blob: efb85f983657ade5efef508f8046d3a6fb91bd8d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/* RxRPC recvmsg() implementation
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/export.h>
#include <linux/sched/signal.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include "ar-internal.h"
/*
* Post a call for attention by the socket or kernel service. Further
* notifications are suppressed by putting recvmsg_link on a dummy queue.
*/
void rxrpc_notify_socket(struct rxrpc_call *call)
{
struct rxrpc_sock *rx;
struct sock *sk;
_enter("%d", call->debug_id);
if (!list_empty(&call->recvmsg_link))
return;
rcu_read_lock();
rx = rcu_dereference(call->socket);
sk = &rx->sk;
if (rx && sk->sk_state < RXRPC_CLOSE) {
if (call->notify_rx) {
spin_lock_bh(&call->notify_lock);
call->notify_rx(sk, call, call->user_call_ID);
spin_unlock_bh(&call->notify_lock);
} else {
write_lock_bh(&rx->recvmsg_lock);
if (list_empty(&call->recvmsg_link)) {
rxrpc_get_call(call, rxrpc_call_got);
list_add_tail(&call->recvmsg_link, &rx->recvmsg_q);
}
write_unlock_bh(&rx->recvmsg_lock);
if (!sock_flag(sk, SOCK_DEAD)) {
_debug("call %ps", sk->sk_data_ready);
sk->sk_data_ready(sk);
}
}
}
rcu_read_unlock();
_leave("");
}
/*
* Transition a call to the complete state.
*/
bool __rxrpc_set_call_completion(struct rxrpc_call *call,
enum rxrpc_call_completion compl,
u32 abort_code,
int error)
{
if (call->state < RXRPC_CALL_COMPLETE) {
call->abort_code = abort_code;
call->error = error;
call->completion = compl;
call->state = RXRPC_CALL_COMPLETE;
trace_rxrpc_call_complete(call);
wake_up(&call->waitq);
rxrpc_notify_socket(call);
return true;
}
return false;
}
bool rxrpc_set_call_completion(struct rxrpc_call *call,
enum rxrpc_call_completion compl,
u32 abort_code,
int error)
{
bool ret = false;
if (call->state < RXRPC_CALL_COMPLETE) {
write_lock_bh(&call->state_lock);
ret = __rxrpc_set_call_completion(call, compl, abort_code, error);
write_unlock_bh(&call->state_lock);
}
return ret;
}
/*
* Record that a call successfully completed.
*/
bool __rxrpc_call_completed(struct rxrpc_call *call)
{
return __rxrpc_set_call_completion(call, RXRPC_CALL_SUCCEEDED, 0, 0);
}
bool rxrpc_call_completed(struct rxrpc_call *call)
{
bool ret = false;
if (call->state < RXRPC_CALL_COMPLETE) {
write_lock_bh(&call->state_lock);
ret = __rxrpc_call_completed(call);
write_unlock_bh(&call->state_lock);
}
return ret;
}
/*
* Record that a call is locally aborted.
*/
bool __rxrpc_abort_call(const char *why, struct rxrpc_call *call,
rxrpc_seq_t seq, u32 abort_code, int error)
{
trace_rxrpc_abort(call->debug_id, why, call->cid, call->call_id, seq,
abort_code, error);
return __rxrpc_set_call_completion(call, RXRPC_CALL_LOCALLY_ABORTED,
abort_code, error);
}
bool rxrpc_abort_call(const char *why, struct rxrpc_call *call,
rxrpc_seq_t seq, u32 abort_code, int error)
{
bool ret;
write_lock_bh(&call->state_lock);
ret = __rxrpc_abort_call(why, call, seq, abort_code, error);
write_unlock_bh(&call->state_lock);
return ret;
}
/*
* Pass a call terminating message to userspace.
