere with either the
* buffer pool depletion trigger for pause frames or with the group
* congestion trigger for PFC frames)
*/
td.enable = !tx_pause;
if (priv->rx_fqtd_enabled == td.enable)
goto set_cgtd;
td.threshold = DPAA2_ETH_FQ_TAILDROP_THRESH;
td.units = DPNI_CONGESTION_UNIT_BYTES;
for (i = 0; i < priv->num_fqs; i++) {
fq = &priv->fq[i];
if (fq->type != DPAA2_RX_FQ)
continue;
err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token,
DPNI_CP_QUEUE, DPNI_QUEUE_RX,
fq->tc, fq->flowid, &td);
if (err) {
netdev_err(priv->net_dev,
"dpni_set_taildrop(FQ) failed\n");
return;
}
}
priv->rx_fqtd_enabled = td.enable;
set_cgtd:
/* Congestion group taildrop: threshold is in frames, per group
* of FQs belonging to the same traffic class
* Enabled if general Tx pause disabled or if PFCs are enabled
* (congestion group threhsold for PFC generation is lower than the
* CG taildrop threshold, so it won't interfere with it; we also
* want frames in non-PFC enabled traffic classes to be kept in check)
*/
td.enable = !tx_pause || pfc;
if (priv->rx_cgtd_enabled == td.enable)
return;
td.threshold = DPAA2_ETH_CG_TAILDROP_THRESH(priv);
td.units = DPNI_CONGESTION_UNIT_FRAMES;
for (i = 0; i < dpaa2_eth_tc_count(priv); i++) {
err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token,
DPNI_CP_GROUP, DPNI_QUEUE_RX,
i, 0, &td);
if (err) {
netdev_err(priv->net_dev,
"dpni_set_taildrop(CG) failed\n");
return;
}
}
priv->rx_cgtd_enabled = td.enable;
}
static int dpaa2_eth_link_state_update(struct dpaa2_eth_priv *priv)
{
struct dpni_link_state state = {0};
bool tx_pause;
int err;
err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state);
if (unlikely(err)) {
netdev_err(priv->net_dev,
"dpni_get_link_state() failed\n");
return err;
}
/* If Tx pause frame settings have changed, we need to update
* Rx FQ taildrop configuration as well. We configure taildrop
* only when pause frame generation is disabled.
*/
tx_pause = dpaa2_eth_tx_pause_enabled(state.options);
dpaa2_eth_set_rx_taildrop(priv, tx_pause, priv->pfc_enabled);
/* When we manage the MAC/PHY using phylink there is no need
* to manually update the netif_carrier.
*/
if (dpaa2_eth_is_type_phy(priv))
goto out;
/* Chech link state; speed / duplex changes are not treated yet */
if (priv->link_state.up == state.up)
goto out;
if (state.up) {
netif_carrier_on(priv->net_dev);
netif_tx_start_all_queues(priv->net_dev);
} else {
netif_tx_stop_all_queues(priv->net_dev);
netif_carrier_off(priv->net_dev);
}
netdev_info(priv->net_dev, "Link Event: state %s\n",
state.up ? "up" : "down");
out:
priv->link_state = state;
return 0;
}
static int dpaa2_eth_open(struct net_device *net_dev)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
int err;
dpaa2_eth_seed_pools(priv);
if (!dpaa2_eth_is_type_phy(priv)) {
/* We'll only start the txqs when the link is actually ready;
* make sure we don't race against the link up notification,
* which may come immediately after dpni_enable();
*/
netif_tx_stop_all_queues(net_dev);
/* Also, explicitly set carrier off, otherwise
* netif_carrier_ok() will return true and cause 'ip link show'
* to report the LOWER_UP flag, even though the link
* notification wasn't even received.
*/
netif_carrier_off(net_dev);
}
dpaa2_eth_enable_ch_napi(priv);
err = dpni_enable(priv->mc_io, 0, priv->mc_token);
if (err < 0) {
netdev_err(net_dev, "dpni_enable() failed\n");
goto enable_err;
}
if (dpaa2_eth_is_type_phy(priv)) {
dpaa2_mac_start(priv->mac);
phylink_start(priv->mac->phylink);
}
return 0;
enable_err:
dpaa2_eth_disable_ch_napi(priv);
dpaa2_eth_drain_pools(priv);
return err;
}
/* Total number of in-flight frames on ingress queues */
static u32 dpaa2_eth_ingress_fq_count(struct dpaa2_eth_priv *priv)
{
struct dpaa2_eth_fq *fq;
u32 fcnt = 0, bcnt = 0, total = 0;
int i, err;
for (i = 0; i < priv->num_fqs; i++) {
fq = &priv->fq[i];
err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt);
if (err) {
netdev_warn(priv->net_dev, "query_fq_count failed");
break;
}
total += fcnt;
}
return total;
}
static void dpaa2_eth_wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv)
{
int retries = 10;
u32 pending;
do {
pending = dpaa2_eth_ingress_fq_count(priv);
if (pending)
msleep(100);
} while (pending && --retries);
}
#define DPNI_TX_PENDING_VER_MAJOR 7
#define DPNI_TX_PENDING_VER_MINOR 13
static void dpaa2_eth_wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv)
{
union dpni_statistics stats;
int retries = 10;
int err;
if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR,
DPNI_TX_PENDING_VER_MINOR) < 0)
goto out;
do {
err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6,
&stats);
if (err)
goto out;
if (stats.page_6.tx_pending_frames == 0)
return;
} while (--retries);
out:
msleep(500);
}
static int dpaa2_eth_stop(struct net_device *net_dev)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
int dpni_enabled = 0;
int retries = 10;
if (dpaa2_eth_is_type_phy(priv)) {
phylink_stop(priv->mac->phylink);
dpaa2_mac_stop(priv->mac);
} else {
netif_tx_stop_all_queues(net_dev);
netif_carrier_off(net_dev);
}
/* On dpni_disable(), the MC firmware will:
* - stop MAC Rx and wait for all Rx frames to be enqueued to software
* - cut off WRIOP dequeues from egress FQs and wait until transmission
* of all in flight Tx frames is finished (and corresponding Tx conf
* frames are enqueued back to software)
*
* Before calling dpni_disable(), we wait for all Tx frames to arrive
* on WRIOP. After it finishes, wait until all remaining frames on Rx
* and Tx conf queues are consumed on NAPI poll.
*/
dpaa2_eth_wait_for_egress_fq_empty(priv);
do {
dpni_disable(priv->mc_io, 0, priv->mc_token);
dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled);
if (dpni_enabled)
/* Allow the hardware some slack */
msleep(100);
} while (dpni_enabled && --retries);
if (!retries) {
netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n");
/* Must go on and disable NAPI nonetheless, so we don't crash at
* the next "ifconfig up"
*/
}
dpaa2_eth_wait_for_ingress_fq_empty(priv);
dpaa2_eth_disable_ch_napi(priv);
/* Empty the buffer pool */
dpaa2_eth_drain_pools(priv);
/* Empty the Scatter-Gather Buffer cache */
dpaa2_eth_sgt_cache_drain(priv);
return 0;
}
static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
struct device *dev = net_dev->dev.parent;
int err;
err = eth_mac_addr(net_dev, addr);
if (err < 0) {
dev_err(dev, "eth_mac_addr() failed (%d)\n", err);
return err;
}
err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
net_dev->dev_addr);
if (err) {
dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err);
return err;
}
return 0;
}
/** Fill in counters maintained by the GPP driver. These may be different from
* the hardware counters obtained by ethtool.
*/
static void dpaa2_eth_get_stats(struct net_device *net_dev,
struct rtnl_link_stats64 *stats)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
struct rtnl_link_stats64 *percpu_stats;
u64 *cpustats;
u64 *netstats = (u64 *)stats;
int i, j;
int num = sizeof(struct rtnl_link_stats64) / sizeof(u64);
for_each_possible_cpu(i) {
percpu_stats = per_cpu_ptr(priv->percpu_stats, i);
cpustats = (u64 *)percpu_stats;
for (j = 0; j < num; j++)
netstats[j] += cpustats[j];
}
}
/* Copy mac unicast addresses from @net_dev to @priv.
* Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable.
*/
static void dpaa2_eth_add_uc_hw_addr(const struct net_device *net_dev,
struct dpaa2_eth_priv *priv)
{
struct netdev_hw_addr *ha;
int err;
netdev_for_each_uc_addr(ha, net_dev) {
err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token,
ha->addr);
if (err)
netdev_warn(priv->net_dev,
"Could not add ucast MAC %pM to the filtering table (err %d)\n",
ha->addr, err);
}
}
/* Copy mac multicast addresses from @net_dev to @priv
* Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable.
*/
static void dpaa2_eth_add_mc_hw_addr(const struct net_device *net_dev,
struct dpaa2_eth_priv *priv)
{
struct netdev_hw_addr *ha;
int err;
netdev_for_each_mc_addr(ha, net_dev) {
err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token,
ha->addr);
if (err)
netdev_warn(priv->net_dev,
"Could not add mcast MAC %pM to the filtering table (err %d)\n",
ha->addr, err);
}
}
static int dpaa2_eth_rx_add_vid(struct net_device *net_dev,
__be16 vlan_proto, u16 vid)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
int err;
err = dpni_add_vlan_id(priv->mc_io, 0, priv->mc_token,
vid, 0, 0, 0);
if (err) {
netdev_warn(priv->net_dev,
"Could not add the vlan id %u\n",
vid);
return err;
}
return 0;
}
static int dpaa2_eth_rx_kill_vid(struct net_device *net_dev,
__be16 vlan_proto, u16 vid)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
int err;
err = dpni_remove_vlan_id(priv->mc_io, 0, priv->mc_token, vid);
if (err) {
netdev_warn(priv->net_dev,
"Could not remove the vlan id %u\n",
vid);
return err;
}
return 0;
}
static void dpaa2_eth_set_rx_mode(struct net_device *net_dev)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
int uc_count = netdev_uc_count(net_dev);
int mc_count = netdev_mc_count(net_dev);
u8 max_mac = priv->dpni_attrs.mac_filter_entries;
u32 options = priv->dpni_attrs.options;
u16 mc_token = priv->mc_token;
struct fsl_mc_io *mc_io = priv->mc_io;
int err;
/* Basic sanity checks; these probably indicate a misconfiguration */
if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0)
netdev_info(net_dev,
"mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n",
max_mac);
/* Force promiscuous if the uc or mc counts exceed our capabilities. */
if (uc_count > max_mac) {
netdev_info(net_dev,
"Unicast addr count reached %d, max allowed is %d; forcing promisc\n",
uc_count, max_mac);
goto force_promisc;
}
if (mc_count + uc_count > max_mac) {
netdev_info(net_dev,
"Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n",
uc_count + mc_count, max_mac);
goto force_mc_promisc;
}
/* Adjust promisc settings due to flag combinations */
if (net_dev->flags & IFF_PROMISC)
goto force_promisc;
if (net_dev->flags & IFF_ALLMULTI) {
/* First, rebuild unicast filtering table. This should be done
* in promisc mode, in order to avoid frame loss while we
* progressively add entries to the table.
