| /* |
| * Kernel Debugger Architecture Independent Support Functions |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. |
| * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. |
| * 03/02/13 added new 2.5 kallsyms <xavier.bru@bull.net> |
| */ |
| |
| #include <stdarg.h> |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/mm.h> |
| #include <linux/kallsyms.h> |
| #include <linux/stddef.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ptrace.h> |
| #include <linux/module.h> |
| #include <linux/highmem.h> |
| #include <linux/hardirq.h> |
| #include <linux/delay.h> |
| #include <linux/uaccess.h> |
| #include <linux/kdb.h> |
| #include <linux/slab.h> |
| #include "kdb_private.h" |
| |
| /* |
| * kdbgetsymval - Return the address of the given symbol. |
| * |
| * Parameters: |
| * symname Character string containing symbol name |
| * symtab Structure to receive results |
| * Returns: |
| * 0 Symbol not found, symtab zero filled |
| * 1 Symbol mapped to module/symbol/section, data in symtab |
| */ |
| int kdbgetsymval(const char *symname, kdb_symtab_t *symtab) |
| { |
| kdb_dbg_printf(AR, "symname=%s, symtab=%px\n", symname, symtab); |
| memset(symtab, 0, sizeof(*symtab)); |
| symtab->sym_start = kallsyms_lookup_name(symname); |
| if (symtab->sym_start) { |
| kdb_dbg_printf(AR, "returns 1, symtab->sym_start=0x%lx\n", |
| symtab->sym_start); |
| return 1; |
| } |
| kdb_dbg_printf(AR, "returns 0\n"); |
| return 0; |
| } |
| EXPORT_SYMBOL(kdbgetsymval); |
| |
| static char *kdb_name_table[100]; /* arbitrary size */ |
| |
| /* |
| * kdbnearsym - Return the name of the symbol with the nearest address |
| * less than 'addr'. |
| * |
| * Parameters: |
| * addr Address to check for symbol near |
| * symtab Structure to receive results |
| * Returns: |
| * 0 No sections contain this address, symtab zero filled |
| * 1 Address mapped to module/symbol/section, data in symtab |
| * Remarks: |
| * 2.6 kallsyms has a "feature" where it unpacks the name into a |
| * string. If that string is reused before the caller expects it |
| * then the caller sees its string change without warning. To |
| * avoid cluttering up the main kdb code with lots of kdb_strdup, |
| * tests and kfree calls, kdbnearsym maintains an LRU list of the |
| * last few unique strings. The list is sized large enough to |
| * hold active strings, no kdb caller of kdbnearsym makes more |
| * than ~20 later calls before using a saved value. |
| */ |
| int kdbnearsym(unsigned long addr, kdb_symtab_t *symtab) |
| { |
| int ret = 0; |
| unsigned long symbolsize = 0; |
| unsigned long offset = 0; |
| #define knt1_size 128 /* must be >= kallsyms table size */ |
| char *knt1 = NULL; |
| |
| kdb_dbg_printf(AR, "addr=0x%lx, symtab=%px\n", addr, symtab); |
| memset(symtab, 0, sizeof(*symtab)); |
| |
| if (addr < 4096) |
| goto out; |
| knt1 = debug_kmalloc(knt1_size, GFP_ATOMIC); |
| if (!knt1) { |
| kdb_func_printf("addr=0x%lx cannot kmalloc knt1\n", addr); |
| goto out; |
| } |
| symtab->sym_name = kallsyms_lookup(addr, &symbolsize , &offset, |
| (char **)(&symtab->mod_name), knt1); |
| if (offset > 8*1024*1024) { |
| symtab->sym_name = NULL; |
| addr = offset = symbolsize = 0; |
| } |
| symtab->sym_start = addr - offset; |