*/
static int rxrpc_recvmsg_term(struct rxrpc_call *call, struct msghdr *msg)
{
u32 tmp = 0;
int ret;
switch (call->completion) {
case RXRPC_CALL_SUCCEEDED:
ret = 0;
if (rxrpc_is_service_call(call))
ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ACK, 0, &tmp);
break;
case RXRPC_CALL_REMOTELY_ABORTED:
tmp = call->abort_code;
ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ABORT, 4, &tmp);
break;
case RXRPC_CALL_LOCALLY_ABORTED:
tmp = call->abort_code;
ret = put_cmsg(msg, SOL_RXRPC, RXRPC_ABORT, 4, &tmp);
break;
case RXRPC_CALL_NETWORK_ERROR:
tmp = -call->error;
ret = put_cmsg(msg, SOL_RXRPC, RXRPC_NET_ERROR, 4, &tmp);
break;
case RXRPC_CALL_LOCAL_ERROR:
tmp = -call->error;
ret = put_cmsg(msg, SOL_RXRPC, RXRPC_LOCAL_ERROR, 4, &tmp);
break;
default:
pr_err("Invalid terminal call state %u\n", call->state);
BUG();
break;
}
trace_rxrpc_recvdata(call, rxrpc_recvmsg_terminal,
lower_32_bits(atomic64_read(&call->ackr_window)) - 1,
call->rx_pkt_offset, call->rx_pkt_len, ret);
return ret;
}
/*
* End the packet reception phase.
*/
static void rxrpc_end_rx_phase(struct rxrpc_call *call, rxrpc_serial_t serial)
{
rxrpc_seq_t whigh = READ_ONCE(call->rx_highest_seq);
_enter("%d,%s", call->debug_id, rxrpc_call_states[call->state]);
trace_rxrpc_receive(call, rxrpc_receive_end, 0, whigh);
if (call->state == RXRPC_CALL_CLIENT_RECV_REPLY)
rxrpc_propose_delay_ACK(call, serial, rxrpc_propose_ack_terminal_ack);
write_lock_bh(&call->state_lock);
switch (call->state) {
case RXRPC_CALL_CLIENT_RECV_REPLY:
__rxrpc_call_completed(call);
write_unlock_bh(&call->state_lock);
break;
case RXRPC_CALL_SERVER_RECV_REQUEST:
call->state = RXRPC_CALL_SERVER_ACK_REQUEST;
call->expect_req_by = jiffies + MAX_JIFFY_OFFSET;
write_unlock_bh(&call->state_lock);
rxrpc_propose_delay_ACK(call, serial,
rxrpc_propose_ack_processing_op);
break;
default:
write_unlock_bh(&call->state_lock);
break;
}
}
/*
* Discard a packet we've used up and advance the Rx window by one.
*/
static void rxrpc_rotate_rx_window(struct rxrpc_call *call)
{
struct rxrpc_skb_priv *sp;
struct sk_buff *skb;
rxrpc_serial_t serial;
rxrpc_seq_t old_consumed = call->rx_consumed, tseq;
bool last;
int acked;
_enter("%d", call->debug_id);
further_rotation:
skb = skb_dequeue(&call->recvmsg_queue);
rxrpc_see_skb(skb, rxrpc_skb_rotated);
sp = rxrpc_skb(skb);
tseq = sp->hdr.seq;
serial = sp->hdr.serial;
last = sp->hdr.flags & RXRPC_LAST_PACKET;
/* Barrier against rxrpc_input_data(). */
if (after(tseq, call->rx_consumed))
smp_store_release(&call->rx_consumed, tseq);
rxrpc_free_skb(skb, rxrpc_skb_freed);
trace_rxrpc_receive(call, last ? rxrpc_receive_rotate_last : rxrpc_receive_rotate,
serial, call->rx_consumed);
if (last) {
rxrpc_end_rx_phase(call, serial);
return;
}
/* The next packet on the queue might entirely overlap with the one we
* just consumed; if so, rotate that away also.
*/
skb = skb_peek(&call->recvmsg_queue);
if (skb) {
sp = rxrpc_skb(skb);
if (sp->hdr.seq != call->rx_consumed &&
after_eq(call->rx_consumed, sp->hdr.seq))
goto further_rotation;
}
/* Check to see if there's an ACK that needs sending. */
acked = atomic_add_return(call->rx_consumed - old_consumed,
&call->ackr_nr_consumed);
if (acked > 2 &&
!test_and_set_bit(RXRPC_CALL_IDLE_ACK_PENDING, &call->flags)) {
rxrpc_send_ACK(call, RXRPC_ACK_IDLE, serial,
rxrpc_propose_ack_rotate_rx);
rxrpc_transmit_ack_packets(call->peer->local);
}
}
/*
* Decrypt and verify a DATA packet.