* We don't know whether we had been in promisc already, and
* making an MC call to find out is expensive; so set uc promisc
* nonetheless.
*/
err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
if (err)
netdev_warn(net_dev, "Can't set uc promisc\n");
/* Actual uc table reconstruction. */
err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0);
if (err)
netdev_warn(net_dev, "Can't clear uc filters\n");
dpaa2_eth_add_uc_hw_addr(net_dev, priv);
/* Finally, clear uc promisc and set mc promisc as requested. */
err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0);
if (err)
netdev_warn(net_dev, "Can't clear uc promisc\n");
goto force_mc_promisc;
}
/* Neither unicast, nor multicast promisc will be on... eventually.
* For now, rebuild mac filtering tables while forcing both of them on.
*/
err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
if (err)
netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err);
err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1);
if (err)
netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err);
/* Actual mac filtering tables reconstruction */
err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1);
if (err)
netdev_warn(net_dev, "Can't clear mac filters\n");
dpaa2_eth_add_mc_hw_addr(net_dev, priv);
dpaa2_eth_add_uc_hw_addr(net_dev, priv);
/* Now we can clear both ucast and mcast promisc, without risking
* to drop legitimate frames anymore.
*/
err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0);
if (err)
netdev_warn(net_dev, "Can't clear ucast promisc\n");
err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0);
if (err)
netdev_warn(net_dev, "Can't clear mcast promisc\n");
return;
force_promisc:
err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
if (err)
netdev_warn(net_dev, "Can't set ucast promisc\n");
force_mc_promisc:
err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1);
if (err)
netdev_warn(net_dev, "Can't set mcast promisc\n");
}
static int dpaa2_eth_set_features(struct net_device *net_dev,
netdev_features_t features)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
netdev_features_t changed = features ^ net_dev->features;
bool enable;
int err;
if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) {
enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
err = dpaa2_eth_set_rx_vlan_filtering(priv, enable);
if (err)
return err;
}
if (changed & NETIF_F_RXCSUM) {
enable = !!(features & NETIF_F_RXCSUM);
err = dpaa2_eth_set_rx_csum(priv, enable);
if (err)
return err;
}
if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
err = dpaa2_eth_set_tx_csum(priv, enable);
if (err)
return err;
}
return 0;
}
static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct dpaa2_eth_priv *priv = netdev_priv(dev);
struct hwtstamp_config config;
if (!dpaa2_ptp)
return -EINVAL;
if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
return -EFAULT;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
case HWTSTAMP_TX_ON:
case HWTSTAMP_TX_ONESTEP_SYNC:
priv->tx_tstamp_type = config.tx_type;
break;
default:
return -ERANGE;
}
if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
priv->rx_tstamp = false;
} else {
priv->rx_tstamp = true;
/* TS is set for all frame types, not only those requested */
config.rx_filter = HWTSTAMP_FILTER_ALL;
}
if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC)
dpaa2_ptp_onestep_reg_update_method(priv);
return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct dpaa2_eth_priv *priv = netdev_priv(dev);
if (cmd == SIOCSHWTSTAMP)
return dpaa2_eth_ts_ioctl(dev, rq, cmd);
if (dpaa2_eth_is_type_phy(priv))
return phylink_mii_ioctl(priv->mac->phylink, rq, cmd);
return -EOPNOTSUPP;
}
static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu)
{
int mfl, linear_mfl;
mfl = DPAA2_ETH_L2_MAX_FRM(mtu);
linear_mfl = priv->rx_buf_size - DPAA2_ETH_RX_HWA_SIZE -
dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM;
if (mfl > linear_mfl) {
netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n",
linear_mfl - VLAN_ETH_HLEN);
return false;
}
return true;
}
static int dpaa2_eth_set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp)
{
int mfl, err;
/* We enforce a maximum Rx frame length based on MTU only if we have
* an XDP program attached (in order to avoid Rx S/G frames).
* Otherwise, we accept all incoming frames as long as they are not
* larger than maximum size supported in hardware
*/
if (has_xdp)
mfl = DPAA2_ETH_L2_MAX_FRM(mtu);
else
mfl = DPAA2_ETH_MFL;
err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl);
if (err) {
netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n");
return err;
}
return 0;
}
static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu)
{
struct dpaa2_eth_priv *priv = netdev_priv(dev);
int err;
if (!priv->xdp_prog)
goto out;
if (!xdp_mtu_valid(priv, new_mtu))
return -EINVAL;
err = dpaa2_eth_set_rx_mfl(priv, new_mtu, true);
if (err)
return err;
out:
dev->mtu = new_mtu;
return 0;
}
static int dpaa2_eth_update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp)
{
struct dpni_buffer_layout buf_layout = {0};
int err;
err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_RX, &buf_layout);
if (err) {
netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n");
return err;
}
/* Reserve extra headroom for XDP header size changes */
buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) +
(has_xdp ? XDP_PACKET_HEADROOM : 0);
buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM;
err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_RX, &buf_layout);
if (err) {
netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n");
return err;
}
return 0;
}
static int dpaa2_eth_setup_xdp(struct net_device *dev, struct bpf_prog *prog)
{
struct dpaa2_eth_priv *priv = netdev_priv(dev);
struct dpaa2_eth_channel *ch;
struct bpf_prog *old;
bool up, need_update;
int i, err;
if (prog && !xdp_mtu_valid(priv, dev->mtu))
return -EINVAL;
if (prog)
bpf_prog_add(prog, priv->num_channels);
up = netif_running(dev);
need_update = (!!priv->xdp_prog != !!prog);
if (up)
dev_close(dev);
/* While in xdp mode, enforce a maximum Rx frame size based on MTU.
* Also, when switching between xdp/non-xdp modes we need to reconfigure
* our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop,
* so we are sure no old format buffers will be used from now on.
*/
if (need_update) {
err = dpaa2_eth_set_rx_mfl(priv, dev->mtu, !!prog);
if (err)
goto out_err;
err = dpaa2_eth_update_rx_buffer_headroom(priv, !!prog);
if (err)
goto out_err;
}
old = xchg(&priv->xdp_prog, prog);
if (old)
bpf_prog_put(old);
for (i = 0; i < priv->num_channels; i++) {
ch = priv->channel[i];
old = xchg(&ch->xdp.prog, prog);
if (old)
bpf_prog_put(old);
}
if (up) {
err = dev_open(dev, NULL);
if (err)
return err;
}
return 0;
out_err:
if (prog)
bpf_prog_sub(prog, priv->num_channels);
if (up)
dev_open(dev, NULL);
return err;
}
static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp)
{
switch (xdp->command) {
case XDP_SETUP_PROG:
return dpaa2_eth_setup_xdp(dev, xdp->prog);
case XDP_SETUP_XSK_POOL:
return dpaa2_xsk_setup_pool(dev, xdp->xsk.pool, xdp->xsk.queue_id);
default:
return -EINVAL;
}
return 0;
}
static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev,
struct xdp_frame *xdpf,
struct dpaa2_fd *fd)
{
struct device *dev = net_dev->dev.parent;
unsigned int needed_headroom;
struct dpaa2_eth_swa *swa;
void *buffer_start, *aligned_start;
dma_addr_t addr;
/* We require a minimum headroom to be able to transmit the frame.