| symtab->sym_end = symtab->sym_start + symbolsize; |
| ret = symtab->sym_name != NULL && *(symtab->sym_name) != '\0'; |
| |
| if (ret) { |
| int i; |
| /* Another 2.6 kallsyms "feature". Sometimes the sym_name is |
| * set but the buffer passed into kallsyms_lookup is not used, |
| * so it contains garbage. The caller has to work out which |
| * buffer needs to be saved. |
| * |
| * What was Rusty smoking when he wrote that code? |
| */ |
| if (symtab->sym_name != knt1) { |
| strncpy(knt1, symtab->sym_name, knt1_size); |
| knt1[knt1_size-1] = '\0'; |
| } |
| for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) { |
| if (kdb_name_table[i] && |
| strcmp(kdb_name_table[i], knt1) == 0) |
| break; |
| } |
| if (i >= ARRAY_SIZE(kdb_name_table)) { |
| debug_kfree(kdb_name_table[0]); |
| memmove(kdb_name_table, kdb_name_table+1, |
| sizeof(kdb_name_table[0]) * |
| (ARRAY_SIZE(kdb_name_table)-1)); |
| } else { |
| debug_kfree(knt1); |
| knt1 = kdb_name_table[i]; |
| memmove(kdb_name_table+i, kdb_name_table+i+1, |
| sizeof(kdb_name_table[0]) * |
| (ARRAY_SIZE(kdb_name_table)-i-1)); |
| } |
| i = ARRAY_SIZE(kdb_name_table) - 1; |
| kdb_name_table[i] = knt1; |
| symtab->sym_name = kdb_name_table[i]; |
| knt1 = NULL; |
| } |
| |
| if (symtab->mod_name == NULL) |
| symtab->mod_name = "kernel"; |
| kdb_dbg_printf(AR, "returns %d symtab->sym_start=0x%lx, symtab->mod_name=%px, symtab->sym_name=%px (%s)\n", |
| ret, symtab->sym_start, symtab->mod_name, symtab->sym_name, symtab->sym_name); |
| |
| out: |
| debug_kfree(knt1); |
| return ret; |
| } |
| |
| void kdbnearsym_cleanup(void) |
| { |
| int i; |
| for (i = 0; i < ARRAY_SIZE(kdb_name_table); ++i) { |
| if (kdb_name_table[i]) { |
| debug_kfree(kdb_name_table[i]); |
| kdb_name_table[i] = NULL; |
| } |
| } |
| } |
| |
| static char ks_namebuf[KSYM_NAME_LEN+1], ks_namebuf_prev[KSYM_NAME_LEN+1]; |
| |
| /* |
| * kallsyms_symbol_complete |
| * |
| * Parameters: |
| * prefix_name prefix of a symbol name to lookup |
| * max_len maximum length that can be returned |
| * Returns: |
| * Number of symbols which match the given prefix. |
| * Notes: |
| * prefix_name is changed to contain the longest unique prefix that |
| * starts with this prefix (tab completion). |
| */ |
| int kallsyms_symbol_complete(char *prefix_name, int max_len) |
| { |
| loff_t pos = 0; |
| int prefix_len = strlen(prefix_name), prev_len = 0; |
| int i, number = 0; |
| const char *name; |
| |
| while ((name = kdb_walk_kallsyms(&pos))) { |
| if (strncmp(name, prefix_name, prefix_len) == 0) { |
| strscpy(ks_namebuf, name, sizeof(ks_namebuf)); |
| /* Work out the longest name that matches the prefix */ |
| if (++number == 1) { |
| prev_len = min_t(int, max_len-1, |
| strlen(ks_namebuf)); |
| memcpy(ks_namebuf_prev, ks_namebuf, prev_len); |
| ks_namebuf_prev[prev_len] = '\0'; |
| continue; |
| } |
| for (i = 0; i < prev_len; i++) { |
| if (ks_namebuf[i] != ks_namebuf_prev[i]) { |
| prev_len = i; |
| ks_namebuf_prev[i] = '\0'; |
| break; |
| } |
| } |
| } |
| } |
| if (prev_len > prefix_len) |
| memcpy(prefix_name, ks_namebuf_prev, prev_len+1); |
| return number; |
| } |
| |
| /* |
| * kallsyms_symbol_next |
| * |
| * Parameters: |