*/
static int rxrpc_verify_data(struct rxrpc_call *call, struct sk_buff *skb)
{
struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
if (sp->flags & RXRPC_RX_VERIFIED)
return 0;
return call->security->verify_packet(call, skb);
}
/*
* Deliver messages to a call. This keeps processing packets until the buffer
* is filled and we find either more DATA (returns 0) or the end of the DATA
* (returns 1). If more packets are required, it returns -EAGAIN.
*/
static int rxrpc_recvmsg_data(struct socket *sock, struct rxrpc_call *call,
struct msghdr *msg, struct iov_iter *iter,
size_t len, int flags, size_t *_offset)
{
struct rxrpc_skb_priv *sp;
struct sk_buff *skb;
rxrpc_seq_t seq = 0;
size_t remain;
unsigned int rx_pkt_offset, rx_pkt_len;
int copy, ret = -EAGAIN, ret2;
rx_pkt_offset = call->rx_pkt_offset;
rx_pkt_len = call->rx_pkt_len;
if (call->state >= RXRPC_CALL_SERVER_ACK_REQUEST) {
seq = lower_32_bits(atomic64_read(&call->ackr_window)) - 1;
ret = 1;
goto done;
}
/* No one else can be removing stuff from the queue, so we shouldn't
* need the Rx lock to walk it.
*/
skb = skb_peek(&call->recvmsg_queue);
while (skb) {
rxrpc_see_skb(skb, rxrpc_skb_seen);
sp = rxrpc_skb(skb);
seq = sp->hdr.seq;
if (after_eq(call->rx_consumed, seq)) {
kdebug("obsolete %x %x", call->rx_consumed, seq);
goto skip_obsolete;
}
if (!(flags & MSG_PEEK))
trace_rxrpc_receive(call, rxrpc_receive_front,
sp->hdr.serial, seq);
if (msg)
sock_recv_timestamp(msg, sock->sk, skb);
if (rx_pkt_offset == 0) {
ret2 = rxrpc_verify_data(call, skb);
rx_pkt_offset = sp->offset;
rx_pkt_len = sp->len;
trace_rxrpc_recvdata(call, rxrpc_recvmsg_next, seq,
rx_pkt_offset, rx_pkt_len, ret2);
if (ret2 < 0) {
ret = ret2;
goto out;
}
rxrpc_transmit_ack_packets(call->peer->local);
} else {
trace_rxrpc_recvdata(call, rxrpc_recvmsg_cont, seq,
rx_pkt_offset, rx_pkt_len, 0);
}
/* We have to handle short, empty and used-up DATA packets. */
remain = len - *_offset;
copy = rx_pkt_len;
if (copy > remain)
copy = remain;
if (copy > 0) {
ret2 = skb_copy_datagram_iter(skb, rx_pkt_offset, iter,
copy);
if (ret2 < 0) {
ret = ret2;
goto out;
}
/* handle piecemeal consumption of data packets */
rx_pkt_offset += copy;
rx_pkt_len -= copy;
*_offset += copy;
}
if (rx_pkt_len > 0) {
trace_rxrpc_recvdata(call, rxrpc_recvmsg_full, seq,
rx_pkt_offset, rx_pkt_len, 0);
ASSERTCMP(*_offset, ==, len);
ret = 0;
break;
}
skip_obsolete:
/* The whole packet has been transferred. */
if (sp->hdr.flags & RXRPC_LAST_PACKET)
ret = 1;
rx_pkt_offset = 0;
rx_pkt_len = 0;
skb = skb_peek_next(skb, &call->recvmsg_queue);
if (!(flags & MSG_PEEK))
rxrpc_rotate_rx_window(call);
}
out:
if (!(flags & MSG_PEEK)) {
call->rx_pkt_offset = rx_pkt_offset;
call->rx_pkt_len = rx_pkt_len;
}
done:
trace_rxrpc_recvdata(call, rxrpc_recvmsg_data_return, seq,
rx_pkt_offset, rx_pkt_len, ret);
if (ret == -EAGAIN)
set_bit(RXRPC_CALL_RX_UNDERRUN, &call->flags);
return ret;
}
/*
* Receive a message from an RxRPC socket
* - we need to be careful about two or more threads calling recvmsg
* simultaneously
*/
int rxrpc_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
int flags)
{
struct rxrpc_call *call;
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
struct list_head *l;
size_t copied = 0;
