blob: c28ad83ee74d909b9bb4325c59ee33eb36000cb6 [file] [log] [blame]
/*
* net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
* Copyright (c) 2008 Marvell Semiconductor
*
* Copyright (c) 2015 CMC Electronics, Inc.
* Added support for VLAN Table Unit operations
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/if_bridge.h>
#include <linux/jiffies.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/gpio/consumer.h>
#include <linux/phy.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "mv88e6xxx.h"
static void assert_smi_lock(struct mv88e6xxx_priv_state *ps)
{
if (unlikely(!mutex_is_locked(&ps->smi_mutex))) {
dev_err(ps->dev, "SMI lock not held!\n");
dump_stack();
}
}
/* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
* use all 32 SMI bus addresses on its SMI bus, and all switch registers
* will be directly accessible on some {device address,register address}
* pair. If the ADDR[4:0] pins are not strapped to zero, the switch
* will only respond to SMI transactions to that specific address, and
* an indirect addressing mechanism needs to be used to access its
* registers.
*/
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
int ret;
int i;
for (i = 0; i < 16; i++) {
ret = mdiobus_read_nested(bus, sw_addr, SMI_CMD);
if (ret < 0)
return ret;
if ((ret & SMI_CMD_BUSY) == 0)
return 0;
}
return -ETIMEDOUT;
}
static int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr,
int reg)
{
int ret;
if (sw_addr == 0)
return mdiobus_read_nested(bus, addr, reg);
/* Wait for the bus to become free. */
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Transmit the read command. */
ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
SMI_CMD_OP_22_READ | (addr << 5) | reg);
if (ret < 0)
return ret;
/* Wait for the read command to complete. */
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Read the data. */
ret = mdiobus_read_nested(bus, sw_addr, SMI_DATA);
if (ret < 0)
return ret;
return ret & 0xffff;
}
static int _mv88e6xxx_reg_read(struct mv88e6xxx_priv_state *ps,
int addr, int reg)
{
int ret;
assert_smi_lock(ps);
ret = __mv88e6xxx_reg_read(ps->bus, ps->sw_addr, addr, reg);
if (ret < 0)
return ret;
dev_dbg(ps->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
addr, reg, ret);
return ret;
}
int mv88e6xxx_reg_read(struct mv88e6xxx_priv_state *ps, int addr, int reg)
{
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_read(ps, addr, reg);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
int reg, u16 val)
{
int ret;
if (sw_addr == 0)
return mdiobus_write_nested(bus, addr, reg, val);
/* Wait for the bus to become free. */
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
/* Transmit the data to write. */
ret = mdiobus_write_nested(bus, sw_addr, SMI_DATA, val);
if (ret < 0)
return ret;
/* Transmit the write command. */
ret = mdiobus_write_nested(bus, sw_addr, SMI_CMD,
SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
if (ret < 0)
return ret;
/* Wait for the write command to complete. */
ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
if (ret < 0)
return ret;
return 0;
}
static int _mv88e6xxx_reg_write(struct mv88e6xxx_priv_state *ps, int addr,
int reg, u16 val)
{
assert_smi_lock(ps);
dev_dbg(ps->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
addr, reg, val);
return __mv88e6xxx_reg_write(ps->bus, ps->sw_addr, addr, reg, val);
}
int mv88e6xxx_reg_write(struct mv88e6xxx_priv_state *ps, int addr,
int reg, u16 val)
{
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_write(ps, addr, reg, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int err;
err = mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_MAC_01,
(addr[0] << 8) | addr[1]);
if (err)
return err;
err = mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_MAC_23,
(addr[2] << 8) | addr[3]);
if (err)
return err;
return mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_MAC_45,
(addr[4] << 8) | addr[5]);
}
static int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int i;
for (i = 0; i < 6; i++) {
int j;
/* Write the MAC address byte. */
ret = mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SWITCH_MAC,
GLOBAL2_SWITCH_MAC_BUSY |
(i << 8) | addr[i]);
if (ret)
return ret;
/* Wait for the write to complete. */
for (j = 0; j < 16; j++) {
ret = mv88e6xxx_reg_read(ps, REG_GLOBAL2,
GLOBAL2_SWITCH_MAC);
if (ret < 0)
return ret;
if ((ret & GLOBAL2_SWITCH_MAC_BUSY) == 0)
break;
}
if (j == 16)
return -ETIMEDOUT;
}
return 0;
}
int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_SWITCH_MAC))
return mv88e6xxx_set_addr_indirect(ds, addr);
else
return mv88e6xxx_set_addr_direct(ds, addr);
}
static int _mv88e6xxx_phy_read(struct mv88e6xxx_priv_state *ps, int addr,
int regnum)
{
if (addr >= 0)
return _mv88e6xxx_reg_read(ps, addr, regnum);
return 0xffff;
}
static int _mv88e6xxx_phy_write(struct mv88e6xxx_priv_state *ps, int addr,
int regnum, u16 val)
{
if (addr >= 0)
return _mv88e6xxx_reg_write(ps, addr, regnum, val);
return 0;
}
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_priv_state *ps)
{
int ret;
unsigned long timeout;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_CONTROL);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_CONTROL,
ret & ~GLOBAL_CONTROL_PPU_ENABLE);
if (ret)
return ret;
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATUS);
if (ret < 0)
return ret;
usleep_range(1000, 2000);
if ((ret & GLOBAL_STATUS_PPU_MASK) !=
GLOBAL_STATUS_PPU_POLLING)
return 0;
}
return -ETIMEDOUT;
}
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_priv_state *ps)
{
int ret, err;
unsigned long timeout;
ret = mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_CONTROL);
if (ret < 0)
return ret;
err = mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_CONTROL,
ret | GLOBAL_CONTROL_PPU_ENABLE);
if (err)
return err;
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATUS);
if (ret < 0)
return ret;
usleep_range(1000, 2000);
if ((ret & GLOBAL_STATUS_PPU_MASK) ==
GLOBAL_STATUS_PPU_POLLING)
return 0;
}
return -ETIMEDOUT;
}
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
struct mv88e6xxx_priv_state *ps;
ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
if (mutex_trylock(&ps->ppu_mutex)) {
if (mv88e6xxx_ppu_enable(ps) == 0)
ps->ppu_disabled = 0;
mutex_unlock(&ps->ppu_mutex);
}
}
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
struct mv88e6xxx_priv_state *ps = (void *)_ps;
schedule_work(&ps->ppu_work);
}
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_priv_state *ps)
{
int ret;
mutex_lock(&ps->ppu_mutex);
/* If the PHY polling unit is enabled, disable it so that
* we can access the PHY registers. If it was already
* disabled, cancel the timer that is going to re-enable
* it.
*/
if (!ps->ppu_disabled) {
ret = mv88e6xxx_ppu_disable(ps);
if (ret < 0) {
mutex_unlock(&ps->ppu_mutex);
return ret;
}
ps->ppu_disabled = 1;
} else {
del_timer(&ps->ppu_timer);
ret = 0;
}
return ret;
}
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_priv_state *ps)
{
/* Schedule a timer to re-enable the PHY polling unit. */
mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
mutex_unlock(&ps->ppu_mutex);
}
void mv88e6xxx_ppu_state_init(struct mv88e6xxx_priv_state *ps)
{
mutex_init(&ps->ppu_mutex);
INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
init_timer(&ps->ppu_timer);
ps->ppu_timer.data = (unsigned long)ps;
ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}
static int mv88e6xxx_phy_read_ppu(struct mv88e6xxx_priv_state *ps, int addr,
int regnum)
{
int ret;
ret = mv88e6xxx_ppu_access_get(ps);
if (ret >= 0) {
ret = _mv88e6xxx_reg_read(ps, addr, regnum);
mv88e6xxx_ppu_access_put(ps);
}
return ret;
}
static int mv88e6xxx_phy_write_ppu(struct mv88e6xxx_priv_state *ps, int addr,
int regnum, u16 val)
{
int ret;
ret = mv88e6xxx_ppu_access_get(ps);
if (ret >= 0) {
ret = _mv88e6xxx_reg_write(ps, addr, regnum, val);
mv88e6xxx_ppu_access_put(ps);
}
return ret;
}
static bool mv88e6xxx_6065_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6065;
}
static bool mv88e6xxx_6095_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6095;
}
static bool mv88e6xxx_6097_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6097;
}
static bool mv88e6xxx_6165_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6165;
}
static bool mv88e6xxx_6185_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6185;
}
static bool mv88e6xxx_6320_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6320;
}
static bool mv88e6xxx_6351_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6351;
}
static bool mv88e6xxx_6352_family(struct mv88e6xxx_priv_state *ps)
{
return ps->info->family == MV88E6XXX_FAMILY_6352;
}
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_priv_state *ps)
{
return ps->info->num_databases;
}
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_priv_state *ps)
{
/* Does the device have dedicated FID registers for ATU and VTU ops? */
if (mv88e6xxx_6097_family(ps) || mv88e6xxx_6165_family(ps) ||
mv88e6xxx_6351_family(ps) || mv88e6xxx_6352_family(ps))
return true;
return false;
}
static bool mv88e6xxx_has_stu(struct mv88e6xxx_priv_state *ps)
{
/* Does the device have STU and dedicated SID registers for VTU ops? */
if (mv88e6xxx_6097_family(ps) || mv88e6xxx_6165_family(ps) ||
mv88e6xxx_6351_family(ps) || mv88e6xxx_6352_family(ps))
return true;
return false;
}
/* We expect the switch to perform auto negotiation if there is a real
* phy. However, in the case of a fixed link phy, we force the port
* settings from the fixed link settings.