| * prefix_name prefix of a symbol name to lookup |
| * flag 0 means search from the head, 1 means continue search. |
| * buf_size maximum length that can be written to prefix_name |
| * buffer |
| * Returns: |
| * 1 if a symbol matches the given prefix. |
| * 0 if no string found |
| */ |
| int kallsyms_symbol_next(char *prefix_name, int flag, int buf_size) |
| { |
| int prefix_len = strlen(prefix_name); |
| static loff_t pos; |
| const char *name; |
| |
| if (!flag) |
| pos = 0; |
| |
| while ((name = kdb_walk_kallsyms(&pos))) { |
| if (!strncmp(name, prefix_name, prefix_len)) |
| return strscpy(prefix_name, name, buf_size); |
| } |
| return 0; |
| } |
| |
| /* |
| * kdb_symbol_print - Standard method for printing a symbol name and offset. |
| * Inputs: |
| * addr Address to be printed. |
| * symtab Address of symbol data, if NULL this routine does its |
| * own lookup. |
| * punc Punctuation for string, bit field. |
| * Remarks: |
| * The string and its punctuation is only printed if the address |
| * is inside the kernel, except that the value is always printed |
| * when requested. |
| */ |
| void kdb_symbol_print(unsigned long addr, const kdb_symtab_t *symtab_p, |
| unsigned int punc) |
| { |
| kdb_symtab_t symtab, *symtab_p2; |
| if (symtab_p) { |
| symtab_p2 = (kdb_symtab_t *)symtab_p; |
| } else { |
| symtab_p2 = &symtab; |
| kdbnearsym(addr, symtab_p2); |
| } |
| if (!(symtab_p2->sym_name || (punc & KDB_SP_VALUE))) |
| return; |
| if (punc & KDB_SP_SPACEB) |
| kdb_printf(" "); |
| if (punc & KDB_SP_VALUE) |
| kdb_printf(kdb_machreg_fmt0, addr); |
| if (symtab_p2->sym_name) { |
| if (punc & KDB_SP_VALUE) |
| kdb_printf(" "); |
| if (punc & KDB_SP_PAREN) |
| kdb_printf("("); |
| if (strcmp(symtab_p2->mod_name, "kernel")) |
| kdb_printf("[%s]", symtab_p2->mod_name); |
| kdb_printf("%s", symtab_p2->sym_name); |
| if (addr != symtab_p2->sym_start) |
| kdb_printf("+0x%lx", addr - symtab_p2->sym_start); |
| if (punc & KDB_SP_SYMSIZE) |
| kdb_printf("/0x%lx", |
| symtab_p2->sym_end - symtab_p2->sym_start); |
| if (punc & KDB_SP_PAREN) |
| kdb_printf(")"); |
| } |
| if (punc & KDB_SP_SPACEA) |
| kdb_printf(" "); |
| if (punc & KDB_SP_NEWLINE) |
| kdb_printf("\n"); |
| } |
| |
| /* |
| * kdb_strdup - kdb equivalent of strdup, for disasm code. |
| * Inputs: |
| * str The string to duplicate. |
| * type Flags to kmalloc for the new string. |
| * Returns: |
| * Address of the new string, NULL if storage could not be allocated. |
| * Remarks: |
| * This is not in lib/string.c because it uses kmalloc which is not |
| * available when string.o is used in boot loaders. |
| */ |
| char *kdb_strdup(const char *str, gfp_t type) |
| { |
| int n = strlen(str)+1; |
| char *s = kmalloc(n, type); |
| if (!s) |
| return NULL; |
| return strcpy(s, str); |
| } |
| |
| /* |
| * kdb_getarea_size - Read an area of data. The kdb equivalent of |
| * copy_from_user, with kdb messages for invalid addresses. |
| * Inputs: |
| * res Pointer to the area to receive the result. |
| * addr Address of the area to copy. |
| * size Size of the area. |
| * Returns: |
| * 0 for success, < 0 for error. |
| */ |
| int kdb_getarea_size(void *res, unsigned long addr, size_t size) |
| { |