long timeo;
int ret;
DEFINE_WAIT(wait);
trace_rxrpc_recvmsg(NULL, rxrpc_recvmsg_enter, 0);
if (flags & (MSG_OOB | MSG_TRUNC))
return -EOPNOTSUPP;
timeo = sock_rcvtimeo(&rx->sk, flags & MSG_DONTWAIT);
try_again:
lock_sock(&rx->sk);
/* Return immediately if a client socket has no outstanding calls */
if (RB_EMPTY_ROOT(&rx->calls) &&
list_empty(&rx->recvmsg_q) &&
rx->sk.sk_state != RXRPC_SERVER_LISTENING) {
release_sock(&rx->sk);
return -EAGAIN;
}
if (list_empty(&rx->recvmsg_q)) {
ret = -EWOULDBLOCK;
if (timeo == 0) {
call = NULL;
goto error_no_call;
}
release_sock(&rx->sk);
/* Wait for something to happen */
prepare_to_wait_exclusive(sk_sleep(&rx->sk), &wait,
TASK_INTERRUPTIBLE);
ret = sock_error(&rx->sk);
if (ret)
goto wait_error;
if (list_empty(&rx->recvmsg_q)) {
if (signal_pending(current))
goto wait_interrupted;
trace_rxrpc_recvmsg(NULL, rxrpc_recvmsg_wait, 0);
timeo = schedule_timeout(timeo);
}
finish_wait(sk_sleep(&rx->sk), &wait);
goto try_again;
}
/* Find the next call and dequeue it if we're not just peeking. If we
* do dequeue it, that comes with a ref that we will need to release.
*/
write_lock_bh(&rx->recvmsg_lock);
l = rx->recvmsg_q.next;
call = list_entry(l, struct rxrpc_call, recvmsg_link);
if (!(flags & MSG_PEEK))
list_del_init(&call->recvmsg_link);
else
rxrpc_get_call(call, rxrpc_call_got);
write_unlock_bh(&rx->recvmsg_lock);
trace_rxrpc_recvmsg(call, rxrpc_recvmsg_dequeue, 0);
/* We're going to drop the socket lock, so we need to lock the call
* against interference by sendmsg.
*/
if (!mutex_trylock(&call->user_mutex)) {
ret = -EWOULDBLOCK;
if (flags & MSG_DONTWAIT)
goto error_requeue_call;
ret = -ERESTARTSYS;
if (mutex_lock_interruptible(&call->user_mutex) < 0)
goto error_requeue_call;
}
release_sock(&rx->sk);
if (test_bit(RXRPC_CALL_RELEASED, &call->flags))
BUG();
if (test_bit(RXRPC_CALL_HAS_USERID, &call->flags)) {
if (flags & MSG_CMSG_COMPAT) {
unsigned int id32 = call->user_call_ID;
ret = put_cmsg(msg, SOL_RXRPC, RXRPC_USER_CALL_ID,
sizeof(unsigned int), &id32);
} else {
unsigned long idl = call->user_call_ID;
ret = put_cmsg(msg, SOL_RXRPC, RXRPC_USER_CALL_ID,
sizeof(unsigned long), &idl);
}
if (ret < 0)
goto error_unlock_call;
}
if (msg->msg_name && call->peer) {
struct sockaddr_rxrpc *srx = msg->msg_name;
size_t len = sizeof(call->peer->srx);
memcpy(msg->msg_name, &call->peer->srx, len);
srx->srx_service = call->service_id;
msg->msg_namelen = len;
}
switch (READ_ONCE(call->state)) {
case RXRPC_CALL_CLIENT_RECV_REPLY:
case RXRPC_CALL_SERVER_RECV_REQUEST:
case RXRPC_CALL_SERVER_ACK_REQUEST:
ret = rxrpc_recvmsg_data(sock, call, msg, &msg->msg_iter, len,
flags, &copied);
if (ret == -EAGAIN)
ret = 0;
rxrpc_transmit_ack_packets(call->peer->local);
if (!skb_queue_empty(&call->recvmsg_queue))
rxrpc_notify_socket(call);
break;
default:
ret = 0;
break;
}
if (ret < 0)
goto error_unlock_call;
if (call->state == RXRPC_CALL_COMPLETE) {
ret = rxrpc_recvmsg_term(call, msg);
if (ret < 0)
goto error_unlock_call;
if (!(flags & MSG_PEEK))
rxrpc_release_call(rx, call);
msg->msg_flags |= MSG_EOR;
ret = 1;
}
if (ret == 0)
msg->msg_flags |= MSG_MORE;
else
msg->msg_flags &= ~MSG_MORE;
ret = copied;
error_unlock_call:
mutex_unlock(&call->user_mutex);
