| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 Regents of the University of California |
| * Copyright (C) 2019 Western Digital Corporation or its affiliates. |
| * Copyright (C) 2020 FORTH-ICS/CARV |
| * Nick Kossifidis <mick@ics.forth.gr> |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/memblock.h> |
| #include <linux/initrd.h> |
| #include <linux/swap.h> |
| #include <linux/swiotlb.h> |
| #include <linux/sizes.h> |
| #include <linux/of_fdt.h> |
| #include <linux/of_reserved_mem.h> |
| #include <linux/libfdt.h> |
| #include <linux/set_memory.h> |
| #include <linux/dma-map-ops.h> |
| #include <linux/crash_dump.h> |
| #include <linux/hugetlb.h> |
| #ifdef CONFIG_RELOCATABLE |
| #include <linux/elf.h> |
| #endif |
| #include <linux/kfence.h> |
| #include <linux/execmem.h> |
| |
| #include <asm/fixmap.h> |
| #include <asm/io.h> |
| #include <asm/kasan.h> |
| #include <asm/numa.h> |
| #include <asm/pgtable.h> |
| #include <asm/sections.h> |
| #include <asm/soc.h> |
| #include <asm/tlbflush.h> |
| |
| #include "../kernel/head.h" |
| |
| struct kernel_mapping kernel_map __ro_after_init; |
| EXPORT_SYMBOL(kernel_map); |
| #ifdef CONFIG_XIP_KERNEL |
| #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map)) |
| #endif |
| |
| #ifdef CONFIG_64BIT |
| u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39; |
| #else |
| u64 satp_mode __ro_after_init = SATP_MODE_32; |
| #endif |
| EXPORT_SYMBOL(satp_mode); |
| |
| #ifdef CONFIG_64BIT |
| bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); |
| bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL); |
| EXPORT_SYMBOL(pgtable_l4_enabled); |
| EXPORT_SYMBOL(pgtable_l5_enabled); |
| #endif |
| |
| phys_addr_t phys_ram_base __ro_after_init; |
| EXPORT_SYMBOL(phys_ram_base); |
| |
| unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] |
| __page_aligned_bss; |
| EXPORT_SYMBOL(empty_zero_page); |
| |
| extern char _start[]; |
| void *_dtb_early_va __initdata; |
| uintptr_t _dtb_early_pa __initdata; |
| |
| phys_addr_t dma32_phys_limit __initdata; |
| |
| static void __init zone_sizes_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, }; |
| |
| #ifdef CONFIG_ZONE_DMA32 |
| max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); |
| #endif |
| max_zone_pfns[ZONE_NORMAL] = max_low_pfn; |
| |
| free_area_init(max_zone_pfns); |
| } |
| |
| #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM) |
| |
| #define LOG2_SZ_1K ilog2(SZ_1K) |
| #define LOG2_SZ_1M ilog2(SZ_1M) |
| #define LOG2_SZ_1G ilog2(SZ_1G) |
| #define LOG2_SZ_1T ilog2(SZ_1T) |
| |
| static inline void print_mlk(char *name, unsigned long b, unsigned long t) |
| { |
| pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t, |
| (((t) - (b)) >> LOG2_SZ_1K)); |
| } |
| |
| static inline void print_mlm(char *name, unsigned long b, unsigned long t) |
| { |
| pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t, |
| (((t) - (b)) >> LOG2_SZ_1M)); |
| } |
| |
| static inline void print_mlg(char *name, unsigned long b, unsigned long t) |
| { |
| pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t, |
| (((t) - (b)) >> LOG2_SZ_1G)); |
| } |
| |
| #ifdef CONFIG_64BIT |
| static inline void print_mlt(char *name, unsigned long b, unsigned long t) |
| { |
| pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t, |
| (((t) - (b)) >> LOG2_SZ_1T)); |
| } |
| #else |
| #define print_mlt(n, b, t) do {} while (0) |
| #endif |
| |
| static inline void print_ml(char *name, unsigned long b, unsigned long t) |
| { |
| unsigned long diff = t - b; |
| |
| if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10) |
| print_mlt(name, b, t); |
| else if ((diff >> LOG2_SZ_1G) >= 10) |
| print_mlg(name, b, t); |
| else if ((diff >> LOG2_SZ_1M) >= 10) |
| print_mlm(name, b, t); |
| else |
| print_mlk(name, b, t); |
| } |
| |
| static void __init print_vm_layout(void) |
| { |
| pr_notice("Virtual kernel memory layout:\n"); |
| print_ml("fixmap", (unsigned long)FIXADDR_START, |
| (unsigned long)FIXADDR_TOP); |
| print_ml("pci io", (unsigned long)PCI_IO_START, |
| (unsigned long)PCI_IO_END); |
| print_ml("vmemmap", (unsigned long)VMEMMAP_START, |
| (unsigned long)VMEMMAP_END); |
| print_ml("vmalloc", (unsigned long)VMALLOC_START, |
| (unsigned long)VMALLOC_END); |
| #ifdef CONFIG_64BIT |
| print_ml("modules", (unsigned long)MODULES_VADDR, |
| (unsigned long)MODULES_END); |
| #endif |
| print_ml("lowmem", (unsigned long)PAGE_OFFSET, |
| (unsigned long)high_memory); |
| if (IS_ENABLED(CONFIG_64BIT)) { |
| #ifdef CONFIG_KASAN |
| print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END); |
| #endif |
| |
| print_ml("kernel", (unsigned long)kernel_map.virt_addr, |
| (unsigned long)ADDRESS_SPACE_END); |
| } |
| } |
| #else |
| static void print_vm_layout(void) { } |
| #endif /* CONFIG_DEBUG_VM */ |
| |
| void __init mem_init(void) |
| { |
| bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit); |
| #ifdef CONFIG_FLATMEM |
| BUG_ON(!mem_map); |
| #endif /* CONFIG_FLATMEM */ |
| |
| if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb && |
| dma_cache_alignment != 1) { |
| /* |
| * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb |
| * buffer per 1GB of RAM for kmalloc() bouncing on |
| * non-coherent platforms. |
| */ |
| unsigned long size = |
| DIV_ROUND_UP(memblock_phys_mem_size(), 1024); |
| swiotlb_adjust_size(min(swiotlb_size_or_default(), size)); |
| swiotlb = true; |
| } |
| |
| swiotlb_init(swiotlb, SWIOTLB_VERBOSE); |
| memblock_free_all(); |
| |
| print_vm_layout(); |
| } |
| |
| /* Limit the memory size via mem. */ |
| static phys_addr_t memory_limit; |
| #ifdef CONFIG_XIP_KERNEL |
| #define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit)) |
| #endif /* CONFIG_XIP_KERNEL */ |
| |
| static int __init early_mem(char *p) |
| { |
| u64 size; |
| |
| if (!p) |
| return 1; |
| |
| size = memparse(p, &p) & PAGE_MASK; |
| memory_limit = min_t(u64, size, memory_limit); |
| |
| pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20); |
| |
| return 0; |
| } |
| early_param("mem", early_mem); |
| |
| static void __init setup_bootmem(void) |
| { |
| phys_addr_t vmlinux_end = __pa_symbol(&_end); |
| phys_addr_t max_mapped_addr; |
| phys_addr_t phys_ram_end, vmlinux_start; |
| |
| if (IS_ENABLED(CONFIG_XIP_KERNEL)) |
| vmlinux_start = __pa_symbol(&_sdata); |
| else |
| vmlinux_start = __pa_symbol(&_start); |
| |
| memblock_enforce_memory_limit(memory_limit); |
| |
| /* |
| * Make sure we align the reservation on PMD_SIZE since we will |
| * map the kernel in the linear mapping as read-only: we do not want |
| * any allocation to happen between _end and the next pmd aligned page. |
| */ |
| if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX)) |
| vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK; |
| /* |
| * Reserve from the start of the kernel to the end of the kernel |
| */ |
| memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start); |
| |
| phys_ram_end = memblock_end_of_DRAM(); |
| |
| /* |
| * Make sure we align the start of the memory on a PMD boundary so that |
| * at worst, we map the linear mapping with PMD mappings. |
| */ |
| if (!IS_ENABLED(CONFIG_XIP_KERNEL)) |
| phys_ram_base = memblock_start_of_DRAM() & PMD_MASK; |
| |
| /* |
| * In 64-bit, any use of __va/__pa before this point is wrong as we |
| * did not know the start of DRAM before. |
| */ |
| if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) |
| kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base; |
| |
| /* |
| * Reserve physical address space that would be mapped to virtual |
| * addresses greater than (void *)(-PAGE_SIZE) because: |
| * - This memory would overlap with ERR_PTR |
| * - This memory belongs to high memory, which is not supported |
| * |
| * This is not applicable to 64-bit kernel, because virtual addresses |
| * after (void *)(-PAGE_SIZE) are not linearly mapped: they are |
| * occupied by kernel mapping. Also it is unrealistic for high memory |
| * to exist on 64-bit platforms. |
| */ |
| if (!IS_ENABLED(CONFIG_64BIT)) { |
| max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE); |
| memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr); |
| } |
| |
| min_low_pfn = PFN_UP(phys_ram_base); |
| max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end); |
| high_memory = (void *)(__va(PFN_PHYS(max_low_pfn))); |
| |
| dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn)); |
| set_max_mapnr(max_low_pfn - ARCH_PFN_OFFSET); |
| |
| reserve_initrd_mem(); |
| |
| /* |
| * No allocation should be done before reserving the memory as defined |
| * in the device tree, otherwise the allocation could end up in a |
| * reserved region. |
| */ |
| early_init_fdt_scan_reserved_mem(); |
| |
| /* |
| * If DTB is built in, no need to reserve its memblock. |
| * Otherwise, do reserve it but avoid using |
| * early_init_fdt_reserve_self() since __pa() does |
| * not work for DTB pointers that are fixmap addresses |
| */ |
| if (!IS_ENABLED(CONFIG_BUILTIN_DTB)) |
| memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va)); |
| |
| dma_contiguous_reserve(dma32_phys_limit); |
| if (IS_ENABLED(CONFIG_64BIT)) |
| hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); |
| } |
| |
| #ifdef CONFIG_MMU |
| struct pt_alloc_ops pt_ops __meminitdata; |
| |
| pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss; |
| pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss; |
| static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss; |
| |
| pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE); |
| |
| #ifdef CONFIG_XIP_KERNEL |
| #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops)) |
| #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir)) |
| #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte)) |
| #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir)) |
| #endif /* CONFIG_XIP_KERNEL */ |
| |
| static const pgprot_t protection_map[16] = { |
| [VM_NONE] = PAGE_NONE, |
| [VM_READ] = PAGE_READ, |
| [VM_WRITE] = PAGE_COPY, |
| [VM_WRITE | VM_READ] = PAGE_COPY, |
| [VM_EXEC] = PAGE_EXEC, |
| [VM_EXEC | VM_READ] = PAGE_READ_EXEC, |
| [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC, |
| [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC, |
| [VM_SHARED] = PAGE_NONE, |
| [VM_SHARED | VM_READ] = PAGE_READ, |
| [VM_SHARED | VM_WRITE] = PAGE_SHARED, |
| [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED, |
| [VM_SHARED | VM_EXEC] = PAGE_EXEC, |
| [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC, |
| [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC, |
| [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC |
| }; |
| DECLARE_VM_GET_PAGE_PROT |
| |
| void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) |
| { |
| unsigned long addr = __fix_to_virt(idx); |
| pte_t *ptep; |
| |
| BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses); |
| |
| ptep = &fixmap_pte[pte_index(addr)]; |
| |
| if (pgprot_val(prot)) |
| set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); |
| else |
| pte_clear(&init_mm, addr, ptep); |
| local_flush_tlb_page(addr); |
| } |
| |
| static inline pte_t *__init get_pte_virt_early(phys_addr_t pa) |
| { |
| return (pte_t *)((uintptr_t)pa); |
| } |
| |
| static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa) |
| { |
| clear_fixmap(FIX_PTE); |
| return (pte_t *)set_fixmap_offset(FIX_PTE, pa); |
| } |
| |
| static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa) |
| { |
| return (pte_t *) __va(pa); |
| } |
| |
| static inline phys_addr_t __init alloc_pte_early(uintptr_t va) |
| { |
| /* |
| * We only create PMD or PGD early mappings so we |
| * should never reach here with MMU disabled. |
| */ |
| BUG(); |
| } |
| |
| static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va) |
| { |
| return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); |
| } |
| |
| static phys_addr_t __meminit alloc_pte_late(uintptr_t va) |
| { |
| struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); |
| |
| BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc)); |
| return __pa((pte_t *)ptdesc_address(ptdesc)); |
| } |
| |
| static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz, |
| pgprot_t prot) |
| { |
| uintptr_t pte_idx = pte_index(va); |
| |
| BUG_ON(sz != PAGE_SIZE); |
| |
| if (pte_none(ptep[pte_idx])) |
| ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot); |
| } |
| |
| #ifndef __PAGETABLE_PMD_FOLDED |
| |
| static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss; |
| static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss; |
| static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE); |
| |
| #ifdef CONFIG_XIP_KERNEL |
| #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd)) |
| #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd)) |
| #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd)) |
| #endif /* CONFIG_XIP_KERNEL */ |
| |
| static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss; |
| static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss; |
| static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE); |
| |
| #ifdef CONFIG_XIP_KERNEL |
| #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d)) |
| #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d)) |
| #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d)) |
| #endif /* CONFIG_XIP_KERNEL */ |
| |
| static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss; |
| static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss; |
| static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE); |
| |
| #ifdef CONFIG_XIP_KERNEL |
| #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud)) |
| #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud)) |
| #define early_pud ((pud_t *)XIP_FIXUP(early_pud)) |