| int ret = copy_from_kernel_nofault((char *)res, (char *)addr, size); |
| if (ret) { |
| if (!KDB_STATE(SUPPRESS)) { |
| kdb_func_printf("Bad address 0x%lx\n", addr); |
| KDB_STATE_SET(SUPPRESS); |
| } |
| ret = KDB_BADADDR; |
| } else { |
| KDB_STATE_CLEAR(SUPPRESS); |
| } |
| return ret; |
| } |
| |
| /* |
| * kdb_putarea_size - Write an area of data. The kdb equivalent of |
| * copy_to_user, with kdb messages for invalid addresses. |
| * Inputs: |
| * addr Address of the area to write to. |
| * res Pointer to the area holding the data. |
| * size Size of the area. |
| * Returns: |
| * 0 for success, < 0 for error. |
| */ |
| int kdb_putarea_size(unsigned long addr, void *res, size_t size) |
| { |
| int ret = copy_from_kernel_nofault((char *)addr, (char *)res, size); |
| if (ret) { |
| if (!KDB_STATE(SUPPRESS)) { |
| kdb_func_printf("Bad address 0x%lx\n", addr); |
| KDB_STATE_SET(SUPPRESS); |
| } |
| ret = KDB_BADADDR; |
| } else { |
| KDB_STATE_CLEAR(SUPPRESS); |
| } |
| return ret; |
| } |
| |
| /* |
| * kdb_getphys - Read data from a physical address. Validate the |
| * address is in range, use kmap_atomic() to get data |
| * similar to kdb_getarea() - but for phys addresses |
| * Inputs: |
| * res Pointer to the word to receive the result |
| * addr Physical address of the area to copy |
| * size Size of the area |
| * Returns: |
| * 0 for success, < 0 for error. |
| */ |
| static int kdb_getphys(void *res, unsigned long addr, size_t size) |
| { |
| unsigned long pfn; |
| void *vaddr; |
| struct page *page; |
| |
| pfn = (addr >> PAGE_SHIFT); |
| if (!pfn_valid(pfn)) |
| return 1; |
| page = pfn_to_page(pfn); |
| vaddr = kmap_atomic(page); |
| memcpy(res, vaddr + (addr & (PAGE_SIZE - 1)), size); |
| kunmap_atomic(vaddr); |
| |
| return 0; |
| } |
| |
| /* |
| * kdb_getphysword |
| * Inputs: |
| * word Pointer to the word to receive the result. |
| * addr Address of the area to copy. |
| * size Size of the area. |
| * Returns: |
| * 0 for success, < 0 for error. |
| */ |
| int kdb_getphysword(unsigned long *word, unsigned long addr, size_t size) |
| { |
| int diag; |
| __u8 w1; |
| __u16 w2; |
| __u32 w4; |
| __u64 w8; |
| *word = 0; /* Default value if addr or size is invalid */ |
| |
| switch (size) { |
| case 1: |
| diag = kdb_getphys(&w1, addr, sizeof(w1)); |
| if (!diag) |
| *word = w1; |
| break; |
| case 2: |
| diag = kdb_getphys(&w2, addr, sizeof(w2)); |
| if (!diag) |
| *word = w2; |
| break; |
| case 4: |
| diag = kdb_getphys(&w4, addr, sizeof(w4)); |
| if (!diag) |
| *word = w4; |
| break; |
| case 8: |
| if (size <= sizeof(*word)) { |
| diag = kdb_getphys(&w8, addr, sizeof(w8)); |
| if (!diag) |
| *word = w8; |
| break; |
| } |
| fallthrough; |
| default: |
| diag = KDB_BADWIDTH; |
| kdb_func_printf("bad width %zu\n", size); |
| } |
| return diag; |
| } |
| |
| /* |
| * kdb_getword - Read a binary value. Unlike kdb_getarea, this treats |
| * data as numbers. |
| * Inputs: |
| * word Pointer to the word to receive the result. |
| * addr Address of the area to copy. |
| * size Size of the area. |
| * Returns: |
| * 0 for success, < 0 for error. |
| */ |
| int kdb_getword(unsigned long *word, unsigned long addr, size_t size) |
| { |
| int diag; |
| __u8 w1; |
| __u16 w2; |