* Otherwise return an error and let the original net_device handle it
*/
needed_headroom = dpaa2_eth_needed_headroom(NULL);
if (xdpf->headroom < needed_headroom)
return -EINVAL;
/* Setup the FD fields */
memset(fd, 0, sizeof(*fd));
/* Align FD address, if possible */
buffer_start = xdpf->data - needed_headroom;
aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN,
DPAA2_ETH_TX_BUF_ALIGN);
if (aligned_start >= xdpf->data - xdpf->headroom)
buffer_start = aligned_start;
swa = (struct dpaa2_eth_swa *)buffer_start;
/* fill in necessary fields here */
swa->type = DPAA2_ETH_SWA_XDP;
swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start;
swa->xdp.xdpf = xdpf;
addr = dma_map_single(dev, buffer_start,
swa->xdp.dma_size,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(dev, addr)))
return -ENOMEM;
dpaa2_fd_set_addr(fd, addr);
dpaa2_fd_set_offset(fd, xdpf->data - buffer_start);
dpaa2_fd_set_len(fd, xdpf->len);
dpaa2_fd_set_format(fd, dpaa2_fd_single);
dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA);
return 0;
}
static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n,
struct xdp_frame **frames, u32 flags)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
struct dpaa2_eth_xdp_fds *xdp_redirect_fds;
struct rtnl_link_stats64 *percpu_stats;
struct dpaa2_eth_fq *fq;
struct dpaa2_fd *fds;
int enqueued, i, err;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
if (!netif_running(net_dev))
return -ENETDOWN;
fq = &priv->fq[smp_processor_id()];
xdp_redirect_fds = &fq->xdp_redirect_fds;
fds = xdp_redirect_fds->fds;
percpu_stats = this_cpu_ptr(priv->percpu_stats);
/* create a FD for each xdp_frame in the list received */
for (i = 0; i < n; i++) {
err = dpaa2_eth_xdp_create_fd(net_dev, frames[i], &fds[i]);
if (err)
break;
}
xdp_redirect_fds->num = i;
/* enqueue all the frame descriptors */
enqueued = dpaa2_eth_xdp_flush(priv, fq, xdp_redirect_fds);
/* update statistics */
percpu_stats->tx_packets += enqueued;
for (i = 0; i < enqueued; i++)
percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]);
return enqueued;
}
static int update_xps(struct dpaa2_eth_priv *priv)
{
struct net_device *net_dev = priv->net_dev;
struct cpumask xps_mask;
struct dpaa2_eth_fq *fq;
int i, num_queues, netdev_queues;
int err = 0;
num_queues = dpaa2_eth_queue_count(priv);
netdev_queues = (net_dev->num_tc ? : 1) * num_queues;
/* The first <num_queues> entries in priv->fq array are Tx/Tx conf
* queues, so only process those
*/
for (i = 0; i < netdev_queues; i++) {
fq = &priv->fq[i % num_queues];
cpumask_clear(&xps_mask);
cpumask_set_cpu(fq->target_cpu, &xps_mask);
err = netif_set_xps_queue(net_dev, &xps_mask, i);
if (err) {
netdev_warn_once(net_dev, "Error setting XPS queue\n");
break;
}
}
return err;
}
static int dpaa2_eth_setup_mqprio(struct net_device *net_dev,
struct tc_mqprio_qopt *mqprio)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
u8 num_tc, num_queues;
int i;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
num_queues = dpaa2_eth_queue_count(priv);
num_tc = mqprio->num_tc;
if (num_tc == net_dev->num_tc)
return 0;
if (num_tc > dpaa2_eth_tc_count(priv)) {
netdev_err(net_dev, "Max %d traffic classes supported\n",
dpaa2_eth_tc_count(priv));
return -EOPNOTSUPP;
}
if (!num_tc) {
netdev_reset_tc(net_dev);
netif_set_real_num_tx_queues(net_dev, num_queues);
goto out;
}
netdev_set_num_tc(net_dev, num_tc);
netif_set_real_num_tx_queues(net_dev, num_tc * num_queues);
for (i = 0; i < num_tc; i++)
netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues);
out:
update_xps(priv);
return 0;
}
#define bps_to_mbits(rate) (div_u64((rate), 1000000) * 8)
static int dpaa2_eth_setup_tbf(struct net_device *net_dev, struct tc_tbf_qopt_offload *p)
{
struct tc_tbf_qopt_offload_replace_params *cfg = &p->replace_params;
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
struct dpni_tx_shaping_cfg tx_cr_shaper = { 0 };
struct dpni_tx_shaping_cfg tx_er_shaper = { 0 };
int err;
if (p->command == TC_TBF_STATS)
return -EOPNOTSUPP;
/* Only per port Tx shaping */
if (p->parent != TC_H_ROOT)
return -EOPNOTSUPP;
if (p->command == TC_TBF_REPLACE) {
if (cfg->max_size > DPAA2_ETH_MAX_BURST_SIZE) {
netdev_err(net_dev, "burst size cannot be greater than %d\n",
DPAA2_ETH_MAX_BURST_SIZE);
return -EINVAL;
}
tx_cr_shaper.max_burst_size = cfg->max_size;
/* The TBF interface is in bytes/s, whereas DPAA2 expects the
* rate in Mbits/s
*/
tx_cr_shaper.rate_limit = bps_to_mbits(cfg->rate.rate_bytes_ps);
}
err = dpni_set_tx_shaping(priv->mc_io, 0, priv->mc_token, &tx_cr_shaper,
&tx_er_shaper, 0);
if (err) {
netdev_err(net_dev, "dpni_set_tx_shaping() = %d\n", err);
return err;
}
return 0;
}
static int dpaa2_eth_setup_tc(struct net_device *net_dev,
enum tc_setup_type type, void *type_data)
{
switch (type) {
case TC_SETUP_QDISC_MQPRIO:
return dpaa2_eth_setup_mqprio(net_dev, type_data);
case TC_SETUP_QDISC_TBF:
return dpaa2_eth_setup_tbf(net_dev, type_data);
default:
return -EOPNOTSUPP;
}
}
static const struct net_device_ops dpaa2_eth_ops = {
.ndo_open = dpaa2_eth_open,
.ndo_start_xmit = dpaa2_eth_tx,
.ndo_stop = dpaa2_eth_stop,
.ndo_set_mac_address = dpaa2_eth_set_addr,
.ndo_get_stats64 = dpaa2_eth_get_stats,
.ndo_set_rx_mode = dpaa2_eth_set_rx_mode,
.ndo_set_features = dpaa2_eth_set_features,
.ndo_eth_ioctl = dpaa2_eth_ioctl,
.ndo_change_mtu = dpaa2_eth_change_mtu,
.ndo_bpf = dpaa2_eth_xdp,
.ndo_xdp_xmit = dpaa2_eth_xdp_xmit,
.ndo_xsk_wakeup = dpaa2_xsk_wakeup,
.ndo_setup_tc = dpaa2_eth_setup_tc,
.ndo_vlan_rx_add_vid = dpaa2_eth_rx_add_vid,
.ndo_vlan_rx_kill_vid = dpaa2_eth_rx_kill_vid
};
static void dpaa2_eth_cdan_cb(struct dpaa2_io_notification_ctx *ctx)
{
struct dpaa2_eth_channel *ch;
ch = container_of(ctx, struct dpaa2_eth_channel, nctx);
/* Update NAPI statistics */
ch->stats.cdan++;
/* NAPI can also be scheduled from the AF_XDP Tx path. Mark a missed
* so that it can be rescheduled again.
*/
if (!napi_if_scheduled_mark_missed(&ch->napi))
napi_schedule(&ch->napi);
}
/* Allocate and configure a DPCON object */
static struct fsl_mc_device *dpaa2_eth_setup_dpcon(struct dpaa2_eth_priv *priv)
{
struct fsl_mc_device *dpcon;
struct device *dev = priv->net_dev->dev.parent;
int err;
err = fsl_mc_object_allocate(to_fsl_mc_device(dev),
FSL_MC_POOL_DPCON, &dpcon);
if (err) {
if (err == -ENXIO) {
dev_dbg(dev, "Waiting for DPCON\n");
err = -EPROBE_DEFER;
} else {
dev_info(dev, "Not enough DPCONs, will go on as-is\n");
}
return ERR_PTR(err);
}
err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle);
if (err) {
dev_err(dev, "dpcon_open() failed\n");
goto free;
}
err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle);
if (err) {
dev_err(dev, "dpcon_reset() failed\n");
goto close;
}
err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle);
if (err) {
dev_err(dev, "dpcon_enable() failed\n");
goto close;
}
return dpcon;
close:
dpcon_close(priv->mc_io, 0, dpcon->mc_handle);
free:
fsl_mc_object_free(dpcon);
return ERR_PTR(err);
}
static void dpaa2_eth_free_dpcon(struct dpaa2_eth_priv *priv,
struct fsl_mc_device *dpcon)
{
dpcon_disable(priv->mc_io, 0, dpcon->mc_handle);
dpcon_close(priv->mc_io, 0, dpcon->mc_handle);
fsl_mc_object_free(dpcon);
}
static struct dpaa2_eth_channel *dpaa2_eth_alloc_channel(struct dpaa2_eth_priv *priv)
{
struct dpaa2_eth_channel *channel;
struct dpcon_attr attr;
struct device *dev = priv->net_dev->dev.parent;
int err;
channel = kzalloc(sizeof(*channel), GFP_KERNEL);
if (!channel)
return NULL;
channel->dpcon = dpaa2_eth_setup_dpcon(priv);
if (IS_ERR(channel->dpcon)) {
err = PTR_ERR(channel->dpcon);
goto err_setup;
}
err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle,
&attr);
if (err) {
dev_err(dev, "dpcon_get_attributes() failed\n");
goto err_get_attr;
}
channel->dpcon_id = attr.id;
channel->ch_id = attr.qbman_ch_id;
channel->priv = priv;
return channel;
err_get_attr:
dpaa2_eth_free_dpcon(priv, channel->dpcon);
err_setup:
kfree(channel);
return ERR_PTR(err);
}
static void dpaa2_eth_free_channel(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_channel *channel)
{
dpaa2_eth_free_dpcon(priv, channel->dpcon);
kfree(channel);
}
/* DPIO setup: allocate and configure QBMan channels, setup core affinity
* and register data availability notifications
*/
static int dpaa2_eth_setup_dpio(struct dpaa2_eth_priv *priv)
{
struct dpaa2_io_notification_ctx *nctx;
struct dpaa2_eth_channel *channel;
struct dpcon_notification_cfg dpcon_notif_cfg;
struct device *dev = priv->net_dev->dev.parent;
int i, err;
/* We want the ability to spread ingress traffic (RX, TX conf) to as
* many cores as possible, so we need one channel for each core
* (unless there's fewer queues than cores, in which case the extra
* channels would be wasted).
* Allocate one channel per core and register it to the core's
* affine DPIO. If not enough channels are available for all cores
* or if some cores don't have an affine DPIO, there will be no
* ingress frame processing on those cores.
*/
cpumask_clear(&priv->dpio_cpumask);
for_each_online_cpu(i) {
/* Try to allocate a channel */
channel = dpaa2_eth_alloc_channel(priv);
if (IS_ERR_OR_NULL(channel)) {
err = PTR_ERR_OR_ZERO(channel);
if (err == -EPROBE_DEFER)
dev_dbg(dev, "waiting for affine channel\n");
else
dev_info(dev,
"No affine channel for cpu %d and above\n", i);
goto err_alloc_ch;
}
priv->channel[priv->num_channels] = channel;
nctx = &channel->nctx;
nctx->is_cdan = 1;
nctx->cb = dpaa2_eth_cdan_cb;
nctx->id = channel->ch_id;
nctx->desired_cpu = i;
/* Register the new context */
channel->dpio = dpaa2_io_service_select(i);
err = dpaa2_io_service_register(channel->dpio, nctx, dev);
if (err) {
dev_dbg(dev, "No affine DPIO for cpu %d\n", i);
/* If no affine DPIO for this core, there's probably
* none available for next cores either. Signal we want
* to retry later, in case the DPIO devices weren't
* probed yet.