rxrpc_put_call(call, rxrpc_call_put);
trace_rxrpc_recvmsg(call, rxrpc_recvmsg_return, ret);
return ret;
error_requeue_call:
if (!(flags & MSG_PEEK)) {
write_lock_bh(&rx->recvmsg_lock);
list_add(&call->recvmsg_link, &rx->recvmsg_q);
write_unlock_bh(&rx->recvmsg_lock);
trace_rxrpc_recvmsg(call, rxrpc_recvmsg_requeue, 0);
} else {
rxrpc_put_call(call, rxrpc_call_put);
}
error_no_call:
release_sock(&rx->sk);
error_trace:
trace_rxrpc_recvmsg(call, rxrpc_recvmsg_return, ret);
return ret;
wait_interrupted:
ret = sock_intr_errno(timeo);
wait_error:
finish_wait(sk_sleep(&rx->sk), &wait);
call = NULL;
goto error_trace;
}
/**
* rxrpc_kernel_recv_data - Allow a kernel service to receive data/info
* @sock: The socket that the call exists on
* @call: The call to send data through
* @iter: The buffer to receive into
* @_len: The amount of data we want to receive (decreased on return)
* @want_more: True if more data is expected to be read
* @_abort: Where the abort code is stored if -ECONNABORTED is returned
* @_service: Where to store the actual service ID (may be upgraded)
*
* Allow a kernel service to receive data and pick up information about the
* state of a call. Returns 0 if got what was asked for and there's more
* available, 1 if we got what was asked for and we're at the end of the data
* and -EAGAIN if we need more data.
*
* Note that we may return -EAGAIN to drain empty packets at the end of the
* data, even if we've already copied over the requested data.
*
* *_abort should also be initialised to 0.
*/
int rxrpc_kernel_recv_data(struct socket *sock, struct rxrpc_call *call,
struct iov_iter *iter, size_t *_len,
bool want_more, u32 *_abort, u16 *_service)
{
size_t offset = 0;
int ret;
_enter("{%d,%s},%zu,%d",
call->debug_id, rxrpc_call_states[call->state],
*_len, want_more);
ASSERTCMP(call->state, !=, RXRPC_CALL_SERVER_SECURING);
mutex_lock(&call->user_mutex);
switch (READ_ONCE(call->state)) {
case RXRPC_CALL_CLIENT_RECV_REPLY:
case RXRPC_CALL_SERVER_RECV_REQUEST:
case RXRPC_CALL_SERVER_ACK_REQUEST:
ret = rxrpc_recvmsg_data(sock, call, NULL, iter,
*_len, 0, &offset);
*_len -= offset;
if (ret < 0)
goto out;
/* We can only reach here with a partially full buffer if we
* have reached the end of the data. We must otherwise have a
* full buffer or have been given -EAGAIN.
*/
if (ret == 1) {
if (iov_iter_count(iter) > 0)
goto short_data;
if (!want_more)
goto read_phase_complete;
ret = 0;
goto out;
}
if (!want_more)
goto excess_data;
goto out;
case RXRPC_CALL_COMPLETE:
goto call_complete;
default:
ret = -EINPROGRESS;
goto out;
}
read_phase_complete:
ret = 1;
out:
rxrpc_transmit_ack_packets(call->peer->local);
if (_service)
*_service = call->service_id;
mutex_unlock(&call->user_mutex);
_leave(" = %d [%zu,%d]", ret, iov_iter_count(iter), *_abort);
return ret;
short_data:
trace_rxrpc_rx_eproto(call, 0, tracepoint_string("short_data"));
ret = -EBADMSG;
goto out;
excess_data:
trace_rxrpc_rx_eproto(call, 0, tracepoint_string("excess_data"));
ret = -EMSGSIZE;
goto out;
call_complete:
*_abort = call->abort_code;
ret = call->error;
if (call->completion == RXRPC_CALL_SUCCEEDED) {
ret = 1;
if (iov_iter_count(iter) > 0)
ret = -ECONNRESET;
}
goto out;
}
EXPORT_SYMBOL(rxrpc_kernel_recv_data);