| __u32 w4; |
| __u64 w8; |
| *word = 0; /* Default value if addr or size is invalid */ |
| switch (size) { |
| case 1: |
| diag = kdb_getarea(w1, addr); |
| if (!diag) |
| *word = w1; |
| break; |
| case 2: |
| diag = kdb_getarea(w2, addr); |
| if (!diag) |
| *word = w2; |
| break; |
| case 4: |
| diag = kdb_getarea(w4, addr); |
| if (!diag) |
| *word = w4; |
| break; |
| case 8: |
| if (size <= sizeof(*word)) { |
| diag = kdb_getarea(w8, addr); |
| if (!diag) |
| *word = w8; |
| break; |
| } |
| fallthrough; |
| default: |
| diag = KDB_BADWIDTH; |
| kdb_func_printf("bad width %zu\n", size); |
| } |
| return diag; |
| } |
| |
| /* |
| * kdb_putword - Write a binary value. Unlike kdb_putarea, this |
| * treats data as numbers. |
| * Inputs: |
| * addr Address of the area to write to.. |
| * word The value to set. |
| * size Size of the area. |
| * Returns: |
| * 0 for success, < 0 for error. |
| */ |
| int kdb_putword(unsigned long addr, unsigned long word, size_t size) |
| { |
| int diag; |
| __u8 w1; |
| __u16 w2; |
| __u32 w4; |
| __u64 w8; |
| switch (size) { |
| case 1: |
| w1 = word; |
| diag = kdb_putarea(addr, w1); |
| break; |
| case 2: |
| w2 = word; |
| diag = kdb_putarea(addr, w2); |
| break; |
| case 4: |
| w4 = word; |
| diag = kdb_putarea(addr, w4); |
| break; |
| case 8: |
| if (size <= sizeof(word)) { |
| w8 = word; |
| diag = kdb_putarea(addr, w8); |
| break; |
| } |
| fallthrough; |
| default: |
| diag = KDB_BADWIDTH; |
| kdb_func_printf("bad width %zu\n", size); |
| } |
| return diag; |
| } |
| |
| /* |
| * kdb_task_state_string - Convert a string containing any of the |
| * letters DRSTCZEUIMA to a mask for the process state field and |
| * return the value. If no argument is supplied, return the mask |
| * that corresponds to environment variable PS, DRSTCZEU by |
| * default. |
| * Inputs: |
| * s String to convert |
| * Returns: |
| * Mask for process state. |
| * Notes: |
| * The mask folds data from several sources into a single long value, so |
| * be careful not to overlap the bits. TASK_* bits are in the LSB, |
| * special cases like UNRUNNABLE are in the MSB. As of 2.6.10-rc1 there |
| * is no overlap between TASK_* and EXIT_* but that may not always be |
| * true, so EXIT_* bits are shifted left 16 bits before being stored in |
| * the mask. |
| */ |
| |
| /* unrunnable is < 0 */ |
| #define UNRUNNABLE (1UL << (8*sizeof(unsigned long) - 1)) |
| #define RUNNING (1UL << (8*sizeof(unsigned long) - 2)) |
| #define IDLE (1UL << (8*sizeof(unsigned long) - 3)) |
| #define DAEMON (1UL << (8*sizeof(unsigned long) - 4)) |
| |
| unsigned long kdb_task_state_string(const char *s) |
| { |
| long res = 0; |
| if (!s) { |
| s = kdbgetenv("PS"); |
| if (!s) |
| s = "DRSTCZEU"; /* default value for ps */ |
| } |
| while (*s) { |
| switch (*s) { |
| case 'D': |
| res |= TASK_UNINTERRUPTIBLE; |
| break; |
| case 'R': |
| res |= RUNNING; |
| break; |
| case 'S': |
| res |= TASK_INTERRUPTIBLE; |
| break; |
| case 'T': |
| res |= TASK_STOPPED; |
| break; |
| case 'C': |
| res |= TASK_TRACED; |
| break; |
| case 'Z': |
| res |= EXIT_ZOMBIE << 16; |
| break; |
| case 'E': |
| res |= EXIT_DEAD << 16; |
| break; |
| case 'U': |
| res |= UNRUNNABLE; |