| #endif /* CONFIG_XIP_KERNEL */ |
| |
| static pmd_t *__init get_pmd_virt_early(phys_addr_t pa) |
| { |
| /* Before MMU is enabled */ |
| return (pmd_t *)((uintptr_t)pa); |
| } |
| |
| static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa) |
| { |
| clear_fixmap(FIX_PMD); |
| return (pmd_t *)set_fixmap_offset(FIX_PMD, pa); |
| } |
| |
| static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa) |
| { |
| return (pmd_t *) __va(pa); |
| } |
| |
| static phys_addr_t __init alloc_pmd_early(uintptr_t va) |
| { |
| BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT); |
| |
| return (uintptr_t)early_pmd; |
| } |
| |
| static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va) |
| { |
| return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); |
| } |
| |
| static phys_addr_t __meminit alloc_pmd_late(uintptr_t va) |
| { |
| struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0); |
| |
| BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc)); |
| return __pa((pmd_t *)ptdesc_address(ptdesc)); |
| } |
| |
| static void __meminit create_pmd_mapping(pmd_t *pmdp, |
| uintptr_t va, phys_addr_t pa, |
| phys_addr_t sz, pgprot_t prot) |
| { |
| pte_t *ptep; |
| phys_addr_t pte_phys; |
| uintptr_t pmd_idx = pmd_index(va); |
| |
| if (sz == PMD_SIZE) { |
| if (pmd_none(pmdp[pmd_idx])) |
| pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot); |
| return; |
| } |
| |
| if (pmd_none(pmdp[pmd_idx])) { |
| pte_phys = pt_ops.alloc_pte(va); |
| pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE); |
| ptep = pt_ops.get_pte_virt(pte_phys); |
| memset(ptep, 0, PAGE_SIZE); |
| } else { |
| pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx])); |
| ptep = pt_ops.get_pte_virt(pte_phys); |
| } |
| |
| create_pte_mapping(ptep, va, pa, sz, prot); |
| } |
| |
| static pud_t *__init get_pud_virt_early(phys_addr_t pa) |
| { |
| return (pud_t *)((uintptr_t)pa); |
| } |
| |
| static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa) |
| { |
| clear_fixmap(FIX_PUD); |
| return (pud_t *)set_fixmap_offset(FIX_PUD, pa); |
| } |
| |
| static pud_t *__meminit get_pud_virt_late(phys_addr_t pa) |
| { |
| return (pud_t *)__va(pa); |
| } |
| |
| static phys_addr_t __init alloc_pud_early(uintptr_t va) |
| { |
| /* Only one PUD is available for early mapping */ |
| BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); |
| |
| return (uintptr_t)early_pud; |
| } |
| |
| static phys_addr_t __init alloc_pud_fixmap(uintptr_t va) |
| { |
| return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); |
| } |
| |
| static phys_addr_t __meminit alloc_pud_late(uintptr_t va) |
| { |
| unsigned long vaddr; |
| |
| vaddr = __get_free_page(GFP_KERNEL); |
| BUG_ON(!vaddr); |
| return __pa(vaddr); |
| } |
| |
| static p4d_t *__init get_p4d_virt_early(phys_addr_t pa) |
| { |
| return (p4d_t *)((uintptr_t)pa); |
| } |
| |
| static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa) |
| { |
| clear_fixmap(FIX_P4D); |
| return (p4d_t *)set_fixmap_offset(FIX_P4D, pa); |
| } |
| |
| static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa) |
| { |
| return (p4d_t *)__va(pa); |
| } |
| |
| static phys_addr_t __init alloc_p4d_early(uintptr_t va) |
| { |
| /* Only one P4D is available for early mapping */ |
| BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT); |
| |
| return (uintptr_t)early_p4d; |
| } |
| |
| static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va) |
| { |
| return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE); |
| } |
| |
| static phys_addr_t __meminit alloc_p4d_late(uintptr_t va) |
| { |
| unsigned long vaddr; |
| |
| vaddr = __get_free_page(GFP_KERNEL); |
| BUG_ON(!vaddr); |
| return __pa(vaddr); |
| } |
| |
| static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, |
| pgprot_t prot) |
| { |
| pmd_t *nextp; |
| phys_addr_t next_phys; |
| uintptr_t pud_index = pud_index(va); |
| |
| if (sz == PUD_SIZE) { |
| if (pud_val(pudp[pud_index]) == 0) |
| pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot); |
| return; |
| } |
| |
| if (pud_val(pudp[pud_index]) == 0) { |
| next_phys = pt_ops.alloc_pmd(va); |
| pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE); |
| nextp = pt_ops.get_pmd_virt(next_phys); |
| memset(nextp, 0, PAGE_SIZE); |
| } else { |
| next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index])); |
| nextp = pt_ops.get_pmd_virt(next_phys); |
| } |
| |
| create_pmd_mapping(nextp, va, pa, sz, prot); |
| } |
| |
| static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, |
| pgprot_t prot) |
| { |
| pud_t *nextp; |
| phys_addr_t next_phys; |
| uintptr_t p4d_index = p4d_index(va); |
| |
| if (sz == P4D_SIZE) { |
| if (p4d_val(p4dp[p4d_index]) == 0) |
| p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot); |
| return; |
| } |
| |
| if (p4d_val(p4dp[p4d_index]) == 0) { |
| next_phys = pt_ops.alloc_pud(va); |
| p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE); |
| nextp = pt_ops.get_pud_virt(next_phys); |
| memset(nextp, 0, PAGE_SIZE); |
| } else { |
| next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index])); |
| nextp = pt_ops.get_pud_virt(next_phys); |
| } |
| |
| create_pud_mapping(nextp, va, pa, sz, prot); |
| } |
| |
| #define pgd_next_t p4d_t |
| #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \ |
| pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \ |
| pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va))) |
| #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \ |
| pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \ |
| pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa))) |
| #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ |
| (pgtable_l5_enabled ? \ |
| create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \ |
| (pgtable_l4_enabled ? \ |
| create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \ |
| create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot))) |
| #define fixmap_pgd_next (pgtable_l5_enabled ? \ |
| (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \ |
| (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd)) |
| #define trampoline_pgd_next (pgtable_l5_enabled ? \ |
| (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \ |
| (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd)) |
| #else |
| #define pgd_next_t pte_t |
| #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va) |
| #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa) |
| #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \ |
| create_pte_mapping(__nextp, __va, __pa, __sz, __prot) |
| #define fixmap_pgd_next ((uintptr_t)fixmap_pte) |
| #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) |
| #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) |
| #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0) |
| #endif /* __PAGETABLE_PMD_FOLDED */ |
| |