*/
void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u32 reg;
int ret;
if (!phy_is_pseudo_fixed_link(phydev))
return;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_PCS_CTRL);
if (ret < 0)
goto out;
reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
PORT_PCS_CTRL_FORCE_LINK |
PORT_PCS_CTRL_DUPLEX_FULL |
PORT_PCS_CTRL_FORCE_DUPLEX |
PORT_PCS_CTRL_UNFORCED);
reg |= PORT_PCS_CTRL_FORCE_LINK;
if (phydev->link)
reg |= PORT_PCS_CTRL_LINK_UP;
if (mv88e6xxx_6065_family(ps) && phydev->speed > SPEED_100)
goto out;
switch (phydev->speed) {
case SPEED_1000:
reg |= PORT_PCS_CTRL_1000;
break;
case SPEED_100:
reg |= PORT_PCS_CTRL_100;
break;
case SPEED_10:
reg |= PORT_PCS_CTRL_10;
break;
default:
pr_info("Unknown speed");
goto out;
}
reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
if (phydev->duplex == DUPLEX_FULL)
reg |= PORT_PCS_CTRL_DUPLEX_FULL;
if ((mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps)) &&
(port >= ps->info->num_ports - 2)) {
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
}
_mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_PCS_CTRL, reg);
out:
mutex_unlock(&ps->smi_mutex);
}
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_priv_state *ps)
{
int ret;
int i;
for (i = 0; i < 10; i++) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATS_OP);
if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
return 0;
}
return -ETIMEDOUT;
}
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_priv_state *ps,
int port)
{
int ret;
if (mv88e6xxx_6320_family(ps) || mv88e6xxx_6352_family(ps))
port = (port + 1) << 5;
/* Snapshot the hardware statistics counters for this port. */
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_CAPTURE_PORT |
GLOBAL_STATS_OP_HIST_RX_TX | port);
if (ret < 0)
return ret;
/* Wait for the snapshotting to complete. */
ret = _mv88e6xxx_stats_wait(ps);
if (ret < 0)
return ret;
return 0;
}
static void _mv88e6xxx_stats_read(struct mv88e6xxx_priv_state *ps,
int stat, u32 *val)
{
u32 _val;
int ret;
*val = 0;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_READ_CAPTURED |
GLOBAL_STATS_OP_HIST_RX_TX | stat);
if (ret < 0)
return;
ret = _mv88e6xxx_stats_wait(ps);
if (ret < 0)
return;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
if (ret < 0)
return;
_val = ret << 16;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
if (ret < 0)
return;
*val = _val | ret;
}
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
{ "in_good_octets", 8, 0x00, BANK0, },
{ "in_bad_octets", 4, 0x02, BANK0, },
{ "in_unicast", 4, 0x04, BANK0, },
{ "in_broadcasts", 4, 0x06, BANK0, },
{ "in_multicasts", 4, 0x07, BANK0, },
{ "in_pause", 4, 0x16, BANK0, },
{ "in_undersize", 4, 0x18, BANK0, },
{ "in_fragments", 4, 0x19, BANK0, },
{ "in_oversize", 4, 0x1a, BANK0, },
{ "in_jabber", 4, 0x1b, BANK0, },
{ "in_rx_error", 4, 0x1c, BANK0, },
{ "in_fcs_error", 4, 0x1d, BANK0, },
{ "out_octets", 8, 0x0e, BANK0, },
{ "out_unicast", 4, 0x10, BANK0, },
{ "out_broadcasts", 4, 0x13, BANK0, },
{ "out_multicasts", 4, 0x12, BANK0, },
{ "out_pause", 4, 0x15, BANK0, },
{ "excessive", 4, 0x11, BANK0, },
{ "collisions", 4, 0x1e, BANK0, },
{ "deferred", 4, 0x05, BANK0, },
{ "single", 4, 0x14, BANK0, },
{ "multiple", 4, 0x17, BANK0, },
{ "out_fcs_error", 4, 0x03, BANK0, },
{ "late", 4, 0x1f, BANK0, },
{ "hist_64bytes", 4, 0x08, BANK0, },
{ "hist_65_127bytes", 4, 0x09, BANK0, },
{ "hist_128_255bytes", 4, 0x0a, BANK0, },
{ "hist_256_511bytes", 4, 0x0b, BANK0, },
{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
{ "sw_in_discards", 4, 0x10, PORT, },
{ "sw_in_filtered", 2, 0x12, PORT, },
{ "sw_out_filtered", 2, 0x13, PORT, },
{ "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
{ "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
};
static bool mv88e6xxx_has_stat(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_hw_stat *stat)
{
switch (stat->type) {
case BANK0:
return true;
case BANK1:
return mv88e6xxx_6320_family(ps);
case PORT:
return mv88e6xxx_6095_family(ps) ||
mv88e6xxx_6185_family(ps) ||
mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6165_family(ps) ||
mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6352_family(ps);
}
return false;
}
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_hw_stat *s,
int port)
{
u32 low;
u32 high = 0;
int ret;
u64 value;
switch (s->type) {
case PORT:
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), s->reg);
if (ret < 0)
return UINT64_MAX;
low = ret;
if (s->sizeof_stat == 4) {
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port),
s->reg + 1);
if (ret < 0)
return UINT64_MAX;
high = ret;
}
break;
case BANK0:
case BANK1:
_mv88e6xxx_stats_read(ps, s->reg, &low);
if (s->sizeof_stat == 8)
_mv88e6xxx_stats_read(ps, s->reg + 1, &high);
}
value = (((u64)high) << 16) | low;
return value;
}
void mv88e6xxx_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_hw_stat *stat;
int i, j;
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
stat = &mv88e6xxx_hw_stats[i];
if (mv88e6xxx_has_stat(ps, stat)) {
memcpy(data + j * ETH_GSTRING_LEN, stat->string,
ETH_GSTRING_LEN);
j++;
}
}
}
int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_hw_stat *stat;
int i, j;
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
stat = &mv88e6xxx_hw_stats[i];
if (mv88e6xxx_has_stat(ps, stat))
j++;
}
return j;
}
void
mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
int port, uint64_t *data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_hw_stat *stat;
int ret;
int i, j;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_stats_snapshot(ps, port);
if (ret < 0) {
mutex_unlock(&ps->smi_mutex);
return;
}
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
stat = &mv88e6xxx_hw_stats[i];
if (mv88e6xxx_has_stat(ps, stat)) {
data[j] = _mv88e6xxx_get_ethtool_stat(ps, stat, port);
j++;
}
}
mutex_unlock(&ps->smi_mutex);
}
int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
{
return 32 * sizeof(u16);
}
void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
struct ethtool_regs *regs, void *_p)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 *p = _p;
int i;
regs->version = 0;
memset(p, 0xff, 32 * sizeof(u16));
mutex_lock(&ps->smi_mutex);
for (i = 0; i < 32; i++) {
int ret;
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), i);
if (ret >= 0)
p[i] = ret;
}
mutex_unlock(&ps->smi_mutex);
}
static int _mv88e6xxx_wait(struct mv88e6xxx_priv_state *ps, int reg, int offset,
u16 mask)
{
unsigned long timeout = jiffies + HZ / 10;
while (time_before(jiffies, timeout)) {
int ret;
ret = _mv88e6xxx_reg_read(ps, reg, offset);
if (ret < 0)
return ret;
if (!(ret & mask))
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int mv88e6xxx_wait(struct mv88e6xxx_priv_state *ps, int reg,
int offset, u16 mask)
{
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_wait(ps, reg, offset, mask);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_phy_wait(struct mv88e6xxx_priv_state *ps)
{
return _mv88e6xxx_wait(ps, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_BUSY);
}
static int mv88e6xxx_eeprom_load_wait(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
return mv88e6xxx_wait(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_LOAD);
}
static int mv88e6xxx_eeprom_busy_wait(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
return mv88e6xxx_wait(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_BUSY);
}
static int mv88e6xxx_read_eeprom_word(struct dsa_switch *ds, int addr)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->eeprom_mutex);
ret = mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_READ |
(addr & GLOBAL2_EEPROM_OP_ADDR_MASK));
if (ret < 0)
goto error;
ret = mv88e6xxx_eeprom_busy_wait(ds);
if (ret < 0)
goto error;
ret = mv88e6xxx_reg_read(ps, REG_GLOBAL2, GLOBAL2_EEPROM_DATA);
error:
mutex_unlock(&ps->eeprom_mutex);
return ret;
}
int mv88e6xxx_get_eeprom(struct dsa_switch *ds, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int offset;
int len;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEPROM))
return -EOPNOTSUPP;
offset = eeprom->offset;
len = eeprom->len;
eeprom->len = 0;
eeprom->magic = 0xc3ec4951;
ret = mv88e6xxx_eeprom_load_wait(ds);
if (ret < 0)
return ret;
if (offset & 1) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = (word >> 8) & 0xff;
offset++;
len--;
eeprom->len++;
}
while (len >= 2) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = word & 0xff;
*data++ = (word >> 8) & 0xff;
offset += 2;
len -= 2;
eeprom->len += 2;
}
if (len) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
*data++ = word & 0xff;
offset++;
len--;
eeprom->len++;
}
return 0;
}
static int mv88e6xxx_eeprom_is_readonly(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
ret = mv88e6xxx_reg_read(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP);