| break; |
| case 'I': |
| res |= IDLE; |
| break; |
| case 'M': |
| res |= DAEMON; |
| break; |
| case 'A': |
| res = ~0UL; |
| break; |
| default: |
| kdb_func_printf("unknown flag '%c' ignored\n", *s); |
| break; |
| } |
| ++s; |
| } |
| return res; |
| } |
| |
| /* |
| * kdb_task_state_char - Return the character that represents the task state. |
| * Inputs: |
| * p struct task for the process |
| * Returns: |
| * One character to represent the task state. |
| */ |
| char kdb_task_state_char (const struct task_struct *p) |
| { |
| int cpu; |
| char state; |
| unsigned long tmp; |
| |
| if (!p || |
| copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long))) |
| return 'E'; |
| |
| cpu = kdb_process_cpu(p); |
| state = (p->state == 0) ? 'R' : |
| (p->state < 0) ? 'U' : |
| (p->state & TASK_UNINTERRUPTIBLE) ? 'D' : |
| (p->state & TASK_STOPPED) ? 'T' : |
| (p->state & TASK_TRACED) ? 'C' : |
| (p->exit_state & EXIT_ZOMBIE) ? 'Z' : |
| (p->exit_state & EXIT_DEAD) ? 'E' : |
| (p->state & TASK_INTERRUPTIBLE) ? 'S' : '?'; |
| if (is_idle_task(p)) { |
| /* Idle task. Is it really idle, apart from the kdb |
| * interrupt? */ |
| if (!kdb_task_has_cpu(p) || kgdb_info[cpu].irq_depth == 1) { |
| if (cpu != kdb_initial_cpu) |
| state = 'I'; /* idle task */ |
| } |
| } else if (!p->mm && state == 'S') { |
| state = 'M'; /* sleeping system daemon */ |
| } |
| return state; |
| } |
| |
| /* |
| * kdb_task_state - Return true if a process has the desired state |
| * given by the mask. |
| * Inputs: |
| * p struct task for the process |
| * mask mask from kdb_task_state_string to select processes |
| * Returns: |
| * True if the process matches at least one criteria defined by the mask. |
| */ |
| unsigned long kdb_task_state(const struct task_struct *p, unsigned long mask) |
| { |
| char state[] = { kdb_task_state_char(p), '\0' }; |
| return (mask & kdb_task_state_string(state)) != 0; |
| } |
| |
| /* Last ditch allocator for debugging, so we can still debug even when |
| * the GFP_ATOMIC pool has been exhausted. The algorithms are tuned |
| * for space usage, not for speed. One smallish memory pool, the free |
| * chain is always in ascending address order to allow coalescing, |
| * allocations are done in brute force best fit. |
| */ |
| |
| struct debug_alloc_header { |
| u32 next; /* offset of next header from start of pool */ |
| u32 size; |
| void *caller; |
| }; |
| |
| /* The memory returned by this allocator must be aligned, which means |
| * so must the header size. Do not assume that sizeof(struct |
| * debug_alloc_header) is a multiple of the alignment, explicitly |
| * calculate the overhead of this header, including the alignment. |
| * The rest of this code must not use sizeof() on any header or |
| * pointer to a header. |
| */ |
| #define dah_align 8 |
| #define dah_overhead ALIGN(sizeof(struct debug_alloc_header), dah_align) |
| |
| static u64 debug_alloc_pool_aligned[256*1024/dah_align]; /* 256K pool */ |
| static char *debug_alloc_pool = (char *)debug_alloc_pool_aligned; |
| static u32 dah_first, dah_first_call = 1, dah_used, dah_used_max; |
| |
| /* Locking is awkward. The debug code is called from all contexts, |