*/
err = -EPROBE_DEFER;
goto err_service_reg;
}
/* Register DPCON notification with MC */
dpcon_notif_cfg.dpio_id = nctx->dpio_id;
dpcon_notif_cfg.priority = 0;
dpcon_notif_cfg.user_ctx = nctx->qman64;
err = dpcon_set_notification(priv->mc_io, 0,
channel->dpcon->mc_handle,
&dpcon_notif_cfg);
if (err) {
dev_err(dev, "dpcon_set_notification failed()\n");
goto err_set_cdan;
}
/* If we managed to allocate a channel and also found an affine
* DPIO for this core, add it to the final mask
*/
cpumask_set_cpu(i, &priv->dpio_cpumask);
priv->num_channels++;
/* Stop if we already have enough channels to accommodate all
* RX and TX conf queues
*/
if (priv->num_channels == priv->dpni_attrs.num_queues)
break;
}
return 0;
err_set_cdan:
dpaa2_io_service_deregister(channel->dpio, nctx, dev);
err_service_reg:
dpaa2_eth_free_channel(priv, channel);
err_alloc_ch:
if (err == -EPROBE_DEFER) {
for (i = 0; i < priv->num_channels; i++) {
channel = priv->channel[i];
nctx = &channel->nctx;
dpaa2_io_service_deregister(channel->dpio, nctx, dev);
dpaa2_eth_free_channel(priv, channel);
}
priv->num_channels = 0;
return err;
}
if (cpumask_empty(&priv->dpio_cpumask)) {
dev_err(dev, "No cpu with an affine DPIO/DPCON\n");
return -ENODEV;
}
dev_info(dev, "Cores %*pbl available for processing ingress traffic\n",
cpumask_pr_args(&priv->dpio_cpumask));
return 0;
}
static void dpaa2_eth_free_dpio(struct dpaa2_eth_priv *priv)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpaa2_eth_channel *ch;
int i;
/* deregister CDAN notifications and free channels */
for (i = 0; i < priv->num_channels; i++) {
ch = priv->channel[i];
dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev);
dpaa2_eth_free_channel(priv, ch);
}
}
static struct dpaa2_eth_channel *dpaa2_eth_get_affine_channel(struct dpaa2_eth_priv *priv,
int cpu)
{
struct device *dev = priv->net_dev->dev.parent;
int i;
for (i = 0; i < priv->num_channels; i++)
if (priv->channel[i]->nctx.desired_cpu == cpu)
return priv->channel[i];
/* We should never get here. Issue a warning and return
* the first channel, because it's still better than nothing
*/
dev_warn(dev, "No affine channel found for cpu %d\n", cpu);
return priv->channel[0];
}
static void dpaa2_eth_set_fq_affinity(struct dpaa2_eth_priv *priv)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpaa2_eth_fq *fq;
int rx_cpu, txc_cpu;
int i;
/* For each FQ, pick one channel/CPU to deliver frames to.
* This may well change at runtime, either through irqbalance or
* through direct user intervention.
*/
rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask);
for (i = 0; i < priv->num_fqs; i++) {
fq = &priv->fq[i];
switch (fq->type) {
case DPAA2_RX_FQ:
case DPAA2_RX_ERR_FQ:
fq->target_cpu = rx_cpu;
rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask);
if (rx_cpu >= nr_cpu_ids)
rx_cpu = cpumask_first(&priv->dpio_cpumask);
break;
case DPAA2_TX_CONF_FQ:
fq->target_cpu = txc_cpu;
txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask);
if (txc_cpu >= nr_cpu_ids)
txc_cpu = cpumask_first(&priv->dpio_cpumask);
break;
default:
dev_err(dev, "Unknown FQ type: %d\n", fq->type);
}
fq->channel = dpaa2_eth_get_affine_channel(priv, fq->target_cpu);
}
update_xps(priv);
}
static void dpaa2_eth_setup_fqs(struct dpaa2_eth_priv *priv)
{
int i, j;
/* We have one TxConf FQ per Tx flow.
* The number of Tx and Rx queues is the same.
* Tx queues come first in the fq array.
*/
for (i = 0; i < dpaa2_eth_queue_count(priv); i++) {
priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ;
priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf;
priv->fq[priv->num_fqs++].flowid = (u16)i;
}
for (j = 0; j < dpaa2_eth_tc_count(priv); j++) {
for (i = 0; i < dpaa2_eth_queue_count(priv); i++) {
priv->fq[priv->num_fqs].type = DPAA2_RX_FQ;
priv->fq[priv->num_fqs].consume = dpaa2_eth_rx;
priv->fq[priv->num_fqs].tc = (u8)j;
priv->fq[priv->num_fqs++].flowid = (u16)i;
}
}
/* We have exactly one Rx error queue per DPNI */
priv->fq[priv->num_fqs].type = DPAA2_RX_ERR_FQ;
priv->fq[priv->num_fqs++].consume = dpaa2_eth_rx_err;
/* For each FQ, decide on which core to process incoming frames */
dpaa2_eth_set_fq_affinity(priv);
}
/* Allocate and configure a buffer pool */
struct dpaa2_eth_bp *dpaa2_eth_allocate_dpbp(struct dpaa2_eth_priv *priv)
{
struct device *dev = priv->net_dev->dev.parent;
struct fsl_mc_device *dpbp_dev;
struct dpbp_attr dpbp_attrs;
struct dpaa2_eth_bp *bp;
int err;
err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP,
&dpbp_dev);
if (err) {
if (err == -ENXIO)
err = -EPROBE_DEFER;
else
dev_err(dev, "DPBP device allocation failed\n");
return ERR_PTR(err);
}
bp = kzalloc(sizeof(*bp), GFP_KERNEL);
if (!bp) {
err = -ENOMEM;
goto err_alloc;
}
err = dpbp_open(priv->mc_io, 0, dpbp_dev->obj_desc.id,
&dpbp_dev->mc_handle);
if (err) {
dev_err(dev, "dpbp_open() failed\n");
goto err_open;
}
err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle);
if (err) {
dev_err(dev, "dpbp_reset() failed\n");
goto err_reset;
}
err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle);
if (err) {
dev_err(dev, "dpbp_enable() failed\n");
goto err_enable;
}
err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle,
&dpbp_attrs);
if (err) {
dev_err(dev, "dpbp_get_attributes() failed\n");
goto err_get_attr;
}
bp->dev = dpbp_dev;
bp->bpid = dpbp_attrs.bpid;
return bp;
err_get_attr:
dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle);
err_enable:
err_reset:
dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle);
err_open:
kfree(bp);
err_alloc:
fsl_mc_object_free(dpbp_dev);
return ERR_PTR(err);
}
static int dpaa2_eth_setup_default_dpbp(struct dpaa2_eth_priv *priv)
{
struct dpaa2_eth_bp *bp;
int i;
bp = dpaa2_eth_allocate_dpbp(priv);
if (IS_ERR(bp))
return PTR_ERR(bp);
priv->bp[DPAA2_ETH_DEFAULT_BP_IDX] = bp;
priv->num_bps++;
for (i = 0; i < priv->num_channels; i++)
priv->channel[i]->bp = bp;
return 0;
}
void dpaa2_eth_free_dpbp(struct dpaa2_eth_priv *priv, struct dpaa2_eth_bp *bp)
{
int idx_bp;
/* Find the index at which this BP is stored */
for (idx_bp = 0; idx_bp < priv->num_bps; idx_bp++)
if (priv->bp[idx_bp] == bp)
break;
/* Drain the pool and disable the associated MC object */
dpaa2_eth_drain_pool(priv, bp->bpid);
dpbp_disable(priv->mc_io, 0, bp->dev->mc_handle);
dpbp_close(priv->mc_io, 0, bp->dev->mc_handle);
fsl_mc_object_free(bp->dev);
kfree(bp);
/* Move the last in use DPBP over in this position */
priv->bp[idx_bp] = priv->bp[priv->num_bps - 1];
priv->num_bps--;
}
static void dpaa2_eth_free_dpbps(struct dpaa2_eth_priv *priv)
{
int i;
for (i = 0; i < priv->num_bps; i++)
dpaa2_eth_free_dpbp(priv, priv->bp[i]);
}
static int dpaa2_eth_set_buffer_layout(struct dpaa2_eth_priv *priv)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_buffer_layout buf_layout = {0};
u16 rx_buf_align;
int err;
/* We need to check for WRIOP version 1.0.0, but depending on the MC
* version, this number is not always provided correctly on rev1.
* We need to check for both alternatives in this situation.
*/
if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) ||
priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0))
rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1;
else
rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN;
/* We need to ensure that the buffer size seen by WRIOP is a multiple
* of 64 or 256 bytes depending on the WRIOP version.
*/
priv->rx_buf_size = ALIGN_DOWN(DPAA2_ETH_RX_BUF_SIZE, rx_buf_align);
/* tx buffer */
buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE;
buf_layout.pass_timestamp = true;
buf_layout.pass_frame_status = true;
buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE |
DPNI_BUF_LAYOUT_OPT_TIMESTAMP |
DPNI_BUF_LAYOUT_OPT_FRAME_STATUS;
err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_TX, &buf_layout);
if (err) {
dev_err(dev, "dpni_set_buffer_layout(TX) failed\n");
return err;
}
/* tx-confirm buffer */
buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP |
DPNI_BUF_LAYOUT_OPT_FRAME_STATUS;
err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_TX_CONFIRM, &buf_layout);
if (err) {
dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n");
return err;
}
/* Now that we've set our tx buffer layout, retrieve the minimum
* required tx data offset.