| void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz, |
| pgprot_t prot) |
| { |
| pgd_next_t *nextp; |
| phys_addr_t next_phys; |
| uintptr_t pgd_idx = pgd_index(va); |
| |
| if (sz == PGDIR_SIZE) { |
| if (pgd_val(pgdp[pgd_idx]) == 0) |
| pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot); |
| return; |
| } |
| |
| if (pgd_val(pgdp[pgd_idx]) == 0) { |
| next_phys = alloc_pgd_next(va); |
| pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE); |
| nextp = get_pgd_next_virt(next_phys); |
| memset(nextp, 0, PAGE_SIZE); |
| } else { |
| next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx])); |
| nextp = get_pgd_next_virt(next_phys); |
| } |
| |
| create_pgd_next_mapping(nextp, va, pa, sz, prot); |
| } |
| |
| static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size) |
| { |
| if (debug_pagealloc_enabled()) |
| return PAGE_SIZE; |
| |
| if (pgtable_l5_enabled && |
| !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE) |
| return P4D_SIZE; |
| |
| if (pgtable_l4_enabled && |
| !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE) |
| return PUD_SIZE; |
| |
| if (IS_ENABLED(CONFIG_64BIT) && |
| !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE) |
| return PMD_SIZE; |
| |
| return PAGE_SIZE; |
| } |
| |
| #ifdef CONFIG_XIP_KERNEL |
| #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base)) |
| extern char _xiprom[], _exiprom[], __data_loc; |
| |
| /* called from head.S with MMU off */ |
| asmlinkage void __init __copy_data(void) |
| { |
| void *from = (void *)(&__data_loc); |
| void *to = (void *)CONFIG_PHYS_RAM_BASE; |
| size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata)); |
| |
| memcpy(to, from, sz); |
| } |
| #endif |
| |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| static __meminit pgprot_t pgprot_from_va(uintptr_t va) |
| { |
| if (is_va_kernel_text(va)) |
| return PAGE_KERNEL_READ_EXEC; |
| |
| /* |
| * In 64-bit kernel, the kernel mapping is outside the linear mapping so |
| * we must protect its linear mapping alias from being executed and |
| * written. |
| * And rodata section is marked readonly in mark_rodata_ro. |
| */ |
| if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va)) |
| return PAGE_KERNEL_READ; |
| |
| return PAGE_KERNEL; |
| } |
| |
| void mark_rodata_ro(void) |
| { |
| set_kernel_memory(__start_rodata, _data, set_memory_ro); |
| if (IS_ENABLED(CONFIG_64BIT)) |
| set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data), |
| set_memory_ro); |
| } |
| #else |
| static __meminit pgprot_t pgprot_from_va(uintptr_t va) |
| { |
| if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va)) |
| return PAGE_KERNEL; |
| |
| return PAGE_KERNEL_EXEC; |
| } |
| #endif /* CONFIG_STRICT_KERNEL_RWX */ |
| |
| #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) |
| u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa); |
| |
| static void __init disable_pgtable_l5(void) |
| { |
| pgtable_l5_enabled = false; |
| kernel_map.page_offset = PAGE_OFFSET_L4; |
| satp_mode = SATP_MODE_48; |
| } |
| |
| static void __init disable_pgtable_l4(void) |
| { |
| pgtable_l4_enabled = false; |
| kernel_map.page_offset = PAGE_OFFSET_L3; |
| satp_mode = SATP_MODE_39; |
| } |
| |
| static int __init print_no4lvl(char *p) |
| { |
| pr_info("Disabled 4-level and 5-level paging"); |
| return 0; |
| } |
| early_param("no4lvl", print_no4lvl); |
| |
| static int __init print_no5lvl(char *p) |
| { |
| pr_info("Disabled 5-level paging"); |
| return 0; |
| } |
| early_param("no5lvl", print_no5lvl); |
| |
| static void __init set_mmap_rnd_bits_max(void) |
| { |
| mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3; |
| } |
| |
| /* |
| * There is a simple way to determine if 4-level is supported by the |
| * underlying hardware: establish 1:1 mapping in 4-level page table mode |
| * then read SATP to see if the configuration was taken into account |
| * meaning sv48 is supported. |
| */ |
| static __init void set_satp_mode(uintptr_t dtb_pa) |
| { |
| u64 identity_satp, hw_satp; |
| uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK; |
| u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa); |
| |
| if (satp_mode_cmdline == SATP_MODE_57) { |
| disable_pgtable_l5(); |
| } else if (satp_mode_cmdline == SATP_MODE_48) { |
| disable_pgtable_l5(); |
| disable_pgtable_l4(); |
| return; |
| } |
| |
| create_p4d_mapping(early_p4d, |
| set_satp_mode_pmd, (uintptr_t)early_pud, |
| P4D_SIZE, PAGE_TABLE); |
| create_pud_mapping(early_pud, |
| set_satp_mode_pmd, (uintptr_t)early_pmd, |
| PUD_SIZE, PAGE_TABLE); |
| /* Handle the case where set_satp_mode straddles 2 PMDs */ |
| create_pmd_mapping(early_pmd, |
| set_satp_mode_pmd, set_satp_mode_pmd, |
| PMD_SIZE, PAGE_KERNEL_EXEC); |
| create_pmd_mapping(early_pmd, |
| set_satp_mode_pmd + PMD_SIZE, |
| set_satp_mode_pmd + PMD_SIZE, |
| PMD_SIZE, PAGE_KERNEL_EXEC); |
| retry: |
| create_pgd_mapping(early_pg_dir, |
| set_satp_mode_pmd, |
| pgtable_l5_enabled ? |
| (uintptr_t)early_p4d : (uintptr_t)early_pud, |
| PGDIR_SIZE, PAGE_TABLE); |
| |
| identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode; |
| |
| local_flush_tlb_all(); |
| csr_write(CSR_SATP, identity_satp); |
| hw_satp = csr_swap(CSR_SATP, 0ULL); |
| local_flush_tlb_all(); |
| |
| if (hw_satp != identity_satp) { |
| if (pgtable_l5_enabled) { |
| disable_pgtable_l5(); |
| memset(early_pg_dir, 0, PAGE_SIZE); |
| goto retry; |
| } |
| disable_pgtable_l4(); |
| } |
| |
| memset(early_pg_dir, 0, PAGE_SIZE); |
| memset(early_p4d, 0, PAGE_SIZE); |
| memset(early_pud, 0, PAGE_SIZE); |
| memset(early_pmd, 0, PAGE_SIZE); |
| } |
| #endif |
| |
| /* |
| * setup_vm() is called from head.S with MMU-off. |
| * |
| * Following requirements should be honoured for setup_vm() to work |
| * correctly: |
| * 1) It should use PC-relative addressing for accessing kernel symbols. |
| * To achieve this we always use GCC cmodel=medany. |
| * 2) The compiler instrumentation for FTRACE will not work for setup_vm() |
| * so disable compiler instrumentation when FTRACE is enabled. |
| * |
| * Currently, the above requirements are honoured by using custom CFLAGS |
| * for init.o in mm/Makefile. |
| */ |
| |
| #ifndef __riscv_cmodel_medany |
| #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing." |
| #endif |
| |
| #ifdef CONFIG_RELOCATABLE |
| extern unsigned long __rela_dyn_start, __rela_dyn_end; |
| |
| static void __init relocate_kernel(void) |
| { |
| Elf64_Rela *rela = (Elf64_Rela *)&__rela_dyn_start; |
| /* |
| * This holds the offset between the linked virtual address and the |
| * relocated virtual address. |
| */ |
| uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR; |
| /* |
| * This holds the offset between kernel linked virtual address and |
| * physical address. |
| */ |
| uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr; |
| |
| for ( ; rela < (Elf64_Rela *)&__rela_dyn_end; rela++) { |