| * including non maskable interrupts. A normal spinlock is not safe |
| * in NMI context. Try to get the debug allocator lock, if it cannot |
| * be obtained after a second then give up. If the lock could not be |
| * previously obtained on this cpu then only try once. |
| * |
| * sparse has no annotation for "this function _sometimes_ acquires a |
| * lock", so fudge the acquire/release notation. |
| */ |
| static DEFINE_SPINLOCK(dap_lock); |
| static int get_dap_lock(void) |
| __acquires(dap_lock) |
| { |
| static int dap_locked = -1; |
| int count; |
| if (dap_locked == smp_processor_id()) |
| count = 1; |
| else |
| count = 1000; |
| while (1) { |
| if (spin_trylock(&dap_lock)) { |
| dap_locked = -1; |
| return 1; |
| } |
| if (!count--) |
| break; |
| udelay(1000); |
| } |
| dap_locked = smp_processor_id(); |
| __acquire(dap_lock); |
| return 0; |
| } |
| |
| void *debug_kmalloc(size_t size, gfp_t flags) |
| { |
| unsigned int rem, h_offset; |
| struct debug_alloc_header *best, *bestprev, *prev, *h; |
| void *p = NULL; |
| if (!get_dap_lock()) { |
| __release(dap_lock); /* we never actually got it */ |
| return NULL; |
| } |
| h = (struct debug_alloc_header *)(debug_alloc_pool + dah_first); |
| if (dah_first_call) { |
| h->size = sizeof(debug_alloc_pool_aligned) - dah_overhead; |
| dah_first_call = 0; |
| } |
| size = ALIGN(size, dah_align); |
| prev = best = bestprev = NULL; |
| while (1) { |
| if (h->size >= size && (!best || h->size < best->size)) { |
| best = h; |
| bestprev = prev; |
| if (h->size == size) |
| break; |
| } |
| if (!h->next) |
| break; |
| prev = h; |
| h = (struct debug_alloc_header *)(debug_alloc_pool + h->next); |
| } |
| if (!best) |
| goto out; |
| rem = best->size - size; |
| /* The pool must always contain at least one header */ |
| if (best->next == 0 && bestprev == NULL && rem < dah_overhead) |
| goto out; |
| if (rem >= dah_overhead) { |
| best->size = size; |
| h_offset = ((char *)best - debug_alloc_pool) + |
| dah_overhead + best->size; |
| h = (struct debug_alloc_header *)(debug_alloc_pool + h_offset); |
| h->size = rem - dah_overhead; |
| h->next = best->next; |
| } else |
| h_offset = best->next; |
| best->caller = __builtin_return_address(0); |
| dah_used += best->size; |
| dah_used_max = max(dah_used, dah_used_max); |
| if (bestprev) |
| bestprev->next = h_offset; |
| else |
| dah_first = h_offset; |
| p = (char *)best + dah_overhead; |
| memset(p, POISON_INUSE, best->size - 1); |
| *((char *)p + best->size - 1) = POISON_END; |
| out: |
| spin_unlock(&dap_lock); |
| return p; |
| } |
| |
| void debug_kfree(void *p) |
| { |
| struct debug_alloc_header *h; |
| unsigned int h_offset; |
| if (!p) |
| return; |
| if ((char *)p < debug_alloc_pool || |
| (char *)p >= debug_alloc_pool + sizeof(debug_alloc_pool_aligned)) { |
| kfree(p); |
| return; |
| } |
| if (!get_dap_lock()) { |
| __release(dap_lock); /* we never actually got it */ |
| return; /* memory leak, cannot be helped */ |
| } |
| h = (struct debug_alloc_header *)((char *)p - dah_overhead); |
| memset(p, POISON_FREE, h->size - 1); |
| *((char *)p + h->size - 1) = POISON_END; |
| h->caller = NULL; |
| dah_used -= h->size; |
| h_offset = (char *)h - debug_alloc_pool; |
| if (h_offset < dah_first) { |