*/
err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token,
&priv->tx_data_offset);
if (err) {
dev_err(dev, "dpni_get_tx_data_offset() failed\n");
return err;
}
if ((priv->tx_data_offset % 64) != 0)
dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n",
priv->tx_data_offset);
/* rx buffer */
buf_layout.pass_frame_status = true;
buf_layout.pass_parser_result = true;
buf_layout.data_align = rx_buf_align;
buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv);
buf_layout.private_data_size = 0;
buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT |
DPNI_BUF_LAYOUT_OPT_FRAME_STATUS |
DPNI_BUF_LAYOUT_OPT_DATA_ALIGN |
DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM |
DPNI_BUF_LAYOUT_OPT_TIMESTAMP;
err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_RX, &buf_layout);
if (err) {
dev_err(dev, "dpni_set_buffer_layout(RX) failed\n");
return err;
}
return 0;
}
#define DPNI_ENQUEUE_FQID_VER_MAJOR 7
#define DPNI_ENQUEUE_FQID_VER_MINOR 9
static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_fq *fq,
struct dpaa2_fd *fd, u8 prio,
u32 num_frames __always_unused,
int *frames_enqueued)
{
int err;
err = dpaa2_io_service_enqueue_qd(fq->channel->dpio,
priv->tx_qdid, prio,
fq->tx_qdbin, fd);
if (!err && frames_enqueued)
*frames_enqueued = 1;
return err;
}
static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_fq *fq,
struct dpaa2_fd *fd,
u8 prio, u32 num_frames,
int *frames_enqueued)
{
int err;
err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio,
fq->tx_fqid[prio],
fd, num_frames);
if (err == 0)
return -EBUSY;
if (frames_enqueued)
*frames_enqueued = err;
return 0;
}
static void dpaa2_eth_set_enqueue_mode(struct dpaa2_eth_priv *priv)
{
if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR,
DPNI_ENQUEUE_FQID_VER_MINOR) < 0)
priv->enqueue = dpaa2_eth_enqueue_qd;
else
priv->enqueue = dpaa2_eth_enqueue_fq_multiple;
}
static int dpaa2_eth_set_pause(struct dpaa2_eth_priv *priv)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_link_cfg link_cfg = {0};
int err;
/* Get the default link options so we don't override other flags */
err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg);
if (err) {
dev_err(dev, "dpni_get_link_cfg() failed\n");
return err;
}
/* By default, enable both Rx and Tx pause frames */
link_cfg.options |= DPNI_LINK_OPT_PAUSE;
link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE;
err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg);
if (err) {
dev_err(dev, "dpni_set_link_cfg() failed\n");
return err;
}
priv->link_state.options = link_cfg.options;
return 0;
}
static void dpaa2_eth_update_tx_fqids(struct dpaa2_eth_priv *priv)
{
struct dpni_queue_id qid = {0};
struct dpaa2_eth_fq *fq;
struct dpni_queue queue;
int i, j, err;
/* We only use Tx FQIDs for FQID-based enqueue, so check
* if DPNI version supports it before updating FQIDs
*/
if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR,
DPNI_ENQUEUE_FQID_VER_MINOR) < 0)
return;
for (i = 0; i < priv->num_fqs; i++) {
fq = &priv->fq[i];
if (fq->type != DPAA2_TX_CONF_FQ)
continue;
for (j = 0; j < dpaa2_eth_tc_count(priv); j++) {
err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_TX, j, fq->flowid,
&queue, &qid);
if (err)
goto out_err;
fq->tx_fqid[j] = qid.fqid;
if (fq->tx_fqid[j] == 0)
goto out_err;
}
}
priv->enqueue = dpaa2_eth_enqueue_fq_multiple;
return;
out_err:
netdev_info(priv->net_dev,
"Error reading Tx FQID, fallback to QDID-based enqueue\n");
priv->enqueue = dpaa2_eth_enqueue_qd;
}
/* Configure ingress classification based on VLAN PCP */
static int dpaa2_eth_set_vlan_qos(struct dpaa2_eth_priv *priv)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpkg_profile_cfg kg_cfg = {0};
struct dpni_qos_tbl_cfg qos_cfg = {0};
struct dpni_rule_cfg key_params;
void *dma_mem, *key, *mask;
u8 key_size = 2; /* VLAN TCI field */
int i, pcp, err;
/* VLAN-based classification only makes sense if we have multiple
* traffic classes.
* Also, we need to extract just the 3-bit PCP field from the VLAN
* header and we can only do that by using a mask
*/
if (dpaa2_eth_tc_count(priv) == 1 || !dpaa2_eth_fs_mask_enabled(priv)) {
dev_dbg(dev, "VLAN-based QoS classification not supported\n");
return -EOPNOTSUPP;
}
dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL);
if (!dma_mem)
return -ENOMEM;
kg_cfg.num_extracts = 1;
kg_cfg.extracts[0].type = DPKG_EXTRACT_FROM_HDR;
kg_cfg.extracts[0].extract.from_hdr.prot = NET_PROT_VLAN;
kg_cfg.extracts[0].extract.from_hdr.type = DPKG_FULL_FIELD;
kg_cfg.extracts[0].extract.from_hdr.field = NH_FLD_VLAN_TCI;
err = dpni_prepare_key_cfg(&kg_cfg, dma_mem);
if (err) {
dev_err(dev, "dpni_prepare_key_cfg failed\n");
goto out_free_tbl;
}
/* set QoS table */
qos_cfg.default_tc = 0;
qos_cfg.discard_on_miss = 0;
qos_cfg.key_cfg_iova = dma_map_single(dev, dma_mem,
DPAA2_CLASSIFIER_DMA_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, qos_cfg.key_cfg_iova)) {
dev_err(dev, "QoS table DMA mapping failed\n");
err = -ENOMEM;
goto out_free_tbl;
}
err = dpni_set_qos_table(priv->mc_io, 0, priv->mc_token, &qos_cfg);
if (err) {
dev_err(dev, "dpni_set_qos_table failed\n");
goto out_unmap_tbl;
}
/* Add QoS table entries */
key = kzalloc(key_size * 2, GFP_KERNEL);
if (!key) {
err = -ENOMEM;
goto out_unmap_tbl;
}
mask = key + key_size;
*(__be16 *)mask = cpu_to_be16(VLAN_PRIO_MASK);
key_params.key_iova = dma_map_single(dev, key, key_size * 2,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, key_params.key_iova)) {
dev_err(dev, "Qos table entry DMA mapping failed\n");
err = -ENOMEM;
goto out_free_key;
}
key_params.mask_iova = key_params.key_iova + key_size;
key_params.key_size = key_size;
/* We add rules for PCP-based distribution starting with highest
* priority (VLAN PCP = 7). If this DPNI doesn't have enough traffic
* classes to accommodate all priority levels, the lowest ones end up
* on TC 0 which was configured as default
*/
for (i = dpaa2_eth_tc_count(priv) - 1, pcp = 7; i >= 0; i--, pcp--) {
*(__be16 *)key = cpu_to_be16(pcp << VLAN_PRIO_SHIFT);
dma_sync_single_for_device(dev, key_params.key_iova,
key_size * 2, DMA_TO_DEVICE);
err = dpni_add_qos_entry(priv->mc_io, 0, priv->mc_token,
&key_params, i, i);
if (err) {
dev_err(dev, "dpni_add_qos_entry failed\n");
dpni_clear_qos_table(priv->mc_io, 0, priv->mc_token);
goto out_unmap_key;
}
}
priv->vlan_cls_enabled = true;
/* Table and key memory is not persistent, clean everything up after
* configuration is finished
*/
out_unmap_key:
dma_unmap_single(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE);
out_free_key:
kfree(key);
out_unmap_tbl:
dma_unmap_single(dev, qos_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE,
DMA_TO_DEVICE);
out_free_tbl:
kfree(dma_mem);
return err;
}
/* Configure the DPNI object this interface is associated with */
static int dpaa2_eth_setup_dpni(struct fsl_mc_device *ls_dev)
{
struct device *dev = &ls_dev->dev;
struct dpaa2_eth_priv *priv;
struct net_device *net_dev;
int err;
net_dev = dev_get_drvdata(dev);
priv = netdev_priv(net_dev);
/* get a handle for the DPNI object */
err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token);
if (err) {
dev_err(dev, "dpni_open() failed\n");
return err;
}
/* Check if we can work with this DPNI object */
err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major,
&priv->dpni_ver_minor);
if (err) {
dev_err(dev, "dpni_get_api_version() failed\n");
goto close;
}
if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) {
dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n",
priv->dpni_ver_major, priv->dpni_ver_minor,
DPNI_VER_MAJOR, DPNI_VER_MINOR);
err = -ENOTSUPP;
goto close;
}
ls_dev->mc_io = priv->mc_io;
ls_dev->mc_handle = priv->mc_token;
err = dpni_reset(priv->mc_io, 0, priv->mc_token);
if (err) {
dev_err(dev, "dpni_reset() failed\n");
goto close;
}
err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token,
&priv->dpni_attrs);
if (err) {
dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err);
goto close;
}
err = dpaa2_eth_set_buffer_layout(priv);
if (err)
goto close;
dpaa2_eth_set_enqueue_mode(priv);
/* Enable pause frame support */
if (dpaa2_eth_has_pause_support(priv)) {
err = dpaa2_eth_set_pause(priv);
if (err)
goto close;
}
err = dpaa2_eth_set_vlan_qos(priv);
if (err && err != -EOPNOTSUPP)
goto close;
priv->cls_rules = devm_kcalloc(dev, dpaa2_eth_fs_count(priv),
sizeof(struct dpaa2_eth_cls_rule),
GFP_KERNEL);
if (!priv->cls_rules) {
err = -ENOMEM;
goto close;
}
return 0;
close:
dpni_close(priv->mc_io, 0, priv->mc_token);
return err;
}
static void dpaa2_eth_free_dpni(struct dpaa2_eth_priv *priv)
{
int err;
err = dpni_reset(priv->mc_io, 0, priv->mc_token);
if (err)
netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n",
err);
dpni_close(priv->mc_io, 0, priv->mc_token);
}
static int dpaa2_eth_setup_rx_flow(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_fq *fq)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_queue queue;
struct dpni_queue_id qid;
int err;
err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_RX, fq->tc, fq->flowid, &queue, &qid);
if (err) {
dev_err(dev, "dpni_get_queue(RX) failed\n");
return err;
}
fq->fqid = qid.fqid;
queue.destination.id = fq->channel->dpcon_id;
queue.destination.type = DPNI_DEST_DPCON;
queue.destination.priority = 1;
queue.user_context = (u64)(uintptr_t)fq;
err = dpni_set_queue(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_RX, fq->tc, fq->flowid,
DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST,
&queue);
if (err) {
dev_err(dev, "dpni_set_queue(RX) failed\n");
return err;
}
/* xdp_rxq setup */
/* only once for each channel */
if (fq->tc > 0)
return 0;
err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev,
fq->flowid, 0);
if (err) {
dev_err(dev, "xdp_rxq_info_reg failed\n");
return err;
}
err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq,
MEM_TYPE_PAGE_ORDER0, NULL);
if (err) {
dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n");
return err;
}
return 0;
}
static int dpaa2_eth_setup_tx_flow(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_fq *fq)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_queue queue;
struct dpni_queue_id qid;
int i, err;
for (i = 0; i < dpaa2_eth_tc_count(priv); i++) {
err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_TX, i, fq->flowid,
&queue, &qid);
if (err) {
dev_err(dev, "dpni_get_queue(TX) failed\n");
return err;
}
fq->tx_fqid[i] = qid.fqid;
}
/* All Tx queues belonging to the same flowid have the same qdbin */
fq->tx_qdbin = qid.qdbin;
err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid,
&queue, &qid);
if (err) {
dev_err(dev, "dpni_get_queue(TX_CONF) failed\n");
return err;
}
fq->fqid = qid.fqid;
queue.destination.id = fq->channel->dpcon_id;
queue.destination.type = DPNI_DEST_DPCON;
queue.destination.priority = 0;
queue.user_context = (u64)(uintptr_t)fq;
err = dpni_set_queue(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid,
DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST,
&queue);
if (err) {
dev_err(dev, "dpni_set_queue(TX_CONF) failed\n");
return err;
}
return 0;
}
static int setup_rx_err_flow(struct dpaa2_eth_priv *priv,
struct dpaa2_eth_fq *fq)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_queue q = { { 0 } };
struct dpni_queue_id qid;
u8 q_opt = DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST;
int err;
err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_RX_ERR, 0, 0, &q, &qid);
if (err) {
dev_err(dev, "dpni_get_queue() failed (%d)\n", err);
return err;
}
fq->fqid = qid.fqid;
q.destination.id = fq->channel->dpcon_id;
q.destination.type = DPNI_DEST_DPCON;
q.destination.priority = 1;
q.user_context = (u64)(uintptr_t)fq;
err = dpni_set_queue(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_RX_ERR, 0, 0, q_opt, &q);
if (err) {
dev_err(dev, "dpni_set_queue() failed (%d)\n", err);
return err;
}
return 0;
}
/* Supported header fields for Rx hash distribution key */
static const struct dpaa2_eth_dist_fields dist_fields[] = {
{
/* L2 header */
.rxnfc_field = RXH_L2DA,
.cls_prot = NET_PROT_ETH,
.cls_field = NH_FLD_ETH_DA,
.id = DPAA2_ETH_DIST_ETHDST,
.size = 6,
}, {
.cls_prot = NET_PROT_ETH,
.cls_field = NH_FLD_ETH_SA,
.id = DPAA2_ETH_DIST_ETHSRC,
.size = 6,
}, {
/* This is the last ethertype field parsed:
* depending on frame format, it can be the MAC ethertype
* or the VLAN etype.
*/
.cls_prot = NET_PROT_ETH,
.cls_field = NH_FLD_ETH_TYPE,
.id = DPAA2_ETH_DIST_ETHTYPE,
.size = 2,
}, {
/* VLAN header */
.rxnfc_field = RXH_VLAN,
.cls_prot = NET_PROT_VLAN,
.cls_field = NH_FLD_VLAN_TCI,
.id = DPAA2_ETH_DIST_VLAN,
.size = 2,
}, {
/* IP header */
.rxnfc_field = RXH_IP_SRC,
.cls_prot = NET_PROT_IP,
.cls_field = NH_FLD_IP_SRC,
.id = DPAA2_ETH_DIST_IPSRC,
.size = 4,
}, {
.rxnfc_field = RXH_IP_DST,
.cls_prot = NET_PROT_IP,
.cls_field = NH_FLD_IP_DST,
.id = DPAA2_ETH_DIST_IPDST,
.size = 4,
}, {
.rxnfc_field = RXH_L3_PROTO,
.cls_prot = NET_PROT_IP,
.cls_field = NH_FLD_IP_PROTO,
.id = DPAA2_ETH_DIST_IPPROTO,
.size = 1,
}, {
/* Using UDP ports, this is functionally equivalent to raw
* byte pairs from L4 header.
*/
.rxnfc_field = RXH_L4_B_0_1,
.cls_prot = NET_PROT_UDP,
.cls_field = NH_FLD_UDP_PORT_SRC,
.id = DPAA2_ETH_DIST_L4SRC,
.size = 2,
}, {
.rxnfc_field = RXH_L4_B_2_3,
.cls_prot = NET_PROT_UDP,
.cls_field = NH_FLD_UDP_PORT_DST,
.id = DPAA2_ETH_DIST_L4DST,
.size = 2,
},
};
/* Configure the Rx hash key using the legacy API */
static int dpaa2_eth_config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_rx_tc_dist_cfg dist_cfg;
int i, err = 0;
memset(&dist_cfg, 0, sizeof(dist_cfg));
dist_cfg.key_cfg_iova = key;
dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
dist_cfg.dist_mode = DPNI_DIST_MODE_HASH;
for (i = 0; i < dpaa2_eth_tc_count(priv); i++) {
err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token,
i, &dist_cfg);
if (err) {
dev_err(dev, "dpni_set_rx_tc_dist failed\n");
break;
}
}
return err;
}
/* Configure the Rx hash key using the new API */
static int dpaa2_eth_config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_rx_dist_cfg dist_cfg;
int i, err = 0;
memset(&dist_cfg, 0, sizeof(dist_cfg));
dist_cfg.key_cfg_iova = key;
dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
dist_cfg.enable = 1;
for (i = 0; i < dpaa2_eth_tc_count(priv); i++) {
dist_cfg.tc = i;
err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token,
&dist_cfg);
if (err) {
dev_err(dev, "dpni_set_rx_hash_dist failed\n");
break;
}
/* If the flow steering / hashing key is shared between all
* traffic classes, install it just once
*/
if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS)
break;
}
return err;
}
/* Configure the Rx flow classification key */
static int dpaa2_eth_config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
{
struct device *dev = priv->net_dev->dev.parent;
struct dpni_rx_dist_cfg dist_cfg;
int i, err = 0;
memset(&dist_cfg, 0, sizeof(dist_cfg));
dist_cfg.key_cfg_iova = key;
dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
dist_cfg.enable = 1;
for (i = 0; i < dpaa2_eth_tc_count(priv); i++) {
dist_cfg.tc = i;
err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token,
&dist_cfg);
if (err) {
dev_err(dev, "dpni_set_rx_fs_dist failed\n");
break;
}
/* If the flow steering / hashing key is shared between all
* traffic classes, install it just once
*/
if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS)
break;
}
return err;
}
/* Size of the Rx flow classification key */
int dpaa2_eth_cls_key_size(u64 fields)
{
int i, size = 0;
for (i = 0; i < ARRAY_SIZE(dist_fields); i++) {
if (!(fields & dist_fields[i].id))
continue;
size += dist_fields[i].size;
}
return size;
}
/* Offset of header field in Rx classification key */
int dpaa2_eth_cls_fld_off(int prot, int field)
{
int i, off = 0;
for (i = 0; i < ARRAY_SIZE(dist_fields); i++) {
if (dist_fields[i].cls_prot == prot &&
dist_fields[i].cls_field == field)
return off;
off += dist_fields[i].size;
}
WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n");
return 0;
}
/* Prune unused fields from the classification rule.
* Used when masking is not supported
*/
void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields)
{
int off = 0, new_off = 0;
int i, size;
for (i = 0; i < ARRAY_SIZE(dist_fields); i++) {
size = dist_fields[i].size;
if (dist_fields[i].id & fields) {
memcpy(key_mem + new_off, key_mem + off, size);
new_off += size;
}
off += size;
}
}
/* Set Rx distribution (hash or flow classification) key
* flags is a combination of RXH_ bits
*/
static int dpaa2_eth_set_dist_key(struct net_device *net_dev,
enum dpaa2_eth_rx_dist type, u64 flags)
{
struct device *dev = net_dev->dev.parent;
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
struct dpkg_profile_cfg cls_cfg;
u32 rx_hash_fields = 0;
dma_addr_t key_iova;
u8 *dma_mem;
int i;
int err = 0;
memset(&cls_cfg, 0, sizeof(cls_cfg));
for (i = 0; i < ARRAY_SIZE(dist_fields); i++) {
struct dpkg_extract *key =
&cls_cfg.extracts[cls_cfg.num_extracts];
/* For both Rx hashing and classification keys
* we set only the selected fields.
*/
if (!(flags & dist_fields[i].id))
continue;
if (type == DPAA2_ETH_RX_DIST_HASH)
rx_hash_fields |= dist_fields[i].rxnfc_field;
if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) {
dev_err(dev, "error adding key extraction rule, too many rules?\n");
return -E2BIG;
}
key->type = DPKG_EXTRACT_FROM_HDR;
key->extract.from_hdr.prot = dist_fields[i].cls_prot;
key->extract.from_hdr.type = DPKG_FULL_FIELD;
key->extract.from_hdr.field = dist_fields[i].cls_field;
cls_cfg.num_extracts++;
}
dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL);
if (!dma_mem)
return -ENOMEM;
err = dpni_prepare_key_cfg(&cls_cfg, dma_mem);
if (err) {
dev_err(dev, "dpni_prepare_key_cfg error %d\n", err);
goto free_key;
}
/* Prepare for setting the rx dist */
key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, key_iova)) {
dev_err(dev, "DMA mapping failed\n");
err = -ENOMEM;
goto free_key;
}
if (type == DPAA2_ETH_RX_DIST_HASH) {
if (dpaa2_eth_has_legacy_dist(priv))
err = dpaa2_eth_config_legacy_hash_key(priv, key_iova);
else
err = dpaa2_eth_config_hash_key(priv, key_iova);
} else {
err = dpaa2_eth_config_cls_key(priv, key_iova);
}
dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE,
DMA_TO_DEVICE);
if (!err && type == DPAA2_ETH_RX_DIST_HASH)
priv->rx_hash_fields = rx_hash_fields;
free_key:
kfree(dma_mem);
return err;
}
int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags)
{
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
u64 key = 0;
int i;
if (!dpaa2_eth_hash_enabled(priv))
return -EOPNOTSUPP;
for (i = 0; i < ARRAY_SIZE(dist_fields); i++)
if (dist_fields[i].rxnfc_field & flags)
key |= dist_fields[i].id;
return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key);
}
int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags)
{
return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags);
}
static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv)
{
struct device *dev = priv->net_dev->dev.parent;
int err;
/* Check if we actually support Rx flow classification */
if (dpaa2_eth_has_legacy_dist(priv)) {
dev_dbg(dev, "Rx cls not supported by current MC version\n");
return -EOPNOTSUPP;
}
if (!dpaa2_eth_fs_enabled(priv)) {
dev_dbg(dev, "Rx cls disabled in DPNI options\n");
return -EOPNOTSUPP;
}
if (!dpaa2_eth_hash_enabled(priv)) {
dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n");
return -EOPNOTSUPP;
}
/* If there is no support for masking in the classification table,
* we don't set a default key, as it will depend on the rules
* added by the user at runtime.
*/
if (!dpaa2_eth_fs_mask_enabled(priv))
goto out;
err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL);
if (err)
return err;
out:
priv->rx_cls_enabled = 1;
return 0;
}
/* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs,
* frame queues and channels
*/
static int dpaa2_eth_bind_dpni(struct dpaa2_eth_priv *priv)
{
struct dpaa2_eth_bp *bp = priv->bp[DPAA2_ETH_DEFAULT_BP_IDX];
struct net_device *net_dev = priv->net_dev;
struct dpni_pools_cfg pools_params = { 0 };
struct device *dev = net_dev->dev.parent;
struct dpni_error_cfg err_cfg;
int err = 0;
int i;
pools_params.num_dpbp = 1;
pools_params.pools[0].dpbp_id = bp->dev->obj_desc.id;
pools_params.pools[0].backup_pool = 0;
pools_params.pools[0].buffer_size = priv->rx_buf_size;
err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params);
if (err) {
dev_err(dev, "dpni_set_pools() failed\n");
return err;
}
/* have the interface implicitly distribute traffic based on
* the default hash key
*/
err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT);
if (err && err != -EOPNOTSUPP)
dev_err(dev, "Failed to configure hashing\n");
/* Configure the flow classification key; it includes all
* supported header fields and cannot be modified at runtime
*/
err = dpaa2_eth_set_default_cls(priv);
if (err && err != -EOPNOTSUPP)
dev_err(dev, "Failed to configure Rx classification key\n");
/* Configure handling of error frames */
err_cfg.errors = DPAA2_FAS_RX_ERR_MASK;
err_cfg.set_frame_annotation = 1;
err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD;
err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token,
&err_cfg);
if (err) {
dev_err(dev, "dpni_set_errors_behavior failed\n");
return err;
}
/* Configure Rx and Tx conf queues to generate CDANs */
for (i = 0; i < priv->num_fqs; i++) {
switch (priv->fq[i].type) {
case DPAA2_RX_FQ:
err = dpaa2_eth_setup_rx_flow(priv, &priv->fq[i]);
break;
case DPAA2_TX_CONF_FQ:
err = dpaa2_eth_setup_tx_flow(priv, &priv->fq[i]);
break;
case DPAA2_RX_ERR_FQ:
err = setup_rx_err_flow(priv, &priv->fq[i]);
break;
default:
dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type);
return -EINVAL;
}
if (err)
return err;
}
err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token,
DPNI_QUEUE_TX, &priv->tx_qdid);
if (err) {
dev_err(dev, "dpni_get_qdid() failed\n");
return err;
}
return 0;
}
/* Allocate rings for storing incoming frame descriptors */
static int dpaa2_eth_alloc_rings(struct dpaa2_eth_priv *priv)
{
struct net_device *net_dev = priv->net_dev;
struct device *dev = net_dev->dev.parent;
int i;
for (i = 0; i < priv->num_channels; i++) {
priv->channel[i]->store =
dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev);
if (!priv->channel[i]->store) {
netdev_err(net_dev, "dpaa2_io_store_create() failed\n");
goto err_ring;
}
}
return 0;
err_ring:
for (i = 0; i < priv->num_channels; i++) {
if (!priv->channel[i]->store)
break;
dpaa2_io_store_destroy(priv->channel[i]->store);
}
return -ENOMEM;
}
static void dpaa2_eth_free_rings(struct dpaa2_eth_priv *priv)
{
int i;
for (i = 0; i < priv->num_channels; i++)
dpaa2_io_store_destroy(priv->channel[i]->store);
}
static int dpaa2_eth_set_mac_addr(struct dpaa2_eth_priv *priv)
{
struct net_device *net_dev = priv->net_dev;
struct device *dev = net_dev->dev.parent;
u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN];
int err;
/* Get firmware address, if any */
err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr);
if (err) {
dev_err(dev, "dpni_get_port_mac_addr() failed\n");
return err;
}
/* Get DPNI attributes address, if any */
err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
dpni_mac_addr);
if (err) {
dev_err(dev, "dpni_get_primary_mac_addr() failed\n");
return err;
}
/* First check if firmware has any address configured by bootloader */
if (!is_zero_ether_addr(mac_addr)) {
/* If the DPMAC addr != DPNI addr, update it */
if (!ether_addr_equal(mac_addr, dpni_mac_addr)) {
err = dpni_set_primary_mac_addr(priv->mc_io, 0,
priv->mc_token,
mac_addr);
if (err) {
dev_err(dev, "dpni_set_primary_mac_addr() failed\n");
return err;
}
}
eth_hw_addr_set(net_dev, mac_addr);
} else if (is_zero_ether_addr(dpni_mac_addr)) {
/* No MAC address configured, fill in net_dev->dev_addr
* with a random one
*/
eth_hw_addr_random(net_dev);
dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n");
err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
net_dev->dev_addr);
if (err) {
dev_err(dev, "dpni_set_primary_mac_addr() failed\n");
return err;
}
/* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all
* practical purposes, this will be our "permanent" mac address,
* at least until the next reboot. This move will also permit
* register_netdevice() to properly fill up net_dev->perm_addr.
*/
net_dev->addr_assign_type = NET_ADDR_PERM;
} else {
/* NET_ADDR_PERM is default, all we have to do is
* fill in the device addr.
*/
eth_hw_addr_set(net_dev, dpni_mac_addr);
}
return 0;
}
static int dpaa2_eth_netdev_init(struct net_device *net_dev)
{
struct device *dev = net_dev->dev.parent;
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
u32 options = priv->dpni_attrs.options;
u64 supported = 0, not_supported = 0;
u8 bcast_addr[ETH_ALEN];
u8 num_queues;
int err;
net_dev->netdev_ops = &dpaa2_eth_ops;
net_dev->ethtool_ops = &dpaa2_ethtool_ops;
err = dpaa2_eth_set_mac_addr(priv);
if (err)
return err;
/* Explicitly add the broadcast address to the MAC filtering table */
eth_broadcast_addr(bcast_addr);
err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr);
if (err) {
dev_err(dev, "dpni_add_mac_addr() failed\n");
return err;
}
/* Set MTU upper limit; lower limit is 68B (default value) */
net_dev->max_mtu = DPAA2_ETH_MAX_MTU;
err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token,
DPAA2_ETH_MFL);
if (err) {
dev_err(dev, "dpni_set_max_frame_length() failed\n");
return err;
}
/* Set actual number of queues in the net device */
num_queues = dpaa2_eth_queue_count(priv);
err = netif_set_real_num_tx_queues(net_dev, num_queues);
if (err) {
dev_err(dev, "netif_set_real_num_tx_queues() failed\n");
return err;
}
err = netif_set_real_num_rx_queues(net_dev, num_queues);
if (err) {
dev_err(dev, "netif_set_real_num_rx_queues() failed\n");
return err;
}
dpaa2_eth_detect_features(priv);
/* Capabilities listing */
supported |= IFF_LIVE_ADDR_CHANGE;
if (options & DPNI_OPT_NO_MAC_FILTER)
not_supported |= IFF_UNICAST_FLT;
else
supported |= IFF_UNICAST_FLT;
net_dev->priv_flags |= supported;
net_dev->priv_flags &= ~not_supported;
/* Features */
net_dev->features = NETIF_F_RXCSUM |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_SG | NETIF_F_HIGHDMA |
NETIF_F_LLTX | NETIF_F_HW_TC | NETIF_F_TSO;
net_dev->gso_max_segs = DPAA2_ETH_ENQUEUE_MAX_FDS;
net_dev->hw_features = net_dev->features;
if (priv->dpni_attrs.vlan_filter_entries)
net_dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
return 0;
}
static int dpaa2_eth_poll_link_state(void *arg)
{
struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg;
int err;
while (!kthread_should_stop()) {
err = dpaa2_eth_link_state_update(priv);
if (unlikely(err))
return err;
msleep(DPAA2_ETH_LINK_STATE_REFRESH);
}
return 0;
}
static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv)
{
struct fsl_mc_device *dpni_dev, *dpmac_dev;
struct dpaa2_mac *mac;
int err;
dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent);
dpmac_dev = fsl_mc_get_endpoint(dpni_dev, 0);
if (PTR_ERR(dpmac_dev) == -EPROBE_DEFER) {
netdev_dbg(priv->net_dev, "waiting for mac\n");
return PTR_ERR(dpmac_dev);
}
if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type)
return 0;
mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL);
if (!mac)
return -ENOMEM;
mac->mc_dev = dpmac_dev;
mac->mc_io = priv->mc_io;
mac->net_dev = priv->net_dev;
err = dpaa2_mac_open(mac);
if (err)
goto err_free_mac;
priv->mac = mac;
if (dpaa2_eth_is_type_phy(priv)) {
err = dpaa2_mac_connect(mac);
if (err) {
if (err == -EPROBE_DEFER)
netdev_dbg(priv->net_dev,
"could not connect to MAC\n");
else
netdev_err(priv->net_dev,
"Error connecting to the MAC endpoint: %pe",
ERR_PTR(err));
goto err_close_mac;
}
}
return 0;
err_close_mac:
dpaa2_mac_close(mac);
priv->mac = NULL;
err_free_mac:
kfree(mac);
return err;
}
static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv)
{
if (dpaa2_eth_is_type_phy(priv))
dpaa2_mac_disconnect(priv->mac);
if (!dpaa2_eth_has_mac(priv))
return;
dpaa2_mac_close(priv->mac);
kfree(priv->mac);
priv->mac = NULL;
}
static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg)
{
u32 status = ~0;
struct device *dev = (struct device *)arg;
struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev);
struct net_device *net_dev = dev_get_drvdata(dev);
struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
int err;
err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle,