| Elf64_Addr addr = (rela->r_offset - va_kernel_link_pa_offset); |
| Elf64_Addr relocated_addr = rela->r_addend; |
| |
| if (rela->r_info != R_RISCV_RELATIVE) |
| continue; |
| |
| /* |
| * Make sure to not relocate vdso symbols like rt_sigreturn |
| * which are linked from the address 0 in vmlinux since |
| * vdso symbol addresses are actually used as an offset from |
| * mm->context.vdso in VDSO_OFFSET macro. |
| */ |
| if (relocated_addr >= KERNEL_LINK_ADDR) |
| relocated_addr += reloc_offset; |
| |
| *(Elf64_Addr *)addr = relocated_addr; |
| } |
| } |
| #endif /* CONFIG_RELOCATABLE */ |
| |
| #ifdef CONFIG_XIP_KERNEL |
| static void __init create_kernel_page_table(pgd_t *pgdir, |
| __always_unused bool early) |
| { |
| uintptr_t va, end_va; |
| |
| /* Map the flash resident part */ |
| end_va = kernel_map.virt_addr + kernel_map.xiprom_sz; |
| for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) |
| create_pgd_mapping(pgdir, va, |
| kernel_map.xiprom + (va - kernel_map.virt_addr), |
| PMD_SIZE, PAGE_KERNEL_EXEC); |
| |
| /* Map the data in RAM */ |
| end_va = kernel_map.virt_addr + XIP_OFFSET + kernel_map.size; |
| for (va = kernel_map.virt_addr + XIP_OFFSET; va < end_va; va += PMD_SIZE) |
| create_pgd_mapping(pgdir, va, |
| kernel_map.phys_addr + (va - (kernel_map.virt_addr + XIP_OFFSET)), |
| PMD_SIZE, PAGE_KERNEL); |
| } |
| #else |
| static void __init create_kernel_page_table(pgd_t *pgdir, bool early) |
| { |
| uintptr_t va, end_va; |
| |
| end_va = kernel_map.virt_addr + kernel_map.size; |
| for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE) |
| create_pgd_mapping(pgdir, va, |
| kernel_map.phys_addr + (va - kernel_map.virt_addr), |
| PMD_SIZE, |
| early ? |
| PAGE_KERNEL_EXEC : pgprot_from_va(va)); |
| } |
| #endif |
| |
| /* |
| * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel, |
| * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR |
| * entry. |
| */ |
| static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va, |
| uintptr_t dtb_pa) |
| { |
| #ifndef CONFIG_BUILTIN_DTB |
| uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1); |
| |
| /* Make sure the fdt fixmap address is always aligned on PMD size */ |
| BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE)); |
| |
| /* In 32-bit only, the fdt lies in its own PGD */ |
| if (!IS_ENABLED(CONFIG_64BIT)) { |
| create_pgd_mapping(early_pg_dir, fix_fdt_va, |
| pa, MAX_FDT_SIZE, PAGE_KERNEL); |
| } else { |
| create_pmd_mapping(fixmap_pmd, fix_fdt_va, |
| pa, PMD_SIZE, PAGE_KERNEL); |
| create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE, |
| pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL); |
| } |
| |
| dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1)); |
| #else |
| /* |
| * For 64-bit kernel, __va can't be used since it would return a linear |
| * mapping address whereas dtb_early_va will be used before |
| * setup_vm_final installs the linear mapping. For 32-bit kernel, as the |
| * kernel is mapped in the linear mapping, that makes no difference. |
| */ |
| dtb_early_va = kernel_mapping_pa_to_va(dtb_pa); |
| #endif |
| |
| dtb_early_pa = dtb_pa; |
| } |
| |
| /* |
| * MMU is not enabled, the page tables are allocated directly using |
| * early_pmd/pud/p4d and the address returned is the physical one. |
| */ |
| static void __init pt_ops_set_early(void) |
| { |
| pt_ops.alloc_pte = alloc_pte_early; |
| pt_ops.get_pte_virt = get_pte_virt_early; |
| #ifndef __PAGETABLE_PMD_FOLDED |
| pt_ops.alloc_pmd = alloc_pmd_early; |
| pt_ops.get_pmd_virt = get_pmd_virt_early; |
| pt_ops.alloc_pud = alloc_pud_early; |
| pt_ops.get_pud_virt = get_pud_virt_early; |
| pt_ops.alloc_p4d = alloc_p4d_early; |
| pt_ops.get_p4d_virt = get_p4d_virt_early; |
| #endif |
| } |
| |
| /* |
| * MMU is enabled but page table setup is not complete yet. |
| * fixmap page table alloc functions must be used as a means to temporarily |
| * map the allocated physical pages since the linear mapping does not exist yet. |
| * |
| * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va, |
| * but it will be used as described above. |
| */ |
| static void __init pt_ops_set_fixmap(void) |
| { |
| pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap); |
| pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap); |
| #ifndef __PAGETABLE_PMD_FOLDED |
| pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap); |
| pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap); |
| pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap); |
| pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap); |
| pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap); |
| pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap); |
| #endif |
| } |
| |
| /* |
| * MMU is enabled and page table setup is complete, so from now, we can use |
| * generic page allocation functions to setup page table. |
| */ |
| static void __init pt_ops_set_late(void) |
| { |
| pt_ops.alloc_pte = alloc_pte_late; |
| pt_ops.get_pte_virt = get_pte_virt_late; |
| #ifndef __PAGETABLE_PMD_FOLDED |
| pt_ops.alloc_pmd = alloc_pmd_late; |
| pt_ops.get_pmd_virt = get_pmd_virt_late; |
| pt_ops.alloc_pud = alloc_pud_late; |
| pt_ops.get_pud_virt = get_pud_virt_late; |
| pt_ops.alloc_p4d = alloc_p4d_late; |
| pt_ops.get_p4d_virt = get_p4d_virt_late; |
| #endif |
| } |
| |
| #ifdef CONFIG_RANDOMIZE_BASE |
| extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa); |
| extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa); |
| |
| static int __init print_nokaslr(char *p) |
| { |
| pr_info("Disabled KASLR"); |
| return 0; |
| } |
| early_param("nokaslr", print_nokaslr); |
| |
| unsigned long kaslr_offset(void) |
| { |
| return kernel_map.virt_offset; |
| } |
| #endif |
| |
| asmlinkage void __init setup_vm(uintptr_t dtb_pa) |
| { |
| pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd; |
| |
| #ifdef CONFIG_RANDOMIZE_BASE |
| if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) { |
| u64 kaslr_seed = __pi_get_kaslr_seed(dtb_pa); |
| u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start); |
| u32 nr_pos; |
| |
| /* |
| * Compute the number of positions available: we are limited |
| * by the early page table that only has one PUD and we must |
| * be aligned on PMD_SIZE. |
| */ |
| nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE; |
| |
| kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE; |
| } |
| #endif |
| |
| kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset; |
| |
| #ifdef CONFIG_XIP_KERNEL |
| #ifdef CONFIG_64BIT |
| kernel_map.page_offset = PAGE_OFFSET_L3; |
| #else |
| kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); |
| #endif |
| kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR; |
| kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom); |
| |
| phys_ram_base = CONFIG_PHYS_RAM_BASE; |
| kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE; |
| kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_sdata); |
| |
| kernel_map.va_kernel_xip_pa_offset = kernel_map.virt_addr - kernel_map.xiprom; |
| #else |
| kernel_map.page_offset = _AC(CONFIG_PAGE_OFFSET, UL); |
| kernel_map.phys_addr = (uintptr_t)(&_start); |
| kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr; |
| #endif |
| |
| #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL) |
| set_satp_mode(dtb_pa); |
| set_mmap_rnd_bits_max(); |
| #endif |
| |
| /* |
| * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem, |
| * where we have the system memory layout: this allows us to align |
| * the physical and virtual mappings and then make use of PUD/P4D/PGD |
| * for the linear mapping. This is only possible because the kernel |
| * mapping lies outside the linear mapping. |
| * In 32-bit however, as the kernel resides in the linear mapping, |
| * setup_vm_final can not change the mapping established here, |
| * otherwise the same kernel addresses would get mapped to different |
| * physical addresses (if the start of dram is different from the |
| * kernel physical address start). |
| */ |
| kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ? |
| 0UL : PAGE_OFFSET - kernel_map.phys_addr; |
| kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr; |
| |
| /* |
| * The default maximal physical memory size is KERN_VIRT_SIZE for 32-bit |
| * kernel, whereas for 64-bit kernel, the end of the virtual address |
| * space is occupied by the modules/BPF/kernel mappings which reduces |
| * the available size of the linear mapping. |
| */ |
| memory_limit = KERN_VIRT_SIZE - (IS_ENABLED(CONFIG_64BIT) ? SZ_4G : 0); |
| |
| /* Sanity check alignment and size */ |
| BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0); |
| BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0); |
| |
| #ifdef CONFIG_64BIT |
| /* |
| * The last 4K bytes of the addressable memory can not be mapped because |
| * of IS_ERR_VALUE macro. |
| */ |
| BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K); |
| #endif |
| |
| #ifdef CONFIG_RELOCATABLE |
| /* |
| * Early page table uses only one PUD, which makes it possible |
| * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset |
| * makes the kernel cross over a PUD_SIZE boundary, raise a bug |
| * since a part of the kernel would not get mapped. |
| */ |
| BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size); |
| relocate_kernel(); |
| #endif |
| |
| apply_early_boot_alternatives(); |
| pt_ops_set_early(); |
| |
| /* Setup early PGD for fixmap */ |
| create_pgd_mapping(early_pg_dir, FIXADDR_START, |
| fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE); |
| |
| #ifndef __PAGETABLE_PMD_FOLDED |
| /* Setup fixmap P4D and PUD */ |
| if (pgtable_l5_enabled) |
| create_p4d_mapping(fixmap_p4d, FIXADDR_START, |
| (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE); |
| /* Setup fixmap PUD and PMD */ |
| if (pgtable_l4_enabled) |
| create_pud_mapping(fixmap_pud, FIXADDR_START, |
| (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE); |
| create_pmd_mapping(fixmap_pmd, FIXADDR_START, |
| (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE); |
| /* Setup trampoline PGD and PMD */ |
| create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, |
| trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE); |
| if (pgtable_l5_enabled) |
| create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr, |
| (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE); |
| if (pgtable_l4_enabled) |
| create_pud_mapping(trampoline_pud, kernel_map.virt_addr, |
| (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE); |
| #ifdef CONFIG_XIP_KERNEL |
| create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, |
| kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC); |
| #else |
| create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr, |
| kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC); |
| #endif |
| #else |
| /* Setup trampoline PGD */ |
| create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr, |
| kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC); |
| #endif |
| |
| /* |
| * Setup early PGD covering entire kernel which will allow |
| * us to reach paging_init(). We map all memory banks later |
| * in setup_vm_final() below. |
| */ |
| create_kernel_page_table(early_pg_dir, true); |
| |
| /* Setup early mapping for FDT early scan */ |
| create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa); |
| |
| /* |
| * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap |
| * range can not span multiple pmds. |
| */ |
| BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT) |
| != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT)); |
| |
| #ifndef __PAGETABLE_PMD_FOLDED |
| /* |
| * Early ioremap fixmap is already created as it lies within first 2MB |
| * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END |
| * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn |
| * the user if not. |
| */ |
| fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))]; |
| fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))]; |
| if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) { |
| WARN_ON(1); |
| pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n", |
| pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd)); |
| pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n", |
| fix_to_virt(FIX_BTMAP_BEGIN)); |
| pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n", |
| fix_to_virt(FIX_BTMAP_END)); |
| |
| pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END); |
| pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN); |
| } |
| #endif |
| |
| pt_ops_set_fixmap(); |
| } |
| |
| static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end, |
| uintptr_t fixed_map_size, const pgprot_t *pgprot) |
| { |
| phys_addr_t pa; |
| uintptr_t va, map_size; |
| |
| for (pa = start; pa < end; pa += map_size) { |
| va = (uintptr_t)__va(pa); |
| map_size = fixed_map_size ? fixed_map_size : |
| best_map_size(pa, va, end - pa); |
| |
| create_pgd_mapping(swapper_pg_dir, va, pa, map_size, |
| pgprot ? *pgprot : pgprot_from_va(va)); |
| } |
| } |
| |
| static void __init create_linear_mapping_page_table(void) |
| { |
| phys_addr_t start, end; |
| phys_addr_t kfence_pool __maybe_unused; |
| u64 i; |
| |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| phys_addr_t ktext_start = __pa_symbol(_start); |
| phys_addr_t ktext_size = __init_data_begin - _start; |
| phys_addr_t krodata_start = __pa_symbol(__start_rodata); |
| phys_addr_t krodata_size = _data - __start_rodata; |
| |
| /* Isolate kernel text and rodata so they don't get mapped with a PUD */ |
| memblock_mark_nomap(ktext_start, ktext_size); |
| memblock_mark_nomap(krodata_start, krodata_size); |
| #endif |
| |
| #ifdef CONFIG_KFENCE |