if (ret < 0)
return ret;
if (!(ret & GLOBAL2_EEPROM_OP_WRITE_EN))
return -EROFS;
return 0;
}
static int mv88e6xxx_write_eeprom_word(struct dsa_switch *ds, int addr,
u16 data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->eeprom_mutex);
ret = mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
if (ret < 0)
goto error;
ret = mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_EEPROM_OP,
GLOBAL2_EEPROM_OP_WRITE |
(addr & GLOBAL2_EEPROM_OP_ADDR_MASK));
if (ret < 0)
goto error;
ret = mv88e6xxx_eeprom_busy_wait(ds);
error:
mutex_unlock(&ps->eeprom_mutex);
return ret;
}
int mv88e6xxx_set_eeprom(struct dsa_switch *ds, struct ethtool_eeprom *eeprom,
u8 *data)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int offset;
int ret;
int len;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEPROM))
return -EOPNOTSUPP;
if (eeprom->magic != 0xc3ec4951)
return -EINVAL;
ret = mv88e6xxx_eeprom_is_readonly(ds);
if (ret)
return ret;
offset = eeprom->offset;
len = eeprom->len;
eeprom->len = 0;
ret = mv88e6xxx_eeprom_load_wait(ds);
if (ret < 0)
return ret;
if (offset & 1) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
word = (*data++ << 8) | (word & 0xff);
ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset++;
len--;
eeprom->len++;
}
while (len >= 2) {
int word;
word = *data++;
word |= *data++ << 8;
ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset += 2;
len -= 2;
eeprom->len += 2;
}
if (len) {
int word;
word = mv88e6xxx_read_eeprom_word(ds, offset >> 1);
if (word < 0)
return word;
word = (word & 0xff00) | *data++;
ret = mv88e6xxx_write_eeprom_word(ds, offset >> 1, word);
if (ret < 0)
return ret;
offset++;
len--;
eeprom->len++;
}
return 0;
}
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_priv_state *ps)
{
return _mv88e6xxx_wait(ps, REG_GLOBAL, GLOBAL_ATU_OP,
GLOBAL_ATU_OP_BUSY);
}
static int _mv88e6xxx_phy_read_indirect(struct mv88e6xxx_priv_state *ps,
int addr, int regnum)
{
int ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_22_READ | (addr << 5) |
regnum);
if (ret < 0)
return ret;
ret = _mv88e6xxx_phy_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL2, GLOBAL2_SMI_DATA);
return ret;
}
static int _mv88e6xxx_phy_write_indirect(struct mv88e6xxx_priv_state *ps,
int addr, int regnum, u16 val)
{
int ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SMI_OP,
GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
regnum);
return _mv88e6xxx_phy_wait(ps);
}
int mv88e6xxx_get_eee(struct dsa_switch *ds, int port, struct ethtool_eee *e)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEE))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
reg = _mv88e6xxx_phy_read_indirect(ps, port, 16);
if (reg < 0)
goto out;
e->eee_enabled = !!(reg & 0x0200);
e->tx_lpi_enabled = !!(reg & 0x0100);
reg = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_STATUS);
if (reg < 0)
goto out;
e->eee_active = !!(reg & PORT_STATUS_EEE);
reg = 0;
out:
mutex_unlock(&ps->smi_mutex);
return reg;
}
int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
struct phy_device *phydev, struct ethtool_eee *e)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int reg;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEE))
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_read_indirect(ps, port, 16);
if (ret < 0)
goto out;
reg = ret & ~0x0300;
if (e->eee_enabled)
reg |= 0x0200;
if (e->tx_lpi_enabled)
reg |= 0x0100;
ret = _mv88e6xxx_phy_write_indirect(ps, port, 16, reg);
out:
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_priv_state *ps, u16 fid, u16 cmd)
{
int ret;
if (mv88e6xxx_has_fid_reg(ps)) {
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_FID, fid);
if (ret < 0)
return ret;
} else if (mv88e6xxx_num_databases(ps) == 256) {
/* ATU DBNum[7:4] are located in ATU Control 15:12 */
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_ATU_CONTROL);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_CONTROL,
(ret & 0xfff) |
((fid << 8) & 0xf000));
if (ret < 0)
return ret;
/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
cmd |= fid & 0xf;
}
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
if (ret < 0)
return ret;
return _mv88e6xxx_atu_wait(ps);
}
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_atu_entry *entry)
{
u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
unsigned int mask, shift;
if (entry->trunk) {
data |= GLOBAL_ATU_DATA_TRUNK;
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
} else {
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
}
data |= (entry->portv_trunkid << shift) & mask;
}
return _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_DATA, data);
}
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_atu_entry *entry,
bool static_too)
{
int op;
int err;
err = _mv88e6xxx_atu_wait(ps);
if (err)
return err;
err = _mv88e6xxx_atu_data_write(ps, entry);
if (err)
return err;
if (entry->fid) {
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
} else {
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
}
return _mv88e6xxx_atu_cmd(ps, entry->fid, op);
}
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_priv_state *ps,
u16 fid, bool static_too)
{
struct mv88e6xxx_atu_entry entry = {
.fid = fid,
.state = 0, /* EntryState bits must be 0 */
};
return _mv88e6xxx_atu_flush_move(ps, &entry, static_too);
}
static int _mv88e6xxx_atu_move(struct mv88e6xxx_priv_state *ps, u16 fid,
int from_port, int to_port, bool static_too)
{
struct mv88e6xxx_atu_entry entry = {
.trunk = false,
.fid = fid,
};
/* EntryState bits must be 0xF */
entry.state = GLOBAL_ATU_DATA_STATE_MASK;
/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
entry.portv_trunkid = (to_port & 0x0f) << 4;
entry.portv_trunkid |= from_port & 0x0f;
return _mv88e6xxx_atu_flush_move(ps, &entry, static_too);
}
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_priv_state *ps, u16 fid,
int port, bool static_too)
{
/* Destination port 0xF means remove the entries */
return _mv88e6xxx_atu_move(ps, fid, port, 0x0f, static_too);
}
static const char * const mv88e6xxx_port_state_names[] = {
[PORT_CONTROL_STATE_DISABLED] = "Disabled",
[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
[PORT_CONTROL_STATE_LEARNING] = "Learning",
[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
};
static int _mv88e6xxx_port_state(struct mv88e6xxx_priv_state *ps, int port,
u8 state)
{
struct dsa_switch *ds = ps->ds;
int reg, ret = 0;
u8 oldstate;
reg = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_CONTROL);
if (reg < 0)
return reg;
oldstate = reg & PORT_CONTROL_STATE_MASK;
if (oldstate != state) {
/* Flush forwarding database if we're moving a port
* from Learning or Forwarding state to Disabled or
* Blocking or Listening state.
*/
if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
oldstate == PORT_CONTROL_STATE_FORWARDING)
&& (state == PORT_CONTROL_STATE_DISABLED ||
state == PORT_CONTROL_STATE_BLOCKING)) {
ret = _mv88e6xxx_atu_remove(ps, 0, port, false);
if (ret)
return ret;
}
reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_CONTROL,
reg);
if (ret)
return ret;
netdev_dbg(ds->ports[port], "PortState %s (was %s)\n",
mv88e6xxx_port_state_names[state],
mv88e6xxx_port_state_names[oldstate]);
}
return ret;
}
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_priv_state *ps,
int port)
{
struct net_device *bridge = ps->ports[port].bridge_dev;
const u16 mask = (1 << ps->info->num_ports) - 1;
struct dsa_switch *ds = ps->ds;
u16 output_ports = 0;
int reg;
int i;
/* allow CPU port or DSA link(s) to send frames to every port */
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
output_ports = mask;
} else {
for (i = 0; i < ps->info->num_ports; ++i) {
/* allow sending frames to every group member */
if (bridge && ps->ports[i].bridge_dev == bridge)
output_ports |= BIT(i);
/* allow sending frames to CPU port and DSA link(s) */
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
output_ports |= BIT(i);
}
}
/* prevent frames from going back out of the port they came in on */
output_ports &= ~BIT(port);
reg = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_BASE_VLAN);
if (reg < 0)
return reg;
reg &= ~mask;
reg |= output_ports & mask;
return _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_BASE_VLAN, reg);
}
void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int stp_state;
switch (state) {
case BR_STATE_DISABLED:
stp_state = PORT_CONTROL_STATE_DISABLED;
break;
case BR_STATE_BLOCKING:
case BR_STATE_LISTENING:
stp_state = PORT_CONTROL_STATE_BLOCKING;
break;
case BR_STATE_LEARNING:
stp_state = PORT_CONTROL_STATE_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = PORT_CONTROL_STATE_FORWARDING;
break;
}
/* mv88e6xxx_port_stp_state_set may be called with softirqs disabled,
* so we can not update the port state directly but need to schedule it.
*/
ps->ports[port].state = stp_state;
set_bit(port, ps->port_state_update_mask);
schedule_work(&ps->bridge_work);
}
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_priv_state *ps, int port,
u16 *new, u16 *old)
{
struct dsa_switch *ds = ps->ds;
u16 pvid;
int ret;
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_DEFAULT_VLAN);
if (ret < 0)
return ret;
pvid = ret & PORT_DEFAULT_VLAN_MASK;
if (new) {
ret &= ~PORT_DEFAULT_VLAN_MASK;
ret |= *new & PORT_DEFAULT_VLAN_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_DEFAULT_VLAN, ret);
if (ret < 0)
return ret;
netdev_dbg(ds->ports[port], "DefaultVID %d (was %d)\n", *new,
pvid);
}
if (old)
*old = pvid;
return 0;
}
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_priv_state *ps,
int port, u16 *pvid)
{
return _mv88e6xxx_port_pvid(ps, port, NULL, pvid);
}
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_priv_state *ps,
int port, u16 pvid)
{
return _mv88e6xxx_port_pvid(ps, port, &pvid, NULL);
}
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_priv_state *ps)
{
return _mv88e6xxx_wait(ps, REG_GLOBAL, GLOBAL_VTU_OP,
GLOBAL_VTU_OP_BUSY);
}
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_priv_state *ps, u16 op)
{
int ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_OP, op);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_wait(ps);
}
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_priv_state *ps)
{
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ps, GLOBAL_VTU_OP_FLUSH_ALL);
}
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry,
unsigned int nibble_offset)
{
u16 regs[3];
int i;
int ret;
for (i = 0; i < 3; ++i) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_VTU_DATA_0_3 + i);
if (ret < 0)
return ret;
regs[i] = ret;
}
for (i = 0; i < ps->info->num_ports; ++i) {
unsigned int shift = (i % 4) * 4 + nibble_offset;
u16 reg = regs[i / 4];
entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
}
return 0;
}
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry,
unsigned int nibble_offset)
{
u16 regs[3] = { 0 };
int i;
int ret;
for (i = 0; i < ps->info->num_ports; ++i) {
unsigned int shift = (i % 4) * 4 + nibble_offset;
u8 data = entry->data[i];
regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
}
for (i = 0; i < 3; ++i) {
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL,
GLOBAL_VTU_DATA_0_3 + i, regs[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_priv_state *ps, u16 vid)
{
return _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_VID,
vid & GLOBAL_VTU_VID_MASK);
}
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct mv88e6xxx_vtu_stu_entry next = { 0 };
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_vtu_cmd(ps, GLOBAL_VTU_OP_VTU_GET_NEXT);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_VTU_VID);
if (ret < 0)
return ret;
next.vid = ret & GLOBAL_VTU_VID_MASK;
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
if (next.valid) {
ret = _mv88e6xxx_vtu_stu_data_read(ps, &next, 0);
if (ret < 0)
return ret;
if (mv88e6xxx_has_fid_reg(ps)) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_VTU_FID);
if (ret < 0)
return ret;
next.fid = ret & GLOBAL_VTU_FID_MASK;
} else if (mv88e6xxx_num_databases(ps) == 256) {
/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
* VTU DBNum[3:0] are located in VTU Operation 3:0
*/
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_VTU_OP);
if (ret < 0)
return ret;
next.fid = (ret & 0xf00) >> 4;
next.fid |= ret & 0xf;
}
if (mv88e6xxx_has_stu(ps)) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_VTU_SID);
if (ret < 0)
return ret;
next.sid = ret & GLOBAL_VTU_SID_MASK;
}
}
*entry = next;
return 0;
}
int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
struct switchdev_obj_port_vlan *vlan,
int (*cb)(struct switchdev_obj *obj))
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry next;
u16 pvid;
int err;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_port_pvid_get(ps, port, &pvid);
if (err)
goto unlock;
err = _mv88e6xxx_vtu_vid_write(ps, GLOBAL_VTU_VID_MASK);
if (err)
goto unlock;
do {
err = _mv88e6xxx_vtu_getnext(ps, &next);
if (err)
break;
if (!next.valid)
break;
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
continue;
/* reinit and dump this VLAN obj */
vlan->vid_begin = vlan->vid_end = next.vid;
vlan->flags = 0;
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
if (next.vid == pvid)
vlan->flags |= BRIDGE_VLAN_INFO_PVID;
err = cb(&vlan->obj);
if (err)
break;
} while (next.vid < GLOBAL_VTU_VID_MASK);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
u16 reg = 0;
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
if (!entry->valid)
goto loadpurge;
/* Write port member tags */
ret = _mv88e6xxx_vtu_stu_data_write(ps, entry, 0);
if (ret < 0)
return ret;
if (mv88e6xxx_has_stu(ps)) {
reg = entry->sid & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_SID, reg);
if (ret < 0)
return ret;
}
if (mv88e6xxx_has_fid_reg(ps)) {
reg = entry->fid & GLOBAL_VTU_FID_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_FID, reg);
if (ret < 0)
return ret;
} else if (mv88e6xxx_num_databases(ps) == 256) {
/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
* VTU DBNum[3:0] are located in VTU Operation 3:0
*/
op |= (entry->fid & 0xf0) << 8;
op |= entry->fid & 0xf;
}
reg = GLOBAL_VTU_VID_VALID;
loadpurge:
reg |= entry->vid & GLOBAL_VTU_VID_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_VID, reg);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ps, op);
}
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_priv_state *ps, u8 sid,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct mv88e6xxx_vtu_stu_entry next = { 0 };
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_SID,
sid & GLOBAL_VTU_SID_MASK);
if (ret < 0)
return ret;
ret = _mv88e6xxx_vtu_cmd(ps, GLOBAL_VTU_OP_STU_GET_NEXT);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_VTU_SID);
if (ret < 0)
return ret;
next.sid = ret & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_VTU_VID);
if (ret < 0)
return ret;
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
if (next.valid) {
ret = _mv88e6xxx_vtu_stu_data_read(ps, &next, 2);
if (ret < 0)
return ret;
}
*entry = next;
return 0;
}
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_vtu_stu_entry *entry)
{
u16 reg = 0;
int ret;
ret = _mv88e6xxx_vtu_wait(ps);
if (ret < 0)
return ret;
if (!entry->valid)
goto loadpurge;
/* Write port states */
ret = _mv88e6xxx_vtu_stu_data_write(ps, entry, 2);
if (ret < 0)
return ret;
reg = GLOBAL_VTU_VID_VALID;
loadpurge:
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_VID, reg);
if (ret < 0)
return ret;
reg = entry->sid & GLOBAL_VTU_SID_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_VTU_SID, reg);
if (ret < 0)
return ret;
return _mv88e6xxx_vtu_cmd(ps, GLOBAL_VTU_OP_STU_LOAD_PURGE);
}
static int _mv88e6xxx_port_fid(struct mv88e6xxx_priv_state *ps, int port,
u16 *new, u16 *old)
{
struct dsa_switch *ds = ps->ds;
u16 upper_mask;
u16 fid;
int ret;
if (mv88e6xxx_num_databases(ps) == 4096)
upper_mask = 0xff;
else if (mv88e6xxx_num_databases(ps) == 256)
upper_mask = 0xf;
else
return -EOPNOTSUPP;
/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_BASE_VLAN);
if (ret < 0)
return ret;
fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
if (new) {
ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_BASE_VLAN,
ret);
if (ret < 0)
return ret;
}
/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_CONTROL_1);
if (ret < 0)
return ret;
fid |= (ret & upper_mask) << 4;
if (new) {
ret &= ~upper_mask;
ret |= (*new >> 4) & upper_mask;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_CONTROL_1,
ret);
if (ret < 0)
return ret;
netdev_dbg(ds->ports[port], "FID %d (was %d)\n", *new, fid);
}
if (old)
*old = fid;
return 0;
}
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_priv_state *ps,
int port, u16 *fid)
{
return _mv88e6xxx_port_fid(ps, port, NULL, fid);
}
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_priv_state *ps,
int port, u16 fid)
{
return _mv88e6xxx_port_fid(ps, port, &fid, NULL);
}
static int _mv88e6xxx_fid_new(struct mv88e6xxx_priv_state *ps, u16 *fid)
{
DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
struct mv88e6xxx_vtu_stu_entry vlan;
int i, err;
bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
/* Set every FID bit used by the (un)bridged ports */
for (i = 0; i < ps->info->num_ports; ++i) {
err = _mv88e6xxx_port_fid_get(ps, i, fid);
if (err)
return err;
set_bit(*fid, fid_bitmap);
}
/* Set every FID bit used by the VLAN entries */
err = _mv88e6xxx_vtu_vid_write(ps, GLOBAL_VTU_VID_MASK);
if (err)
return err;
do {
err = _mv88e6xxx_vtu_getnext(ps, &vlan);
if (err)
return err;
if (!vlan.valid)
break;
set_bit(vlan.fid, fid_bitmap);
} while (vlan.vid < GLOBAL_VTU_VID_MASK);
/* The reset value 0x000 is used to indicate that multiple address
* databases are not needed. Return the next positive available.
*/
*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
if (unlikely(*fid >= mv88e6xxx_num_databases(ps)))
return -ENOSPC;
/* Clear the database */
return _mv88e6xxx_atu_flush(ps, *fid, true);
}
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_priv_state *ps, u16 vid,
struct mv88e6xxx_vtu_stu_entry *entry)
{
struct dsa_switch *ds = ps->ds;
struct mv88e6xxx_vtu_stu_entry vlan = {
.valid = true,
.vid = vid,
};
int i, err;
err = _mv88e6xxx_fid_new(ps, &vlan.fid);
if (err)
return err;
/* exclude all ports except the CPU and DSA ports */
for (i = 0; i < ps->info->num_ports; ++i)
vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
if (mv88e6xxx_6097_family(ps) || mv88e6xxx_6165_family(ps) ||
mv88e6xxx_6351_family(ps) || mv88e6xxx_6352_family(ps)) {
struct mv88e6xxx_vtu_stu_entry vstp;
/* Adding a VTU entry requires a valid STU entry. As VSTP is not
* implemented, only one STU entry is needed to cover all VTU
* entries. Thus, validate the SID 0.
*/
vlan.sid = 0;
err = _mv88e6xxx_stu_getnext(ps, GLOBAL_VTU_SID_MASK, &vstp);
if (err)
return err;
if (vstp.sid != vlan.sid || !vstp.valid) {
memset(&vstp, 0, sizeof(vstp));
vstp.valid = true;
vstp.sid = vlan.sid;
err = _mv88e6xxx_stu_loadpurge(ps, &vstp);
if (err)
return err;
}
}
*entry = vlan;
return 0;
}
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_priv_state *ps, u16 vid,
struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
{
int err;
if (!vid)
return -EINVAL;
err = _mv88e6xxx_vtu_vid_write(ps, vid - 1);
if (err)
return err;
err = _mv88e6xxx_vtu_getnext(ps, entry);
if (err)
return err;
if (entry->vid != vid || !entry->valid) {
if (!creat)
return -EOPNOTSUPP;
/* -ENOENT would've been more appropriate, but switchdev expects
* -EOPNOTSUPP to inform bridge about an eventual software VLAN.
*/
err = _mv88e6xxx_vtu_new(ps, vid, entry);
}
return err;
}
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
u16 vid_begin, u16 vid_end)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry vlan;
int i, err;
if (!vid_begin)
return -EOPNOTSUPP;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_vtu_vid_write(ps, vid_begin - 1);
if (err)
goto unlock;
do {
err = _mv88e6xxx_vtu_getnext(ps, &vlan);
if (err)
goto unlock;
if (!vlan.valid)
break;
if (vlan.vid > vid_end)
break;
for (i = 0; i < ps->info->num_ports; ++i) {
if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
continue;
if (vlan.data[i] ==
GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
continue;
if (ps->ports[i].bridge_dev ==
ps->ports[port].bridge_dev)
break; /* same bridge, check next VLAN */
netdev_warn(ds->ports[port],
"hardware VLAN %d already used by %s\n",
vlan.vid,
netdev_name(ps->ports[i].bridge_dev));
err = -EOPNOTSUPP;
goto unlock;
}
} while (vlan.vid < vid_end);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
[PORT_CONTROL_2_8021Q_CHECK] = "Check",
[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
};
int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
PORT_CONTROL_2_8021Q_DISABLED;
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_CONTROL_2);
if (ret < 0)
goto unlock;
old = ret & PORT_CONTROL_2_8021Q_MASK;
if (new != old) {
ret &= ~PORT_CONTROL_2_8021Q_MASK;
ret |= new & PORT_CONTROL_2_8021Q_MASK;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_CONTROL_2,
ret);
if (ret < 0)
goto unlock;
netdev_dbg(ds->ports[port], "802.1Q Mode %s (was %s)\n",
mv88e6xxx_port_8021q_mode_names[new],
mv88e6xxx_port_8021q_mode_names[old]);
}
ret = 0;
unlock:
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct switchdev_trans *trans)
{
int err;
/* If the requested port doesn't belong to the same bridge as the VLAN
* members, do not support it (yet) and fallback to software VLAN.
*/
err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
vlan->vid_end);
if (err)
return err;
/* We don't need any dynamic resource from the kernel (yet),
* so skip the prepare phase.
*/
return 0;
}
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_priv_state *ps, int port,
u16 vid, bool untagged)
{
struct mv88e6xxx_vtu_stu_entry vlan;
int err;
err = _mv88e6xxx_vtu_get(ps, vid, &vlan, true);
if (err)
return err;
vlan.data[port] = untagged ?
GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
return _mv88e6xxx_vtu_loadpurge(ps, &vlan);
}
void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan,
struct switchdev_trans *trans)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
u16 vid;
mutex_lock(&ps->smi_mutex);
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
if (_mv88e6xxx_port_vlan_add(ps, port, vid, untagged))
netdev_err(ds->ports[port], "failed to add VLAN %d%c\n",
vid, untagged ? 'u' : 't');
if (pvid && _mv88e6xxx_port_pvid_set(ps, port, vlan->vid_end))
netdev_err(ds->ports[port], "failed to set PVID %d\n",
vlan->vid_end);
mutex_unlock(&ps->smi_mutex);
}
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_priv_state *ps,
int port, u16 vid)
{
struct dsa_switch *ds = ps->ds;
struct mv88e6xxx_vtu_stu_entry vlan;
int i, err;
err = _mv88e6xxx_vtu_get(ps, vid, &vlan, false);
if (err)
return err;
/* Tell switchdev if this VLAN is handled in software */
if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
return -EOPNOTSUPP;
vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
/* keep the VLAN unless all ports are excluded */
vlan.valid = false;
for (i = 0; i < ps->info->num_ports; ++i) {
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
continue;
if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
vlan.valid = true;
break;
}
}
err = _mv88e6xxx_vtu_loadpurge(ps, &vlan);
if (err)
return err;
return _mv88e6xxx_atu_remove(ps, vlan.fid, port, false);
}
int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
u16 pvid, vid;
int err = 0;
mutex_lock(&ps->smi_mutex);
err = _mv88e6xxx_port_pvid_get(ps, port, &pvid);
if (err)
goto unlock;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
err = _mv88e6xxx_port_vlan_del(ps, port, vid);
if (err)
goto unlock;
if (vid == pvid) {
err = _mv88e6xxx_port_pvid_set(ps, port, 0);
if (err)
goto unlock;
}
}
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_priv_state *ps,
const unsigned char *addr)
{
int i, ret;
for (i = 0; i < 3; i++) {
ret = _mv88e6xxx_reg_write(
ps, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
(addr[i * 2] << 8) | addr[i * 2 + 1]);
if (ret < 0)
return ret;
}
return 0;
}
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_priv_state *ps,
unsigned char *addr)
{
int i, ret;
for (i = 0; i < 3; i++) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL,
GLOBAL_ATU_MAC_01 + i);
if (ret < 0)
return ret;
addr[i * 2] = ret >> 8;
addr[i * 2 + 1] = ret & 0xff;
}
return 0;
}
static int _mv88e6xxx_atu_load(struct mv88e6xxx_priv_state *ps,
struct mv88e6xxx_atu_entry *entry)
{
int ret;
ret = _mv88e6xxx_atu_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_mac_write(ps, entry->mac);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_data_write(ps, entry);
if (ret < 0)
return ret;
return _mv88e6xxx_atu_cmd(ps, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
}
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_priv_state *ps, int port,
const unsigned char *addr, u16 vid,
u8 state)
{
struct mv88e6xxx_atu_entry entry = { 0 };
struct mv88e6xxx_vtu_stu_entry vlan;
int err;
/* Null VLAN ID corresponds to the port private database */
if (vid == 0)
err = _mv88e6xxx_port_fid_get(ps, port, &vlan.fid);
else
err = _mv88e6xxx_vtu_get(ps, vid, &vlan, false);
if (err)
return err;
entry.fid = vlan.fid;
entry.state = state;
ether_addr_copy(entry.mac, addr);
if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
entry.trunk = false;
entry.portv_trunkid = BIT(port);
}
return _mv88e6xxx_atu_load(ps, &entry);
}
int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb,
struct switchdev_trans *trans)
{
/* We don't need any dynamic resource from the kernel (yet),
* so skip the prepare phase.
*/
return 0;
}
void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb,
struct switchdev_trans *trans)
{
int state = is_multicast_ether_addr(fdb->addr) ?
GLOBAL_ATU_DATA_STATE_MC_STATIC :
GLOBAL_ATU_DATA_STATE_UC_STATIC;
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
mutex_lock(&ps->smi_mutex);
if (_mv88e6xxx_port_fdb_load(ps, port, fdb->addr, fdb->vid, state))
netdev_err(ds->ports[port], "failed to load MAC address\n");
mutex_unlock(&ps->smi_mutex);
}
int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_fdb *fdb)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_port_fdb_load(ps, port, fdb->addr, fdb->vid,
GLOBAL_ATU_DATA_STATE_UNUSED);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_priv_state *ps, u16 fid,
struct mv88e6xxx_atu_entry *entry)
{
struct mv88e6xxx_atu_entry next = { 0 };
int ret;
next.fid = fid;
ret = _mv88e6xxx_atu_wait(ps);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_cmd(ps, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
if (ret < 0)
return ret;
ret = _mv88e6xxx_atu_mac_read(ps, next.mac);
if (ret < 0)
return ret;
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, GLOBAL_ATU_DATA);
if (ret < 0)
return ret;
next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
unsigned int mask, shift;
if (ret & GLOBAL_ATU_DATA_TRUNK) {
next.trunk = true;
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
} else {
next.trunk = false;
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
}
next.portv_trunkid = (ret & mask) >> shift;
}
*entry = next;
return 0;
}
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_priv_state *ps,
u16 fid, u16 vid, int port,
struct switchdev_obj_port_fdb *fdb,
int (*cb)(struct switchdev_obj *obj))
{
struct mv88e6xxx_atu_entry addr = {
.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
};
int err;
err = _mv88e6xxx_atu_mac_write(ps, addr.mac);
if (err)
return err;
do {
err = _mv88e6xxx_atu_getnext(ps, fid, &addr);
if (err)
break;
if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
break;
if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
bool is_static = addr.state ==
(is_multicast_ether_addr(addr.mac) ?
GLOBAL_ATU_DATA_STATE_MC_STATIC :
GLOBAL_ATU_DATA_STATE_UC_STATIC);
fdb->vid = vid;
ether_addr_copy(fdb->addr, addr.mac);
fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
err = cb(&fdb->obj);
if (err)
break;
}
} while (!is_broadcast_ether_addr(addr.mac));
return err;
}
int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
struct switchdev_obj_port_fdb *fdb,
int (*cb)(struct switchdev_obj *obj))
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct mv88e6xxx_vtu_stu_entry vlan = {
.vid = GLOBAL_VTU_VID_MASK, /* all ones */
};
u16 fid;
int err;
mutex_lock(&ps->smi_mutex);
/* Dump port's default Filtering Information Database (VLAN ID 0) */
err = _mv88e6xxx_port_fid_get(ps, port, &fid);
if (err)
goto unlock;
err = _mv88e6xxx_port_fdb_dump_one(ps, fid, 0, port, fdb, cb);
if (err)
goto unlock;
/* Dump VLANs' Filtering Information Databases */
err = _mv88e6xxx_vtu_vid_write(ps, vlan.vid);
if (err)
goto unlock;
do {
err = _mv88e6xxx_vtu_getnext(ps, &vlan);
if (err)
break;
if (!vlan.valid)
break;
err = _mv88e6xxx_port_fdb_dump_one(ps, vlan.fid, vlan.vid, port,
fdb, cb);
if (err)
break;
} while (vlan.vid < GLOBAL_VTU_VID_MASK);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int i, err = 0;
mutex_lock(&ps->smi_mutex);
/* Assign the bridge and remap each port's VLANTable */
ps->ports[port].bridge_dev = bridge;
for (i = 0; i < ps->info->num_ports; ++i) {
if (ps->ports[i].bridge_dev == bridge) {
err = _mv88e6xxx_port_based_vlan_map(ps, i);
if (err)
break;
}
}
mutex_unlock(&ps->smi_mutex);
return err;
}
void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
struct net_device *bridge = ps->ports[port].bridge_dev;
int i;
mutex_lock(&ps->smi_mutex);
/* Unassign the bridge and remap each port's VLANTable */
ps->ports[port].bridge_dev = NULL;
for (i = 0; i < ps->info->num_ports; ++i)
if (i == port || ps->ports[i].bridge_dev == bridge)
if (_mv88e6xxx_port_based_vlan_map(ps, i))
netdev_warn(ds->ports[i], "failed to remap\n");
mutex_unlock(&ps->smi_mutex);
}
static void mv88e6xxx_bridge_work(struct work_struct *work)
{
struct mv88e6xxx_priv_state *ps;
struct dsa_switch *ds;
int port;
ps = container_of(work, struct mv88e6xxx_priv_state, bridge_work);
ds = ps->ds;
mutex_lock(&ps->smi_mutex);
for (port = 0; port < ps->info->num_ports; ++port)
if (test_and_clear_bit(port, ps->port_state_update_mask) &&
_mv88e6xxx_port_state(ps, port, ps->ports[port].state))
netdev_warn(ds->ports[port],
"failed to update state to %s\n",
mv88e6xxx_port_state_names[ps->ports[port].state]);
mutex_unlock(&ps->smi_mutex);
}
static int _mv88e6xxx_phy_page_write(struct mv88e6xxx_priv_state *ps,
int port, int page, int reg, int val)
{
int ret;
ret = _mv88e6xxx_phy_write_indirect(ps, port, 0x16, page);
if (ret < 0)
goto restore_page_0;
ret = _mv88e6xxx_phy_write_indirect(ps, port, reg, val);
restore_page_0:
_mv88e6xxx_phy_write_indirect(ps, port, 0x16, 0x0);
return ret;
}
static int _mv88e6xxx_phy_page_read(struct mv88e6xxx_priv_state *ps,
int port, int page, int reg)
{
int ret;
ret = _mv88e6xxx_phy_write_indirect(ps, port, 0x16, page);
if (ret < 0)
goto restore_page_0;
ret = _mv88e6xxx_phy_read_indirect(ps, port, reg);
restore_page_0:
_mv88e6xxx_phy_write_indirect(ps, port, 0x16, 0x0);
return ret;
}
static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_priv_state *ps)
{
int ret;
ret = _mv88e6xxx_phy_page_read(ps, REG_FIBER_SERDES, PAGE_FIBER_SERDES,
MII_BMCR);
if (ret < 0)
return ret;
if (ret & BMCR_PDOWN) {
ret &= ~BMCR_PDOWN;
ret = _mv88e6xxx_phy_page_write(ps, REG_FIBER_SERDES,
PAGE_FIBER_SERDES, MII_BMCR,
ret);
}
return ret;
}
static int mv88e6xxx_setup_port(struct dsa_switch *ds, int port)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
u16 reg;
mutex_lock(&ps->smi_mutex);
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6095_family(ps) ||
mv88e6xxx_6065_family(ps) || mv88e6xxx_6320_family(ps)) {
/* MAC Forcing register: don't force link, speed,
* duplex or flow control state to any particular
* values on physical ports, but force the CPU port
* and all DSA ports to their maximum bandwidth and
* full duplex.
*/
reg = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_PCS_CTRL);
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
reg &= ~PORT_PCS_CTRL_UNFORCED;
reg |= PORT_PCS_CTRL_FORCE_LINK |
PORT_PCS_CTRL_LINK_UP |
PORT_PCS_CTRL_DUPLEX_FULL |
PORT_PCS_CTRL_FORCE_DUPLEX;
if (mv88e6xxx_6065_family(ps))
reg |= PORT_PCS_CTRL_100;
else
reg |= PORT_PCS_CTRL_1000;
} else {
reg |= PORT_PCS_CTRL_UNFORCED;
}
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_PCS_CTRL, reg);
if (ret)
goto abort;
}
/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
* disable Header mode, enable IGMP/MLD snooping, disable VLAN
* tunneling, determine priority by looking at 802.1p and IP
* priority fields (IP prio has precedence), and set STP state
* to Forwarding.
*
* If this is the CPU link, use DSA or EDSA tagging depending
* on which tagging mode was configured.
*
* If this is a link to another switch, use DSA tagging mode.
*
* If this is the upstream port for this switch, enable
* forwarding of unknown unicasts and multicasts.
*/
reg = 0;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6095_family(ps) || mv88e6xxx_6065_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6320_family(ps))
reg = PORT_CONTROL_IGMP_MLD_SNOOP |
PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
PORT_CONTROL_STATE_FORWARDING;
if (dsa_is_cpu_port(ds, port)) {
if (mv88e6xxx_6095_family(ps) || mv88e6xxx_6185_family(ps))
reg |= PORT_CONTROL_DSA_TAG;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6320_family(ps)) {
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA;
else
reg |= PORT_CONTROL_FRAME_MODE_DSA;
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
PORT_CONTROL_FORWARD_UNKNOWN_MC;
}
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6095_family(ps) || mv88e6xxx_6065_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6320_family(ps)) {
if (ds->dst->tag_protocol == DSA_TAG_PROTO_EDSA)
reg |= PORT_CONTROL_EGRESS_ADD_TAG;
}
}
if (dsa_is_dsa_port(ds, port)) {
if (mv88e6xxx_6095_family(ps) || mv88e6xxx_6185_family(ps))
reg |= PORT_CONTROL_DSA_TAG;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6320_family(ps)) {
reg |= PORT_CONTROL_FRAME_MODE_DSA;
}
if (port == dsa_upstream_port(ds))
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
PORT_CONTROL_FORWARD_UNKNOWN_MC;
}
if (reg) {
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_CONTROL, reg);
if (ret)
goto abort;
}
/* If this port is connected to a SerDes, make sure the SerDes is not
* powered down.
*/
if (mv88e6xxx_6352_family(ps)) {
ret = _mv88e6xxx_reg_read(ps, REG_PORT(port), PORT_STATUS);
if (ret < 0)
goto abort;
ret &= PORT_STATUS_CMODE_MASK;
if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
(ret == PORT_STATUS_CMODE_1000BASE_X) ||
(ret == PORT_STATUS_CMODE_SGMII)) {
ret = mv88e6xxx_power_on_serdes(ps);
if (ret < 0)
goto abort;
}
}
/* Port Control 2: don't force a good FCS, set the maximum frame size to
* 10240 bytes, disable 802.1q tags checking, don't discard tagged or
* untagged frames on this port, do a destination address lookup on all
* received packets as usual, disable ARP mirroring and don't send a
* copy of all transmitted/received frames on this port to the CPU.
*/
reg = 0;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6095_family(ps) || mv88e6xxx_6320_family(ps) ||
mv88e6xxx_6185_family(ps))
reg = PORT_CONTROL_2_MAP_DA;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6320_family(ps))
reg |= PORT_CONTROL_2_JUMBO_10240;
if (mv88e6xxx_6095_family(ps) || mv88e6xxx_6185_family(ps)) {
/* Set the upstream port this port should use */
reg |= dsa_upstream_port(ds);
/* enable forwarding of unknown multicast addresses to
* the upstream port
*/
if (port == dsa_upstream_port(ds))
reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
}
reg |= PORT_CONTROL_2_8021Q_DISABLED;
if (reg) {
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_CONTROL_2, reg);
if (ret)
goto abort;
}
/* Port Association Vector: when learning source addresses
* of packets, add the address to the address database using
* a port bitmap that has only the bit for this port set and
* the other bits clear.
*/
reg = 1 << port;
/* Disable learning for CPU port */
if (dsa_is_cpu_port(ds, port))
reg = 0;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_ASSOC_VECTOR, reg);
if (ret)
goto abort;
/* Egress rate control 2: disable egress rate control. */
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_RATE_CONTROL_2,
0x0000);
if (ret)
goto abort;
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6320_family(ps)) {
/* Do not limit the period of time that this port can
* be paused for by the remote end or the period of
* time that this port can pause the remote end.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_PAUSE_CTRL, 0x0000);
if (ret)
goto abort;
/* Port ATU control: disable limiting the number of
* address database entries that this port is allowed
* to use.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_ATU_CONTROL, 0x0000);
/* Priority Override: disable DA, SA and VTU priority
* override.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_PRI_OVERRIDE, 0x0000);
if (ret)
goto abort;
/* Port Ethertype: use the Ethertype DSA Ethertype
* value.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_ETH_TYPE, ETH_P_EDSA);
if (ret)
goto abort;
/* Tag Remap: use an identity 802.1p prio -> switch
* prio mapping.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_TAG_REGMAP_0123, 0x3210);
if (ret)
goto abort;
/* Tag Remap 2: use an identity 802.1p prio -> switch
* prio mapping.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_TAG_REGMAP_4567, 0x7654);
if (ret)
goto abort;
}
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6095_family(ps) ||
mv88e6xxx_6320_family(ps)) {
/* Rate Control: disable ingress rate limiting. */
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port),
PORT_RATE_CONTROL, 0x0001);
if (ret)
goto abort;
}
/* Port Control 1: disable trunking, disable sending
* learning messages to this port.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_CONTROL_1, 0x0000);
if (ret)
goto abort;
/* Port based VLAN map: give each port the same default address
* database, and allow bidirectional communication between the
* CPU and DSA port(s), and the other ports.
*/
ret = _mv88e6xxx_port_fid_set(ps, port, 0);
if (ret)
goto abort;
ret = _mv88e6xxx_port_based_vlan_map(ps, port);
if (ret)
goto abort;
/* Default VLAN ID and priority: don't set a default VLAN
* ID, and set the default packet priority to zero.
*/
ret = _mv88e6xxx_reg_write(ps, REG_PORT(port), PORT_DEFAULT_VLAN,
0x0000);
abort:
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_setup_ports(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int i;
for (i = 0; i < ps->info->num_ports; i++) {
ret = mv88e6xxx_setup_port(ds, i);
if (ret < 0)
return ret;
}
return 0;
}
int mv88e6xxx_setup_common(struct mv88e6xxx_priv_state *ps)
{
mutex_init(&ps->smi_mutex);
INIT_WORK(&ps->bridge_work, mv88e6xxx_bridge_work);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_EEPROM))
mutex_init(&ps->eeprom_mutex);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU))
mv88e6xxx_ppu_state_init(ps);
return 0;
}
int mv88e6xxx_setup_global(struct dsa_switch *ds)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int err;
int i;
mutex_lock(&ps->smi_mutex);
/* Set the default address aging time to 5 minutes, and
* enable address learn messages to be sent to all message
* ports.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_ATU_CONTROL,
0x0140 | GLOBAL_ATU_CONTROL_LEARN2ALL);
if (err)
goto unlock;
/* Configure the IP ToS mapping registers. */
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
if (err)
goto unlock;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
if (err)
goto unlock;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
if (err)
goto unlock;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
if (err)
goto unlock;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
if (err)
goto unlock;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
if (err)
goto unlock;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
if (err)
goto unlock;
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
if (err)
goto unlock;
/* Configure the IEEE 802.1p priority mapping register. */
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
if (err)
goto unlock;
/* Send all frames with destination addresses matching
* 01:80:c2:00:00:0x to the CPU port.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X, 0xffff);
if (err)
goto unlock;
/* Ignore removed tag data on doubly tagged packets, disable
* flow control messages, force flow control priority to the
* highest, and send all special multicast frames to the CPU
* port at the highest priority.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT,
0x7 | GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x70 |
GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI);
if (err)
goto unlock;
/* Program the DSA routing table. */
for (i = 0; i < 32; i++) {
int nexthop = 0x1f;
if (ds->pd->rtable &&
i != ds->index && i < ds->dst->pd->nr_chips)
nexthop = ds->pd->rtable[i] & 0x1f;
err = _mv88e6xxx_reg_write(
ps, REG_GLOBAL2,
GLOBAL2_DEVICE_MAPPING,
GLOBAL2_DEVICE_MAPPING_UPDATE |
(i << GLOBAL2_DEVICE_MAPPING_TARGET_SHIFT) | nexthop);
if (err)
goto unlock;
}
/* Clear all trunk masks. */
for (i = 0; i < 8; i++) {
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2, GLOBAL2_TRUNK_MASK,
0x8000 |
(i << GLOBAL2_TRUNK_MASK_NUM_SHIFT) |
((1 << ps->info->num_ports) - 1));
if (err)
goto unlock;
}
/* Clear all trunk mappings. */
for (i = 0; i < 16; i++) {
err = _mv88e6xxx_reg_write(
ps, REG_GLOBAL2,
GLOBAL2_TRUNK_MAPPING,
GLOBAL2_TRUNK_MAPPING_UPDATE |
(i << GLOBAL2_TRUNK_MAPPING_ID_SHIFT));
if (err)
goto unlock;
}
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6320_family(ps)) {
/* Send all frames with destination addresses matching
* 01:80:c2:00:00:2x to the CPU port.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2,
GLOBAL2_MGMT_EN_2X, 0xffff);
if (err)
goto unlock;
/* Initialise cross-chip port VLAN table to reset
* defaults.
*/
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2,
GLOBAL2_PVT_ADDR, 0x9000);
if (err)
goto unlock;
/* Clear the priority override table. */
for (i = 0; i < 16; i++) {
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2,
GLOBAL2_PRIO_OVERRIDE,
0x8000 | (i << 8));
if (err)
goto unlock;
}
}
if (mv88e6xxx_6352_family(ps) || mv88e6xxx_6351_family(ps) ||
mv88e6xxx_6165_family(ps) || mv88e6xxx_6097_family(ps) ||
mv88e6xxx_6185_family(ps) || mv88e6xxx_6095_family(ps) ||
mv88e6xxx_6320_family(ps)) {
/* Disable ingress rate limiting by resetting all
* ingress rate limit registers to their initial
* state.
*/
for (i = 0; i < ps->info->num_ports; i++) {
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL2,
GLOBAL2_INGRESS_OP,
0x9000 | (i << 8));
if (err)
goto unlock;
}
}
/* Clear the statistics counters for all ports */
err = _mv88e6xxx_reg_write(ps, REG_GLOBAL, GLOBAL_STATS_OP,
GLOBAL_STATS_OP_FLUSH_ALL);
if (err)
goto unlock;
/* Wait for the flush to complete. */
err = _mv88e6xxx_stats_wait(ps);
if (err < 0)
goto unlock;
/* Clear all ATU entries */
err = _mv88e6xxx_atu_flush(ps, 0, true);
if (err < 0)
goto unlock;
/* Clear all the VTU and STU entries */
err = _mv88e6xxx_vtu_stu_flush(ps);
unlock:
mutex_unlock(&ps->smi_mutex);
return err;
}
int mv88e6xxx_switch_reset(struct mv88e6xxx_priv_state *ps, bool ppu_active)
{
u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
struct gpio_desc *gpiod = ps->ds->pd->reset;
unsigned long timeout;
int ret;
int i;
mutex_lock(&ps->smi_mutex);
/* Set all ports to the disabled state. */
for (i = 0; i < ps->info->num_ports; i++) {
ret = _mv88e6xxx_reg_read(ps, REG_PORT(i), PORT_CONTROL);
if (ret < 0)
goto unlock;
ret = _mv88e6xxx_reg_write(ps, REG_PORT(i), PORT_CONTROL,
ret & 0xfffc);
if (ret)
goto unlock;
}
/* Wait for transmit queues to drain. */
usleep_range(2000, 4000);
/* If there is a gpio connected to the reset pin, toggle it */
if (gpiod) {
gpiod_set_value_cansleep(gpiod, 1);
usleep_range(10000, 20000);
gpiod_set_value_cansleep(gpiod, 0);
usleep_range(10000, 20000);
}
/* Reset the switch. Keep the PPU active if requested. The PPU
* needs to be active to support indirect phy register access
* through global registers 0x18 and 0x19.
*/
if (ppu_active)
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, 0x04, 0xc000);
else
ret = _mv88e6xxx_reg_write(ps, REG_GLOBAL, 0x04, 0xc400);
if (ret)
goto unlock;
/* Wait up to one second for reset to complete. */
timeout = jiffies + 1 * HZ;
while (time_before(jiffies, timeout)) {
ret = _mv88e6xxx_reg_read(ps, REG_GLOBAL, 0x00);
if (ret < 0)
goto unlock;
if ((ret & is_reset) == is_reset)
break;
usleep_range(1000, 2000);
}
if (time_after(jiffies, timeout))
ret = -ETIMEDOUT;
else
ret = 0;
unlock:
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_phy_page_read(struct dsa_switch *ds, int port, int page, int reg)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_page_read(ps, port, page, reg);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int mv88e6xxx_phy_page_write(struct dsa_switch *ds, int port, int page,
int reg, int val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_page_write(ps, port, page, reg, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e6xxx_port_to_phy_addr(struct mv88e6xxx_priv_state *ps,
int port)
{
if (port >= 0 && port < ps->info->num_ports)
return port;
return -EINVAL;
}
int
mv88e6xxx_phy_read(struct dsa_switch *ds, int port, int regnum)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6xxx_port_to_phy_addr(ps, port);
int ret;
if (addr < 0)
return 0xffff;
mutex_lock(&ps->smi_mutex);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU))
ret = mv88e6xxx_phy_read_ppu(ps, addr, regnum);
else if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_SMI_PHY))
ret = _mv88e6xxx_phy_read_indirect(ps, addr, regnum);
else
ret = _mv88e6xxx_phy_read(ps, addr, regnum);
mutex_unlock(&ps->smi_mutex);
return ret;
}
int
mv88e6xxx_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int addr = mv88e6xxx_port_to_phy_addr(ps, port);
int ret;
if (addr < 0)
return 0xffff;
mutex_lock(&ps->smi_mutex);
if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_PPU))
ret = mv88e6xxx_phy_write_ppu(ps, addr, regnum, val);
else if (mv88e6xxx_has(ps, MV88E6XXX_FLAG_SMI_PHY))
ret = _mv88e6xxx_phy_write_indirect(ps, addr, regnum, val);
else
ret = _mv88e6xxx_phy_write(ps, addr, regnum, val);
mutex_unlock(&ps->smi_mutex);
return ret;
}
#ifdef CONFIG_NET_DSA_HWMON
static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int ret;
int val;
*temp = 0;
mutex_lock(&ps->smi_mutex);
ret = _mv88e6xxx_phy_write(ps, 0x0, 0x16, 0x6);
if (ret < 0)
goto error;
/* Enable temperature sensor */
ret = _mv88e6xxx_phy_read(ps, 0x0, 0x1a);
if (ret < 0)
goto error;
ret = _mv88e6xxx_phy_write(ps, 0x0, 0x1a, ret | (1 << 5));
if (ret < 0)
goto error;
/* Wait for temperature to stabilize */
usleep_range(10000, 12000);
val = _mv88e6xxx_phy_read(ps, 0x0, 0x1a);
if (val < 0) {
ret = val;
goto error;
}
/* Disable temperature sensor */
ret = _mv88e6xxx_phy_write(ps, 0x0, 0x1a, ret & ~(1 << 5));
if (ret < 0)
goto error;
*temp = ((val & 0x1f) - 5) * 5;
error:
_mv88e6xxx_phy_write(ps, 0x0, 0x16, 0x0);
mutex_unlock(&ps->smi_mutex);
return ret;
}
static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int phy = mv88e6xxx_6320_family(ps) ? 3 : 0;
int ret;
*temp = 0;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 27);
if (ret < 0)
return ret;
*temp = (ret & 0xff) - 25;
return 0;
}
int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_TEMP))
return -EOPNOTSUPP;
if (mv88e6xxx_6320_family(ps) || mv88e6xxx_6352_family(ps))
return mv88e63xx_get_temp(ds, temp);
return mv88e61xx_get_temp(ds, temp);
}
int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int phy = mv88e6xxx_6320_family(ps) ? 3 : 0;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_TEMP_LIMIT))
return -EOPNOTSUPP;
*temp = 0;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
*temp = (((ret >> 8) & 0x1f) * 5) - 25;
return 0;
}
int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int phy = mv88e6xxx_6320_family(ps) ? 3 : 0;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_TEMP_LIMIT))
return -EOPNOTSUPP;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
return mv88e6xxx_phy_page_write(ds, phy, 6, 26,
(ret & 0xe0ff) | (temp << 8));
}
int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
{
struct mv88e6xxx_priv_state *ps = ds_to_priv(ds);
int phy = mv88e6xxx_6320_family(ps) ? 3 : 0;
int ret;
if (!mv88e6xxx_has(ps, MV88E6XXX_FLAG_TEMP_LIMIT))
return -EOPNOTSUPP;
*alarm = false;
ret = mv88e6xxx_phy_page_read(ds, phy, 6, 26);
if (ret < 0)
return ret;
*alarm = !!(ret & 0x40);
return 0;
}
#endif /* CONFIG_NET_DSA_HWMON */
static const struct mv88e6xxx_info *
mv88e6xxx_lookup_info(unsigned int prod_num, const struct mv88e6xxx_info *table,
unsigned int num)
{
int i;
for (i = 0; i < num; ++i)
if (table[i].prod_num == prod_num)
return &table[i];
return NULL;
}
const char *mv88e6xxx_drv_probe(struct device *dsa_dev, struct device *host_dev,
int sw_addr, void **priv,
const struct mv88e6xxx_info *table,
unsigned int num)
{
const struct mv88e6xxx_info *info;
struct mv88e6xxx_priv_state *ps;
struct mii_bus *bus;
const char *name;
int id, prod_num, rev;
bus = dsa_host_dev_to_mii_bus(host_dev);
if (!bus)
return NULL;
id = __mv88e6xxx_reg_read(bus, sw_addr, REG_PORT(0), PORT_SWITCH_ID);
if (id < 0)
return NULL;
prod_num = (id & 0xfff0) >> 4;
rev = id & 0x000f;
info = mv88e6xxx_lookup_info(prod_num, table, num);
if (!info)
return NULL;
name = info->name;
ps = devm_kzalloc(dsa_dev, sizeof(*ps), GFP_KERNEL);
if (!ps)
return NULL;
ps->bus = bus;
ps->sw_addr = sw_addr;
ps->info = info;
*priv = ps;
dev_info(&ps->bus->dev, "switch 0x%x probed: %s, revision %u\n",
prod_num, name, rev);
return name;
}
static int __init mv88e6xxx_init(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
register_switch_driver(&mv88e6131_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
register_switch_driver(&mv88e6123_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
register_switch_driver(&mv88e6352_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
register_switch_driver(&mv88e6171_switch_driver);
#endif
return 0;
}
module_init(mv88e6xxx_init);
static void __exit mv88e6xxx_cleanup(void)
{
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6171)
unregister_switch_driver(&mv88e6171_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6352)
unregister_switch_driver(&mv88e6352_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6123)
unregister_switch_driver(&mv88e6123_switch_driver);
#endif
#if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
unregister_switch_driver(&mv88e6131_switch_driver);
#endif
}
module_exit(mv88e6xxx_cleanup);
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
MODULE_LICENSE("GPL");