DPNI_IRQ_INDEX, &status);
if (unlikely(err)) {
netdev_err(net_dev, "Can't get irq status (err %d)\n", err);
return IRQ_HANDLED;
}
if (status & DPNI_IRQ_EVENT_LINK_CHANGED)
dpaa2_eth_link_state_update(netdev_priv(net_dev));
if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) {
dpaa2_eth_set_mac_addr(netdev_priv(net_dev));
dpaa2_eth_update_tx_fqids(priv);
rtnl_lock();
if (dpaa2_eth_has_mac(priv))
dpaa2_eth_disconnect_mac(priv);
else
dpaa2_eth_connect_mac(priv);
rtnl_unlock();
}
return IRQ_HANDLED;
}
static int dpaa2_eth_setup_irqs(struct fsl_mc_device *ls_dev)
{
int err = 0;
struct fsl_mc_device_irq *irq;
err = fsl_mc_allocate_irqs(ls_dev);
if (err) {
dev_err(&ls_dev->dev, "MC irqs allocation failed\n");
return err;
}
irq = ls_dev->irqs[0];
err = devm_request_threaded_irq(&ls_dev->dev, irq->virq,
NULL, dpni_irq0_handler_thread,
IRQF_NO_SUSPEND | IRQF_ONESHOT,
dev_name(&ls_dev->dev), &ls_dev->dev);
if (err < 0) {
dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err);
goto free_mc_irq;
}
err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle,
DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED |
DPNI_IRQ_EVENT_ENDPOINT_CHANGED);
if (err < 0) {
dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err);
goto free_irq;
}
err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle,
DPNI_IRQ_INDEX, 1);
if (err < 0) {
dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err);
goto free_irq;
}
return 0;
free_irq:
devm_free_irq(&ls_dev->dev, irq->virq, &ls_dev->dev);
free_mc_irq:
fsl_mc_free_irqs(ls_dev);
return err;
}
static void dpaa2_eth_add_ch_napi(struct dpaa2_eth_priv *priv)
{
int i;
struct dpaa2_eth_channel *ch;
for (i = 0; i < priv->num_channels; i++) {
ch = priv->channel[i];
/* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */
netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll);
}
}
static void dpaa2_eth_del_ch_napi(struct dpaa2_eth_priv *priv)
{
int i;
struct dpaa2_eth_channel *ch;
for (i = 0; i < priv->num_channels; i++) {
ch = priv->channel[i];
netif_napi_del(&ch->napi);
}
}
static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev)
{
struct device *dev;
struct net_device *net_dev = NULL;
struct dpaa2_eth_priv *priv = NULL;
int err = 0;
dev = &dpni_dev->dev;
/* Net device */
net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES);
if (!net_dev) {
dev_err(dev, "alloc_etherdev_mq() failed\n");
return -ENOMEM;
}
SET_NETDEV_DEV(net_dev, dev);
dev_set_drvdata(dev, net_dev);
priv = netdev_priv(net_dev);
priv->net_dev = net_dev;
SET_NETDEV_DEVLINK_PORT(net_dev, &priv->devlink_port);
priv->iommu_domain = iommu_get_domain_for_dev(dev);
priv->tx_tstamp_type = HWTSTAMP_TX_OFF;
priv->rx_tstamp = false;
priv->dpaa2_ptp_wq = alloc_workqueue("dpaa2_ptp_wq", 0, 0);
if (!priv->dpaa2_ptp_wq) {
err = -ENOMEM;
goto err_wq_alloc;
}
INIT_WORK(&priv->tx_onestep_tstamp, dpaa2_eth_tx_onestep_tstamp);
mutex_init(&priv->onestep_tstamp_lock);
skb_queue_head_init(&priv->tx_skbs);
priv->rx_copybreak = DPAA2_ETH_DEFAULT_COPYBREAK;
/* Obtain a MC portal */
err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL,
&priv->mc_io);
if (err) {
if (err == -ENXIO) {
dev_dbg(dev, "waiting for MC portal\n");
err = -EPROBE_DEFER;
} else {
dev_err(dev, "MC portal allocation failed\n");
}
goto err_portal_alloc;
}
/* MC objects initialization and configuration */
err = dpaa2_eth_setup_dpni(dpni_dev);
if (err)
goto err_dpni_setup;
err = dpaa2_eth_setup_dpio(priv);
if (err)
goto err_dpio_setup;
dpaa2_eth_setup_fqs(priv);
err = dpaa2_eth_setup_default_dpbp(priv);
if (err)
goto err_dpbp_setup;
err = dpaa2_eth_bind_dpni(priv);
if (err)
goto err_bind;
/* Add a NAPI context for each channel */
dpaa2_eth_add_ch_napi(priv);
/* Percpu statistics */
priv->percpu_stats = alloc_percpu(*priv->percpu_stats);
if (!priv->percpu_stats) {
dev_err(dev, "alloc_percpu(percpu_stats) failed\n");
err = -ENOMEM;
goto err_alloc_percpu_stats;
}
priv->percpu_extras = alloc_percpu(*priv->percpu_extras);
if (!priv->percpu_extras) {
dev_err(dev, "alloc_percpu(percpu_extras) failed\n");
err = -ENOMEM;
goto err_alloc_percpu_extras;
}
priv->sgt_cache = alloc_percpu(*priv->sgt_cache);
if (!priv->sgt_cache) {
dev_err(dev, "alloc_percpu(sgt_cache) failed\n");
err = -ENOMEM;
goto err_alloc_sgt_cache;
}
priv->fd = alloc_percpu(*priv->fd);
if (!priv->fd) {
dev_err(dev, "alloc_percpu(fds) failed\n");
err = -ENOMEM;
goto err_alloc_fds;
}
err = dpaa2_eth_netdev_init(net_dev);
if (err)
goto err_netdev_init;
/* Configure checksum offload based on current interface flags */
err = dpaa2_eth_set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM));
if (err)
goto err_csum;
err = dpaa2_eth_set_tx_csum(priv,
!!(net_dev->features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)));
if (err)
goto err_csum;
err = dpaa2_eth_alloc_rings(priv);
if (err)
goto err_alloc_rings;
#ifdef CONFIG_FSL_DPAA2_ETH_DCB
if (dpaa2_eth_has_pause_support(priv) && priv->vlan_cls_enabled) {
priv->dcbx_mode = DCB_CAP_DCBX_HOST | DCB_CAP_DCBX_VER_IEEE;
net_dev->dcbnl_ops = &dpaa2_eth_dcbnl_ops;
} else {
dev_dbg(dev, "PFC not supported\n");
}
#endif
err = dpaa2_eth_setup_irqs(dpni_dev);
if (err) {
netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n");
priv->poll_thread = kthread_run(dpaa2_eth_poll_link_state, priv,
"%s_poll_link", net_dev->name);
if (IS_ERR(priv->poll_thread)) {
dev_err(dev, "Error starting polling thread\n");
goto err_poll_thread;
}
priv->do_link_poll = true;
}
err = dpaa2_eth_connect_mac(priv);
if (err)
goto err_connect_mac;
err = dpaa2_eth_dl_alloc(priv);
if (err)
goto err_dl_register;
err = dpaa2_eth_dl_traps_register(priv);
if (err)
goto err_dl_trap_register;
err = dpaa2_eth_dl_port_add(priv);
if (err)
goto err_dl_port_add;
err = register_netdev(net_dev);
if (err < 0) {
dev_err(dev, "register_netdev() failed\n");
goto err_netdev_reg;
}
#ifdef CONFIG_DEBUG_FS
dpaa2_dbg_add(priv);
#endif
dpaa2_eth_dl_register(priv);
dev_info(dev, "Probed interface %s\n", net_dev->name);
return 0;
err_netdev_reg:
dpaa2_eth_dl_port_del(priv);
err_dl_port_add:
dpaa2_eth_dl_traps_unregister(priv);
err_dl_trap_register:
dpaa2_eth_dl_free(priv);
err_dl_register:
dpaa2_eth_disconnect_mac(priv);
err_connect_mac:
if (priv->do_link_poll)
kthread_stop(priv->poll_thread);
else
fsl_mc_free_irqs(dpni_dev);
err_poll_thread:
dpaa2_eth_free_rings(priv);
err_alloc_rings:
err_csum:
err_netdev_init:
free_percpu(priv->fd);
err_alloc_fds:
free_percpu(priv->sgt_cache);
err_alloc_sgt_cache:
free_percpu(priv->percpu_extras);
err_alloc_percpu_extras:
free_percpu(priv->percpu_stats);
err_alloc_percpu_stats:
dpaa2_eth_del_ch_napi(priv);
err_bind:
dpaa2_eth_free_dpbps(priv);
err_dpbp_setup:
dpaa2_eth_free_dpio(priv);
err_dpio_setup:
dpaa2_eth_free_dpni(priv);
err_dpni_setup:
fsl_mc_portal_free(priv->mc_io);
err_portal_alloc:
destroy_workqueue(priv->dpaa2_ptp_wq);
err_wq_alloc:
dev_set_drvdata(dev, NULL);
free_netdev(net_dev);
return err;
}
static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev)
{
struct device *dev;
struct net_device *net_dev;
struct dpaa2_eth_priv *priv;
dev = &ls_dev->dev;
net_dev = dev_get_drvdata(dev);
priv = netdev_priv(net_dev);
dpaa2_eth_dl_unregister(priv);
#ifdef CONFIG_DEBUG_FS
dpaa2_dbg_remove(priv);
#endif
unregister_netdev(net_dev);
rtnl_lock();
dpaa2_eth_disconnect_mac(priv);
rtnl_unlock();
dpaa2_eth_dl_port_del(priv);
dpaa2_eth_dl_traps_unregister(priv);
dpaa2_eth_dl_free(priv);
if (priv->do_link_poll)
kthread_stop(priv->poll_thread);
else
fsl_mc_free_irqs(ls_dev);
dpaa2_eth_free_rings(priv);
free_percpu(priv->fd);
free_percpu(priv->sgt_cache);
free_percpu(priv->percpu_stats);
free_percpu(priv->percpu_extras);
dpaa2_eth_del_ch_napi(priv);
dpaa2_eth_free_dpbps(priv);
dpaa2_eth_free_dpio(priv);
dpaa2_eth_free_dpni(priv);
if (priv->onestep_reg_base)
iounmap(priv->onestep_reg_base);
fsl_mc_portal_free(priv->mc_io);
destroy_workqueue(priv->dpaa2_ptp_wq);
dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name);
free_netdev(net_dev);
return 0;
}
static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = {
{
.vendor = FSL_MC_VENDOR_FREESCALE,
.obj_type = "dpni",
},
{ .vendor = 0x0 }
};
MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table);
static struct fsl_mc_driver dpaa2_eth_driver = {
.driver = {
.name = KBUILD_MODNAME,
.owner = THIS_MODULE,
},
.probe = dpaa2_eth_probe,
.remove = dpaa2_eth_remove,
.match_id_table = dpaa2_eth_match_id_table
};
static int __init dpaa2_eth_driver_init(void)
{
int err;
dpaa2_eth_dbg_init();
err = fsl_mc_driver_register(&dpaa2_eth_driver);
if (err) {
dpaa2_eth_dbg_exit();
return err;
}
return 0;
}
static void __exit dpaa2_eth_driver_exit(void)
{
dpaa2_eth_dbg_exit();
fsl_mc_driver_unregister(&dpaa2_eth_driver);
}
module_init(dpaa2_eth_driver_init);
module_exit(dpaa2_eth_driver_exit);