| /* |
| * kfence pool must be backed by PAGE_SIZE mappings, so allocate it |
| * before we setup the linear mapping so that we avoid using hugepages |
| * for this region. |
| */ |
| kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); |
| BUG_ON(!kfence_pool); |
| |
| memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE); |
| __kfence_pool = __va(kfence_pool); |
| #endif |
| |
| /* Map all memory banks in the linear mapping */ |
| for_each_mem_range(i, &start, &end) { |
| if (start >= end) |
| break; |
| if (start <= __pa(PAGE_OFFSET) && |
| __pa(PAGE_OFFSET) < end) |
| start = __pa(PAGE_OFFSET); |
| if (end >= __pa(PAGE_OFFSET) + memory_limit) |
| end = __pa(PAGE_OFFSET) + memory_limit; |
| |
| create_linear_mapping_range(start, end, 0, NULL); |
| } |
| |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL); |
| create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL); |
| |
| memblock_clear_nomap(ktext_start, ktext_size); |
| memblock_clear_nomap(krodata_start, krodata_size); |
| #endif |
| |
| #ifdef CONFIG_KFENCE |
| create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL); |
| |
| memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE); |
| #endif |
| } |
| |
| static void __init setup_vm_final(void) |
| { |
| /* Setup swapper PGD for fixmap */ |
| #if !defined(CONFIG_64BIT) |
| /* |
| * In 32-bit, the device tree lies in a pgd entry, so it must be copied |
| * directly in swapper_pg_dir in addition to the pgd entry that points |
| * to fixmap_pte. |
| */ |
| unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT)); |
| |
| set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]); |
| #endif |
| create_pgd_mapping(swapper_pg_dir, FIXADDR_START, |
| __pa_symbol(fixmap_pgd_next), |
| PGDIR_SIZE, PAGE_TABLE); |
| |
| /* Map the linear mapping */ |
| create_linear_mapping_page_table(); |
| |
| /* Map the kernel */ |
| if (IS_ENABLED(CONFIG_64BIT)) |
| create_kernel_page_table(swapper_pg_dir, false); |
| |
| #ifdef CONFIG_KASAN |
| kasan_swapper_init(); |
| #endif |
| |
| /* Clear fixmap PTE and PMD mappings */ |
| clear_fixmap(FIX_PTE); |
| clear_fixmap(FIX_PMD); |
| clear_fixmap(FIX_PUD); |
| clear_fixmap(FIX_P4D); |
| |
| /* Move to swapper page table */ |
| csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode); |
| local_flush_tlb_all(); |
| |
| pt_ops_set_late(); |
| } |
| #else |
| asmlinkage void __init setup_vm(uintptr_t dtb_pa) |
| { |
| dtb_early_va = (void *)dtb_pa; |
| dtb_early_pa = dtb_pa; |
| } |
| |
| static inline void setup_vm_final(void) |
| { |
| } |
| #endif /* CONFIG_MMU */ |
| |
| /* |
| * reserve_crashkernel() - reserves memory for crash kernel |
| * |
| * This function reserves memory area given in "crashkernel=" kernel command |
| * line parameter. The memory reserved is used by dump capture kernel when |
| * primary kernel is crashing. |
| */ |
| static void __init arch_reserve_crashkernel(void) |
| { |
| unsigned long long low_size = 0; |
| unsigned long long crash_base, crash_size; |
| char *cmdline = boot_command_line; |
| bool high = false; |
| int ret; |
| |
| if (!IS_ENABLED(CONFIG_CRASH_RESERVE)) |
| return; |
| |
| ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), |
| &crash_size, &crash_base, |
| &low_size, &high); |
| if (ret) |
| return; |
| |
| reserve_crashkernel_generic(cmdline, crash_size, crash_base, |
| low_size, high); |
| } |
| |
| void __init paging_init(void) |
| { |
| setup_bootmem(); |
| setup_vm_final(); |
| |
| /* Depend on that Linear Mapping is ready */ |
| memblock_allow_resize(); |
| } |
| |
| void __init misc_mem_init(void) |
| { |
| early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT); |
| arch_numa_init(); |
| sparse_init(); |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| /* The entire VMEMMAP region has been populated. Flush TLB for this region */ |
| local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END); |
| #endif |
| zone_sizes_init(); |
| arch_reserve_crashkernel(); |
| memblock_dump_all(); |
| } |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node, |
| unsigned long addr, unsigned long next) |
| { |
| pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL); |
| } |
| |
| int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node, |
| unsigned long addr, unsigned long next) |
| { |
| vmemmap_verify((pte_t *)pmdp, node, addr, next); |
| return 1; |
| } |
| |
| int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, |
| struct vmem_altmap *altmap) |
| { |
| /* |
| * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we |
| * can't use hugepage mappings for 2-level page table because in case of |
| * memory hotplug, we are not able to update all the page tables with |
| * the new PMDs. |
| */ |
| return vmemmap_populate_hugepages(start, end, node, altmap); |
| } |
| #endif |
| |
| #if defined(CONFIG_MMU) && defined(CONFIG_64BIT) |
| /* |
| * Pre-allocates page-table pages for a specific area in the kernel |
| * page-table. Only the level which needs to be synchronized between |
| * all page-tables is allocated because the synchronization can be |
| * expensive. |
| */ |
| static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end, |
| const char *area) |
| { |
| unsigned long addr; |
| const char *lvl; |
| |
| for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) { |
| pgd_t *pgd = pgd_offset_k(addr); |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| lvl = "p4d"; |
| p4d = p4d_alloc(&init_mm, pgd, addr); |
| if (!p4d) |
| goto failed; |
| |
| if (pgtable_l5_enabled) |
| continue; |
| |
| lvl = "pud"; |
| pud = pud_alloc(&init_mm, p4d, addr); |
| if (!pud) |
| goto failed; |
| |
| if (pgtable_l4_enabled) |
| continue; |
| |
| lvl = "pmd"; |
| pmd = pmd_alloc(&init_mm, pud, addr); |
| if (!pmd) |
| goto failed; |
| } |
| return; |
| |
| failed: |
| /* |
| * The pages have to be there now or they will be missing in |
| * process page-tables later. |
| */ |
| panic("Failed to pre-allocate %s pages for %s area\n", lvl, area); |
| } |
| |
| #define PAGE_END KASAN_SHADOW_START |
| |
| void __init pgtable_cache_init(void) |
| { |
| preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc"); |
| if (IS_ENABLED(CONFIG_MODULES)) |
| preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules"); |
| if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) { |
| preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap"); |
| preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map"); |
| if (IS_ENABLED(CONFIG_KASAN)) |
| preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan"); |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_EXECMEM |
| #ifdef CONFIG_MMU |
| static struct execmem_info execmem_info __ro_after_init; |
| |
| struct execmem_info __init *execmem_arch_setup(void) |
| { |
| execmem_info = (struct execmem_info){ |
| .ranges = { |
| [EXECMEM_DEFAULT] = { |