| h->next = dah_first; |
| dah_first = h_offset; |
| } else { |
| struct debug_alloc_header *prev; |
| unsigned int prev_offset; |
| prev = (struct debug_alloc_header *)(debug_alloc_pool + |
| dah_first); |
| while (1) { |
| if (!prev->next || prev->next > h_offset) |
| break; |
| prev = (struct debug_alloc_header *) |
| (debug_alloc_pool + prev->next); |
| } |
| prev_offset = (char *)prev - debug_alloc_pool; |
| if (prev_offset + dah_overhead + prev->size == h_offset) { |
| prev->size += dah_overhead + h->size; |
| memset(h, POISON_FREE, dah_overhead - 1); |
| *((char *)h + dah_overhead - 1) = POISON_END; |
| h = prev; |
| h_offset = prev_offset; |
| } else { |
| h->next = prev->next; |
| prev->next = h_offset; |
| } |
| } |
| if (h_offset + dah_overhead + h->size == h->next) { |
| struct debug_alloc_header *next; |
| next = (struct debug_alloc_header *) |
| (debug_alloc_pool + h->next); |
| h->size += dah_overhead + next->size; |
| h->next = next->next; |
| memset(next, POISON_FREE, dah_overhead - 1); |
| *((char *)next + dah_overhead - 1) = POISON_END; |
| } |
| spin_unlock(&dap_lock); |
| } |
| |
| void debug_kusage(void) |
| { |
| struct debug_alloc_header *h_free, *h_used; |
| #ifdef CONFIG_IA64 |
| /* FIXME: using dah for ia64 unwind always results in a memory leak. |
| * Fix that memory leak first, then set debug_kusage_one_time = 1 for |
| * all architectures. |
| */ |
| static int debug_kusage_one_time; |
| #else |
| static int debug_kusage_one_time = 1; |
| #endif |
| if (!get_dap_lock()) { |
| __release(dap_lock); /* we never actually got it */ |
| return; |
| } |
| h_free = (struct debug_alloc_header *)(debug_alloc_pool + dah_first); |
| if (dah_first == 0 && |
| (h_free->size == sizeof(debug_alloc_pool_aligned) - dah_overhead || |
| dah_first_call)) |
| goto out; |
| if (!debug_kusage_one_time) |
| goto out; |
| debug_kusage_one_time = 0; |
| kdb_func_printf("debug_kmalloc memory leak dah_first %d\n", dah_first); |
| if (dah_first) { |
| h_used = (struct debug_alloc_header *)debug_alloc_pool; |
| kdb_func_printf("h_used %px size %d\n", h_used, h_used->size); |
| } |
| do { |
| h_used = (struct debug_alloc_header *) |
| ((char *)h_free + dah_overhead + h_free->size); |
| kdb_func_printf("h_used %px size %d caller %px\n", |
| h_used, h_used->size, h_used->caller); |
| h_free = (struct debug_alloc_header *) |
| (debug_alloc_pool + h_free->next); |
| } while (h_free->next); |
| h_used = (struct debug_alloc_header *) |
| ((char *)h_free + dah_overhead + h_free->size); |
| if ((char *)h_used - debug_alloc_pool != |
| sizeof(debug_alloc_pool_aligned)) |
| kdb_func_printf("h_used %px size %d caller %px\n", |
| h_used, h_used->size, h_used->caller); |
| out: |
| spin_unlock(&dap_lock); |
| } |
| |
| /* Maintain a small stack of kdb_flags to allow recursion without disturbing |
| * the global kdb state. |
| */ |
| |
| static int kdb_flags_stack[4], kdb_flags_index; |
| |
| void kdb_save_flags(void) |
| { |
| BUG_ON(kdb_flags_index >= ARRAY_SIZE(kdb_flags_stack)); |
| kdb_flags_stack[kdb_flags_index++] = kdb_flags; |
| } |
| |
| void kdb_restore_flags(void) |
| { |
| BUG_ON(kdb_flags_index <= 0); |
| kdb_flags = kdb_flags_stack[--kdb_flags_index]; |
| } |