| .start = MODULES_VADDR, |
| .end = MODULES_END, |
| .pgprot = PAGE_KERNEL, |
| .alignment = 1, |
| }, |
| [EXECMEM_KPROBES] = { |
| .start = VMALLOC_START, |
| .end = VMALLOC_END, |
| .pgprot = PAGE_KERNEL_READ_EXEC, |
| .alignment = 1, |
| }, |
| [EXECMEM_BPF] = { |
| .start = BPF_JIT_REGION_START, |
| .end = BPF_JIT_REGION_END, |
| .pgprot = PAGE_KERNEL, |
| .alignment = PAGE_SIZE, |
| }, |
| }, |
| }; |
| |
| return &execmem_info; |
| } |
| #endif /* CONFIG_MMU */ |
| #endif /* CONFIG_EXECMEM */ |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd) |
| { |
| struct page *page = pmd_page(*pmd); |
| struct ptdesc *ptdesc = page_ptdesc(page); |
| pte_t *pte; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PTE; i++) { |
| pte = pte_start + i; |
| if (!pte_none(*pte)) |
| return; |
| } |
| |
| pagetable_pte_dtor(ptdesc); |
| if (PageReserved(page)) |
| free_reserved_page(page); |
| else |
| pagetable_free(ptdesc); |
| pmd_clear(pmd); |
| } |
| |
| static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud) |
| { |
| struct page *page = pud_page(*pud); |
| struct ptdesc *ptdesc = page_ptdesc(page); |
| pmd_t *pmd; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PMD; i++) { |
| pmd = pmd_start + i; |
| if (!pmd_none(*pmd)) |
| return; |
| } |
| |
| pagetable_pmd_dtor(ptdesc); |
| if (PageReserved(page)) |
| free_reserved_page(page); |
| else |
| pagetable_free(ptdesc); |
| pud_clear(pud); |
| } |
| |
| static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d) |
| { |
| struct page *page = p4d_page(*p4d); |
| pud_t *pud; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PUD; i++) { |
| pud = pud_start + i; |
| if (!pud_none(*pud)) |
| return; |
| } |
| |
| if (PageReserved(page)) |
| free_reserved_page(page); |
| else |
| free_pages((unsigned long)page_address(page), 0); |
| p4d_clear(p4d); |
| } |
| |
| static void __meminit free_vmemmap_storage(struct page *page, size_t size, |
| struct vmem_altmap *altmap) |
| { |
| int order = get_order(size); |
| |
| if (altmap) { |
| vmem_altmap_free(altmap, size >> PAGE_SHIFT); |
| return; |
| } |
| |
| if (PageReserved(page)) { |
| unsigned int nr_pages = 1 << order; |
| |
| while (nr_pages--) |
| free_reserved_page(page++); |
| return; |
| } |
| |
| free_pages((unsigned long)page_address(page), order); |
| } |
| |
| static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end, |
| bool is_vmemmap, struct vmem_altmap *altmap) |
| { |
| unsigned long next; |
| pte_t *ptep, pte; |
| |
| for (; addr < end; addr = next) { |
| next = (addr + PAGE_SIZE) & PAGE_MASK; |
| if (next > end) |
| next = end; |
| |
| ptep = pte_base + pte_index(addr); |
| pte = ptep_get(ptep); |
| if (!pte_present(*ptep)) |
| continue; |
| |
| pte_clear(&init_mm, addr, ptep); |
| if (is_vmemmap) |
| free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap); |
| } |
| } |
| |
| static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end, |
| bool is_vmemmap, struct vmem_altmap *altmap) |
| { |
| unsigned long next; |
| pte_t *pte_base; |
| pmd_t *pmdp, pmd; |
| |
| for (; addr < end; addr = next) { |
| next = pmd_addr_end(addr, end); |
| pmdp = pmd_base + pmd_index(addr); |
| pmd = pmdp_get(pmdp); |
| if (!pmd_present(pmd)) |
| continue; |
| |
| if (pmd_leaf(pmd)) { |
| pmd_clear(pmdp); |
| if (is_vmemmap) |
| free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap); |
| continue; |
| } |
| |
| pte_base = (pte_t *)pmd_page_vaddr(*pmdp); |
| remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap); |
| free_pte_table(pte_base, pmdp); |
| } |
| } |
| |
| static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end, |
| bool is_vmemmap, struct vmem_altmap *altmap) |
| { |
| unsigned long next; |
| pud_t *pudp, pud; |
| pmd_t *pmd_base; |
| |
| for (; addr < end; addr = next) { |
| next = pud_addr_end(addr, end); |
| pudp = pud_base + pud_index(addr); |
| pud = pudp_get(pudp); |
| if (!pud_present(pud)) |
| continue; |
| |
| if (pud_leaf(pud)) { |
| if (pgtable_l4_enabled) { |
| pud_clear(pudp); |
| if (is_vmemmap) |
| free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap); |
| } |
| continue; |
| } |
| |
| pmd_base = pmd_offset(pudp, 0); |
| remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap); |
| |
| if (pgtable_l4_enabled) |
| free_pmd_table(pmd_base, pudp); |
| } |
| } |
| |
| static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end, |
| bool is_vmemmap, struct vmem_altmap *altmap) |
| { |
| unsigned long next; |
| p4d_t *p4dp, p4d; |
| pud_t *pud_base; |
| |
| for (; addr < end; addr = next) { |
| next = p4d_addr_end(addr, end); |
| p4dp = p4d_base + p4d_index(addr); |
| p4d = p4dp_get(p4dp); |
| if (!p4d_present(p4d)) |
| continue; |
| |
| if (p4d_leaf(p4d)) { |
| if (pgtable_l5_enabled) { |
| p4d_clear(p4dp); |
| if (is_vmemmap) |
| free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap); |
| } |
| continue; |
| } |
| |
| pud_base = pud_offset(p4dp, 0); |
| remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap); |
| |
| if (pgtable_l5_enabled) |
| free_pud_table(pud_base, p4dp); |
| } |
| } |
| |
| static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap, |
| struct vmem_altmap *altmap) |
| { |
| unsigned long addr, next; |
| p4d_t *p4d_base; |
| pgd_t *pgd; |
| |
| for (addr = va; addr < end; addr = next) { |
| next = pgd_addr_end(addr, end); |
| pgd = pgd_offset_k(addr); |
| |
| if (!pgd_present(*pgd)) |
| continue; |
| |
| if (pgd_leaf(*pgd)) |
| continue; |
| |
| p4d_base = p4d_offset(pgd, 0); |
| remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap); |
| } |
| |
| flush_tlb_all(); |
| } |
| |
| static void __meminit remove_linear_mapping(phys_addr_t start, u64 size) |
| { |
| unsigned long va = (unsigned long)__va(start); |
| unsigned long end = (unsigned long)__va(start + size); |
| |
| remove_pgd_mapping(va, end, false, NULL); |
| } |
| |
| struct range arch_get_mappable_range(void) |
| { |
| struct range mhp_range; |
| |
| mhp_range.start = __pa(PAGE_OFFSET); |
| mhp_range.end = __pa(PAGE_END - 1); |
| return mhp_range; |
| } |
| |
| int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params) |
| { |
| int ret = 0; |
| |
| create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot); |
| ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params); |
| if (ret) { |
| remove_linear_mapping(start, size); |
| goto out; |
| } |
| |
| max_pfn = PFN_UP(start + size); |
| max_low_pfn = max_pfn; |
| |
| out: |
| flush_tlb_all(); |
| return ret; |
| } |
| |
| void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap) |
| { |
| __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap); |
| remove_linear_mapping(start, size); |
| flush_tlb_all(); |
| } |
| |
| void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap) |
| { |
| remove_pgd_mapping(start, end, true, altmap); |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |