| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). |
| * |
| * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/) |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/i2c.h> |
| #include <linux/mutex.h> |
| #include <asm/div64.h> |
| |
| #include <media/dvb_math.h> |
| #include <media/dvb_frontend.h> |
| |
| #include "dib7000p.h" |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| |
| static int buggy_sfn_workaround; |
| module_param(buggy_sfn_workaround, int, 0644); |
| MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)"); |
| |
| #define dprintk(fmt, arg...) do { \ |
| if (debug) \ |
| printk(KERN_DEBUG pr_fmt("%s: " fmt), \ |
| __func__, ##arg); \ |
| } while (0) |
| |
| struct i2c_device { |
| struct i2c_adapter *i2c_adap; |
| u8 i2c_addr; |
| }; |
| |
| struct dib7000p_state { |
| struct dvb_frontend demod; |
| struct dib7000p_config cfg; |
| |
| u8 i2c_addr; |
| struct i2c_adapter *i2c_adap; |
| |
| struct dibx000_i2c_master i2c_master; |
| |
| u16 wbd_ref; |
| |
| u8 current_band; |
| u32 current_bandwidth; |
| struct dibx000_agc_config *current_agc; |
| u32 timf; |
| |
| u8 div_force_off:1; |
| u8 div_state:1; |
| u16 div_sync_wait; |
| |
| u8 agc_state; |
| |
| u16 gpio_dir; |
| u16 gpio_val; |
| |
| u8 sfn_workaround_active:1; |
| |
| #define SOC7090 0x7090 |
| u16 version; |
| |
| u16 tuner_enable; |
| struct i2c_adapter dib7090_tuner_adap; |
| |
| /* for the I2C transfer */ |
| struct i2c_msg msg[2]; |
| u8 i2c_write_buffer[4]; |
| u8 i2c_read_buffer[2]; |
| struct mutex i2c_buffer_lock; |
| |
| u8 input_mode_mpeg; |
| |
| /* for DVBv5 stats */ |
| s64 old_ucb; |
| unsigned long per_jiffies_stats; |
| unsigned long ber_jiffies_stats; |
| unsigned long get_stats_time; |
| }; |
| |
| enum dib7000p_power_mode { |
| DIB7000P_POWER_ALL = 0, |
| DIB7000P_POWER_ANALOG_ADC, |
| DIB7000P_POWER_INTERFACE_ONLY, |
| }; |
| |
| /* dib7090 specific functions */ |
| static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode); |
| static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff); |
| static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode); |
| static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode); |
| |
| static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) |
| { |
| u16 ret; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock\n"); |
| return 0; |
| } |
| |
| state->i2c_write_buffer[0] = reg >> 8; |
| state->i2c_write_buffer[1] = reg & 0xff; |
| |
| memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); |
| state->msg[0].addr = state->i2c_addr >> 1; |
| state->msg[0].flags = 0; |
| state->msg[0].buf = state->i2c_write_buffer; |
| state->msg[0].len = 2; |
| state->msg[1].addr = state->i2c_addr >> 1; |
| state->msg[1].flags = I2C_M_RD; |
| state->msg[1].buf = state->i2c_read_buffer; |
| state->msg[1].len = 2; |
| |
| if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2) |
| dprintk("i2c read error on %d\n", reg); |
| |
| ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; |
| mutex_unlock(&state->i2c_buffer_lock); |
| return ret; |
| } |
| |
| static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) |
| { |
| int ret; |
| |
| if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { |
| dprintk("could not acquire lock\n"); |
| return -EINVAL; |
| } |
| |
| state->i2c_write_buffer[0] = (reg >> 8) & 0xff; |
| state->i2c_write_buffer[1] = reg & 0xff; |
| state->i2c_write_buffer[2] = (val >> 8) & 0xff; |
| state->i2c_write_buffer[3] = val & 0xff; |
| |
| memset(&state->msg[0], 0, sizeof(struct i2c_msg)); |
| state->msg[0].addr = state->i2c_addr >> 1; |
| state->msg[0].flags = 0; |
| state->msg[0].buf = state->i2c_write_buffer; |
| state->msg[0].len = 4; |
| |
| ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ? |
| -EREMOTEIO : 0); |
| mutex_unlock(&state->i2c_buffer_lock); |
| return ret; |
| } |
| |
| static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf) |
| { |
| u16 l = 0, r, *n; |
| n = buf; |
| l = *n++; |
| while (l) { |
| r = *n++; |
| |
| do { |
| dib7000p_write_word(state, r, *n++); |
| r++; |
| } while (--l); |
| l = *n++; |
| } |
| } |
| |
| static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) |
| { |
| int ret = 0; |
| u16 outreg, fifo_threshold, smo_mode; |
| |
| outreg = 0; |
| fifo_threshold = 1792; |
| smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); |
| |
| dprintk("setting output mode for demod %p to %d\n", &state->demod, mode); |
| |
| switch (mode) { |
| case OUTMODE_MPEG2_PAR_GATED_CLK: |
| outreg = (1 << 10); /* 0x0400 */ |
| break; |
| case OUTMODE_MPEG2_PAR_CONT_CLK: |
| outreg = (1 << 10) | (1 << 6); /* 0x0440 */ |
| break; |
| case OUTMODE_MPEG2_SERIAL: |
| outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ |
| break; |
| case OUTMODE_DIVERSITY: |
| if (state->cfg.hostbus_diversity) |
| outreg = (1 << 10) | (4 << 6); /* 0x0500 */ |
| else |
| outreg = (1 << 11); |
| break; |
| case OUTMODE_MPEG2_FIFO: |
| smo_mode |= (3 << 1); |
| fifo_threshold = 512; |
| outreg = (1 << 10) | (5 << 6); |
| break; |
| case OUTMODE_ANALOG_ADC: |
| outreg = (1 << 10) | (3 << 6); |
| break; |
| case OUTMODE_HIGH_Z: |
| outreg = 0; |
| break; |
| default: |
| dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->demod); |
| break; |
| } |
| |
| if (state->cfg.output_mpeg2_in_188_bytes) |
| smo_mode |= (1 << 5); |
| |
| ret |= dib7000p_write_word(state, 235, smo_mode); |
| ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ |
| if (state->version != SOC7090) |
| ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ |
| |
| return ret; |
| } |
| |
| static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| |
| if (state->div_force_off) { |
| dprintk("diversity combination deactivated - forced by COFDM parameters\n"); |
| onoff = 0; |
| dib7000p_write_word(state, 207, 0); |
| } else |
| dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); |
| |
| state->div_state = (u8) onoff; |
| |
| if (onoff) { |
| dib7000p_write_word(state, 204, 6); |
| dib7000p_write_word(state, 205, 16); |
| /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ |
| } else { |
| dib7000p_write_word(state, 204, 1); |
| dib7000p_write_word(state, 205, 0); |
| } |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) |
| { |
| /* by default everything is powered off */ |
| u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); |
| |
| /* now, depending on the requested mode, we power on */ |
| switch (mode) { |
| /* power up everything in the demod */ |
| case DIB7000P_POWER_ALL: |
| reg_774 = 0x0000; |
| reg_775 = 0x0000; |
| reg_776 = 0x0; |
| reg_899 = 0x0; |
| if (state->version == SOC7090) |
| reg_1280 &= 0x001f; |
| else |
| reg_1280 &= 0x01ff; |
| break; |
| |
| case DIB7000P_POWER_ANALOG_ADC: |
| /* dem, cfg, iqc, sad, agc */ |
| reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); |
| /* nud */ |
| reg_776 &= ~((1 << 0)); |
| /* Dout */ |
| if (state->version != SOC7090) |
| reg_1280 &= ~((1 << 11)); |
| reg_1280 &= ~(1 << 6); |
| fallthrough; |
| case DIB7000P_POWER_INTERFACE_ONLY: |
| /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ |
| /* TODO power up either SDIO or I2C */ |
| if (state->version == SOC7090) |
| reg_1280 &= ~((1 << 7) | (1 << 5)); |
| else |
| reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); |
| break; |
| |
| /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ |
| } |
| |
| dib7000p_write_word(state, 774, reg_774); |
| dib7000p_write_word(state, 775, reg_775); |
| dib7000p_write_word(state, 776, reg_776); |
| dib7000p_write_word(state, 1280, reg_1280); |
| if (state->version != SOC7090) |
| dib7000p_write_word(state, 899, reg_899); |
| |
| return 0; |
| } |
| |
| static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) |
| { |
| u16 reg_908 = 0, reg_909 = 0; |
| u16 reg; |
| |
| if (state->version != SOC7090) { |
| reg_908 = dib7000p_read_word(state, 908); |
| reg_909 = dib7000p_read_word(state, 909); |
| } |
| |
| switch (no) { |
| case DIBX000_SLOW_ADC_ON: |
| if (state->version == SOC7090) { |
| reg = dib7000p_read_word(state, 1925); |
| |
| dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2)); /* en_slowAdc = 1 & reset_sladc = 1 */ |
| |
| reg = dib7000p_read_word(state, 1925); /* read access to make it works... strange ... */ |
| msleep(200); |
| dib7000p_write_word(state, 1925, reg & ~(1 << 4)); /* en_slowAdc = 1 & reset_sladc = 0 */ |
| |
| reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12)); |
| dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */ |
| } else { |
| reg_909 |= (1 << 1) | (1 << 0); |
| dib7000p_write_word(state, 909, reg_909); |
| reg_909 &= ~(1 << 1); |
| } |
| break; |
| |
| case DIBX000_SLOW_ADC_OFF: |
| if (state->version == SOC7090) { |
| reg = dib7000p_read_word(state, 1925); |
| dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4)); /* reset_sladc = 1 en_slowAdc = 0 */ |
| } else |
| reg_909 |= (1 << 1) | (1 << 0); |
| break; |
| |
| case DIBX000_ADC_ON: |
| reg_908 &= 0x0fff; |
| reg_909 &= 0x0003; |
| break; |
| |
| case DIBX000_ADC_OFF: |
| reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); |
| reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); |
| break; |
| |
| case DIBX000_VBG_ENABLE: |
| reg_908 &= ~(1 << 15); |
| break; |
| |
| case DIBX000_VBG_DISABLE: |
| reg_908 |= (1 << 15); |
| break; |
| |
| default: |
| break; |
| } |
| |
| // dprintk( "908: %x, 909: %x\n", reg_908, reg_909); |
| |
| reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4; |
| reg_908 |= (state->cfg.enable_current_mirror & 1) << 7; |
| |
| if (state->version != SOC7090) { |
| dib7000p_write_word(state, 908, reg_908); |
| dib7000p_write_word(state, 909, reg_909); |
| } |
| } |
| |
| static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) |
| { |
| u32 timf; |
| |
| // store the current bandwidth for later use |
| state->current_bandwidth = bw; |
| |
| if (state->timf == 0) { |
| dprintk("using default timf\n"); |
| timf = state->cfg.bw->timf; |
| } else { |
| dprintk("using updated timf\n"); |
| timf = state->timf; |
| } |
| |
| timf = timf * (bw / 50) / 160; |
| |
| dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); |
| dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff)); |
| |
| return 0; |
| } |
| |
| static int dib7000p_sad_calib(struct dib7000p_state *state) |
| { |
| /* internal */ |
| dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); |
| |
| if (state->version == SOC7090) |
| dib7000p_write_word(state, 74, 2048); |
| else |
| dib7000p_write_word(state, 74, 776); |
| |
| /* do the calibration */ |
| dib7000p_write_word(state, 73, (1 << 0)); |
| dib7000p_write_word(state, 73, (0 << 0)); |
| |
| msleep(1); |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| if (value > 4095) |
| value = 4095; |
| state->wbd_ref = value; |
| return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); |
| } |
| |
| static int dib7000p_get_agc_values(struct dvb_frontend *fe, |
| u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| |
| if (agc_global != NULL) |
| *agc_global = dib7000p_read_word(state, 394); |
| if (agc1 != NULL) |
| *agc1 = dib7000p_read_word(state, 392); |
| if (agc2 != NULL) |
| *agc2 = dib7000p_read_word(state, 393); |
| if (wbd != NULL) |
| *wbd = dib7000p_read_word(state, 397); |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| return dib7000p_write_word(state, 108, v); |
| } |
| |
| static void dib7000p_reset_pll(struct dib7000p_state *state) |
| { |
| struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; |
| u16 clk_cfg0; |
| |
| if (state->version == SOC7090) { |
| dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv)); |
| |
| while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) |
| ; |
| |
| dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15)); |
| } else { |
| /* force PLL bypass */ |
| clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | |
| (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0); |
| |
| dib7000p_write_word(state, 900, clk_cfg0); |
| |
| /* P_pll_cfg */ |
| dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); |
| clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); |
| dib7000p_write_word(state, 900, clk_cfg0); |
| } |
| |
| dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); |
| dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff)); |
| dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff)); |
| dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff)); |
| |
| dib7000p_write_word(state, 72, bw->sad_cfg); |
| } |
| |
| static u32 dib7000p_get_internal_freq(struct dib7000p_state *state) |
| { |
| u32 internal = (u32) dib7000p_read_word(state, 18) << 16; |
| internal |= (u32) dib7000p_read_word(state, 19); |
| internal /= 1000; |
| |
| return internal; |
| } |
| |
| static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856); |
| u8 loopdiv, prediv; |
| u32 internal, xtal; |
| |
| /* get back old values */ |
| prediv = reg_1856 & 0x3f; |
| loopdiv = (reg_1856 >> 6) & 0x3f; |
| |
| if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) { |
| dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio); |
| reg_1856 &= 0xf000; |
| reg_1857 = dib7000p_read_word(state, 1857); |
| dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); |
| |
| dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f)); |
| |
| /* write new system clk into P_sec_len */ |
| internal = dib7000p_get_internal_freq(state); |
| xtal = (internal / loopdiv) * prediv; |
| internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio; /* new internal */ |
| dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff)); |
| dib7000p_write_word(state, 19, (u16) (internal & 0xffff)); |
| |
| dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); |
| |
| while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) |
| dprintk("Waiting for PLL to lock\n"); |
| |
| return 0; |
| } |
| return -EIO; |
| } |
| |
| static int dib7000p_reset_gpio(struct dib7000p_state *st) |
| { |
| /* reset the GPIOs */ |
| dprintk("gpio dir: %x: val: %x, pwm_pos: %x\n", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos); |
| |
| dib7000p_write_word(st, 1029, st->gpio_dir); |
| dib7000p_write_word(st, 1030, st->gpio_val); |
| |
| /* TODO 1031 is P_gpio_od */ |
| |
| dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); |
| |
| dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); |
| return 0; |
| } |
| |
| static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val) |
| { |
| st->gpio_dir = dib7000p_read_word(st, 1029); |
| st->gpio_dir &= ~(1 << num); /* reset the direction bit */ |
| st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ |
| dib7000p_write_word(st, 1029, st->gpio_dir); |
| |
| st->gpio_val = dib7000p_read_word(st, 1030); |
| st->gpio_val &= ~(1 << num); /* reset the direction bit */ |
| st->gpio_val |= (val & 0x01) << num; /* set the new value */ |
| dib7000p_write_word(st, 1030, st->gpio_val); |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| return dib7000p_cfg_gpio(state, num, dir, val); |
| } |
| |
| static u16 dib7000p_defaults[] = { |
| // auto search configuration |
| 3, 2, |
| 0x0004, |
| (1<<3)|(1<<11)|(1<<12)|(1<<13), |
| 0x0814, /* Equal Lock */ |
| |
| 12, 6, |
| 0x001b, |
| 0x7740, |
| 0x005b, |
| 0x8d80, |
| 0x01c9, |
| 0xc380, |
| 0x0000, |
| 0x0080, |
| 0x0000, |
| 0x0090, |
| 0x0001, |
| 0xd4c0, |
| |
| 1, 26, |
| 0x6680, |
| |
| /* set ADC level to -16 */ |
| 11, 79, |
| (1 << 13) - 825 - 117, |
| (1 << 13) - 837 - 117, |
| (1 << 13) - 811 - 117, |
| (1 << 13) - 766 - 117, |
| (1 << 13) - 737 - 117, |
| (1 << 13) - 693 - 117, |
| (1 << 13) - 648 - 117, |
| (1 << 13) - 619 - 117, |
| (1 << 13) - 575 - 117, |
| (1 << 13) - 531 - 117, |
| (1 << 13) - 501 - 117, |
| |
| 1, 142, |
| 0x0410, |
| |
| /* disable power smoothing */ |
| 8, 145, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| |
| 1, 154, |
| 1 << 13, |
| |
| 1, 168, |
| 0x0ccd, |
| |
| 1, 183, |
| 0x200f, |
| |
| 1, 212, |
| 0x169, |
| |
| 5, 187, |
| 0x023d, |
| 0x00a4, |
| 0x00a4, |
| 0x7ff0, |
| 0x3ccc, |
| |
| 1, 198, |
| 0x800, |
| |
| 1, 222, |
| 0x0010, |
| |
| 1, 235, |
| 0x0062, |
| |
| 0, |
| }; |
| |
| static void dib7000p_reset_stats(struct dvb_frontend *fe); |
| |
| static int dib7000p_demod_reset(struct dib7000p_state *state) |
| { |
| dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| |
| if (state->version == SOC7090) |
| dibx000_reset_i2c_master(&state->i2c_master); |
| |
| dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); |
| |
| /* restart all parts */ |
| dib7000p_write_word(state, 770, 0xffff); |
| dib7000p_write_word(state, 771, 0xffff); |
| dib7000p_write_word(state, 772, 0x001f); |
| dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3))); |
| |
| dib7000p_write_word(state, 770, 0); |
| dib7000p_write_word(state, 771, 0); |
| dib7000p_write_word(state, 772, 0); |
| dib7000p_write_word(state, 1280, 0); |
| |
| if (state->version != SOC7090) { |
| dib7000p_write_word(state, 898, 0x0003); |
| dib7000p_write_word(state, 898, 0); |
| } |
| |
| /* default */ |
| dib7000p_reset_pll(state); |
| |
| if (dib7000p_reset_gpio(state) != 0) |
| dprintk("GPIO reset was not successful.\n"); |
| |
| if (state->version == SOC7090) { |
| dib7000p_write_word(state, 899, 0); |
| |
| /* impulse noise */ |
| dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */ |
| dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */ |
| dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */ |
| dib7000p_write_word(state, 273, (0<<6) | 30); |
| } |
| if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) |
| dprintk("OUTPUT_MODE could not be reset.\n"); |
| |
| dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); |
| dib7000p_sad_calib(state); |
| dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); |
| |
| /* unforce divstr regardless whether i2c enumeration was done or not */ |
| dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1)); |
| |
| dib7000p_set_bandwidth(state, 8000); |
| |
| if (state->version == SOC7090) { |
| dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */ |
| } else { |
| if (state->cfg.tuner_is_baseband) |
| dib7000p_write_word(state, 36, 0x0755); |
| else |
| dib7000p_write_word(state, 36, 0x1f55); |
| } |
| |
| dib7000p_write_tab(state, dib7000p_defaults); |
| if (state->version != SOC7090) { |
| dib7000p_write_word(state, 901, 0x0006); |
| dib7000p_write_word(state, 902, (3 << 10) | (1 << 6)); |
| dib7000p_write_word(state, 905, 0x2c8e); |
| } |
| |
| dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); |
| |
| return 0; |
| } |
| |
| static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) |
| { |
| u16 tmp = 0; |
| tmp = dib7000p_read_word(state, 903); |
| dib7000p_write_word(state, 903, (tmp | 0x1)); |
| tmp = dib7000p_read_word(state, 900); |
| dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); |
| } |
| |
| static void dib7000p_restart_agc(struct dib7000p_state *state) |
| { |
| // P_restart_iqc & P_restart_agc |
| dib7000p_write_word(state, 770, (1 << 11) | (1 << 9)); |
| dib7000p_write_word(state, 770, 0x0000); |
| } |
| |
| static int dib7000p_update_lna(struct dib7000p_state *state) |
| { |
| u16 dyn_gain; |
| |
| if (state->cfg.update_lna) { |
| dyn_gain = dib7000p_read_word(state, 394); |
| if (state->cfg.update_lna(&state->demod, dyn_gain)) { |
| dib7000p_restart_agc(state); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) |
| { |
| struct dibx000_agc_config *agc = NULL; |
| int i; |
| if (state->current_band == band && state->current_agc != NULL) |
| return 0; |
| state->current_band = band; |
| |
| for (i = 0; i < state->cfg.agc_config_count; i++) |
| if (state->cfg.agc[i].band_caps & band) { |
| agc = &state->cfg.agc[i]; |
| break; |
| } |
| |
| if (agc == NULL) { |
| dprintk("no valid AGC configuration found for band 0x%02x\n", band); |
| return -EINVAL; |
| } |
| |
| state->current_agc = agc; |
| |
| /* AGC */ |
| dib7000p_write_word(state, 75, agc->setup); |
| dib7000p_write_word(state, 76, agc->inv_gain); |
| dib7000p_write_word(state, 77, agc->time_stabiliz); |
| dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); |
| |
| // Demod AGC loop configuration |
| dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); |
| dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); |
| |
| /* AGC continued */ |
| dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", |
| state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); |
| |
| if (state->wbd_ref != 0) |
| dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); |
| else |
| dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); |
| |
| dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); |
| |
| dib7000p_write_word(state, 107, agc->agc1_max); |
| dib7000p_write_word(state, 108, agc->agc1_min); |
| dib7000p_write_word(state, 109, agc->agc2_max); |
| dib7000p_write_word(state, 110, agc->agc2_min); |
| dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2); |
| dib7000p_write_word(state, 112, agc->agc1_pt3); |
| dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); |
| dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); |
| dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); |
| return 0; |
| } |
| |
| static int dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz) |
| { |
| u32 internal = dib7000p_get_internal_freq(state); |
| s32 unit_khz_dds_val; |
| u32 abs_offset_khz = abs(offset_khz); |
| u32 dds = state->cfg.bw->ifreq & 0x1ffffff; |
| u8 invert = !!(state->cfg.bw->ifreq & (1 << 25)); |
| if (internal == 0) { |
| pr_warn("DIB7000P: dib7000p_get_internal_freq returned 0\n"); |
| return -1; |
| } |
| /* 2**26 / Fsampling is the unit 1KHz offset */ |
| unit_khz_dds_val = 67108864 / (internal); |
| |
| dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d\n", offset_khz, internal, invert); |
| |
| if (offset_khz < 0) |
| unit_khz_dds_val *= -1; |
| |
| /* IF tuner */ |
| if (invert) |
| dds -= (abs_offset_khz * unit_khz_dds_val); /* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */ |
| else |
| dds += (abs_offset_khz * unit_khz_dds_val); |
| |
| if (abs_offset_khz <= (internal / 2)) { /* Max dds offset is the half of the demod freq */ |
| dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9))); |
| dib7000p_write_word(state, 22, (u16) (dds & 0xffff)); |
| } |
| return 0; |
| } |
| |
| static int dib7000p_agc_startup(struct dvb_frontend *demod) |
| { |
| struct dtv_frontend_properties *ch = &demod->dtv_property_cache; |
| struct dib7000p_state *state = demod->demodulator_priv; |
| int ret = -1; |
| u8 *agc_state = &state->agc_state; |
| u8 agc_split; |
| u16 reg; |
| u32 upd_demod_gain_period = 0x1000; |
| s32 frequency_offset = 0; |
| |
| switch (state->agc_state) { |
| case 0: |
| dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| if (state->version == SOC7090) { |
| reg = dib7000p_read_word(state, 0x79b) & 0xff00; |
| dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */ |
| dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); |
| |
| /* enable adc i & q */ |
| reg = dib7000p_read_word(state, 0x780); |
| dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7))); |
| } else { |
| dib7000p_set_adc_state(state, DIBX000_ADC_ON); |
| dib7000p_pll_clk_cfg(state); |
| } |
| |
| if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0) |
| return -1; |
| |
| if (demod->ops.tuner_ops.get_frequency) { |
| u32 frequency_tuner; |
| |
| demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner); |
| frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000; |
| } |
| |
| if (dib7000p_set_dds(state, frequency_offset) < 0) |
| return -1; |
| |
| ret = 7; |
| (*agc_state)++; |
| break; |
| |
| case 1: |
| if (state->cfg.agc_control) |
| state->cfg.agc_control(&state->demod, 1); |
| |
| dib7000p_write_word(state, 78, 32768); |
| if (!state->current_agc->perform_agc_softsplit) { |
| /* we are using the wbd - so slow AGC startup */ |
| /* force 0 split on WBD and restart AGC */ |
| dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8)); |
| (*agc_state)++; |
| ret = 5; |
| } else { |
| /* default AGC startup */ |
| (*agc_state) = 4; |
| /* wait AGC rough lock time */ |
| ret = 7; |
| } |
| |
| dib7000p_restart_agc(state); |
| break; |
| |
| case 2: /* fast split search path after 5sec */ |
| dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */ |
| dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */ |
| (*agc_state)++; |
| ret = 14; |
| break; |
| |
| case 3: /* split search ended */ |
| agc_split = (u8) dib7000p_read_word(state, 396); /* store the split value for the next time */ |
| dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */ |
| |
| dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */ |
| dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ |
| |
| dib7000p_restart_agc(state); |
| |
| dprintk("SPLIT %p: %u\n", demod, agc_split); |
| |
| (*agc_state)++; |
| ret = 5; |
| break; |
| |
| case 4: /* LNA startup */ |
| ret = 7; |
| |
| if (dib7000p_update_lna(state)) |
| ret = 5; |
| else |
| (*agc_state)++; |
| break; |
| |
| case 5: |
| if (state->cfg.agc_control) |
| state->cfg.agc_control(&state->demod, 0); |
| (*agc_state)++; |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| static void dib7000p_update_timf(struct dib7000p_state *state) |
| { |
| u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); |
| state->timf = timf * 160 / (state->current_bandwidth / 50); |
| dib7000p_write_word(state, 23, (u16) (timf >> 16)); |
| dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); |
| dprintk("updated timf_frequency: %d (default: %d)\n", state->timf, state->cfg.bw->timf); |
| |
| } |
| |
| static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| switch (op) { |
| case DEMOD_TIMF_SET: |
| state->timf = timf; |
| break; |
| case DEMOD_TIMF_UPDATE: |
| dib7000p_update_timf(state); |
| break; |
| case DEMOD_TIMF_GET: |
| break; |
| } |
| dib7000p_set_bandwidth(state, state->current_bandwidth); |
| return state->timf; |
| } |
| |
| static void dib7000p_set_channel(struct dib7000p_state *state, |
| struct dtv_frontend_properties *ch, u8 seq) |
| { |
| u16 value, est[4]; |
| |
| dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); |
| |
| /* nfft, guard, qam, alpha */ |
| value = 0; |
| switch (ch->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| value |= (0 << 7); |
| break; |
| case TRANSMISSION_MODE_4K: |
| value |= (2 << 7); |
| break; |
| default: |
| case TRANSMISSION_MODE_8K: |
| value |= (1 << 7); |
| break; |
| } |
| switch (ch->guard_interval) { |
| case GUARD_INTERVAL_1_32: |
| value |= (0 << 5); |
| break; |
| case GUARD_INTERVAL_1_16: |
| value |= (1 << 5); |
| break; |
| case GUARD_INTERVAL_1_4: |
| value |= (3 << 5); |
| break; |
| default: |
| case GUARD_INTERVAL_1_8: |
| value |= (2 << 5); |
| break; |
| } |
| switch (ch->modulation) { |
| case QPSK: |
| value |= (0 << 3); |
| break; |
| case QAM_16: |
| value |= (1 << 3); |
| break; |
| default: |
| case QAM_64: |
| value |= (2 << 3); |
| break; |
| } |
| switch (HIERARCHY_1) { |
| case HIERARCHY_2: |
| value |= 2; |
| break; |
| case HIERARCHY_4: |
| value |= 4; |
| break; |
| default: |
| case HIERARCHY_1: |
| value |= 1; |
| break; |
| } |
| dib7000p_write_word(state, 0, value); |
| dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ |
| |
| /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ |
| value = 0; |
| if (1 != 0) |
| value |= (1 << 6); |
| if (ch->hierarchy == 1) |
| value |= (1 << 4); |
| if (1 == 1) |
| value |= 1; |
| switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) { |
| case FEC_2_3: |
| value |= (2 << 1); |
| break; |
| case FEC_3_4: |
| value |= (3 << 1); |
| break; |
| case FEC_5_6: |
| value |= (5 << 1); |
| break; |
| case FEC_7_8: |
| value |= (7 << 1); |
| break; |
| default: |
| case FEC_1_2: |
| value |= (1 << 1); |
| break; |
| } |
| dib7000p_write_word(state, 208, value); |
| |
| /* offset loop parameters */ |
| dib7000p_write_word(state, 26, 0x6680); |
| dib7000p_write_word(state, 32, 0x0003); |
| dib7000p_write_word(state, 29, 0x1273); |
| dib7000p_write_word(state, 33, 0x0005); |
| |
| /* P_dvsy_sync_wait */ |
| switch (ch->transmission_mode) { |
| case TRANSMISSION_MODE_8K: |
| value = 256; |
| break; |
| case TRANSMISSION_MODE_4K: |
| value = 128; |
| break; |
| case TRANSMISSION_MODE_2K: |
| default: |
| value = 64; |
| break; |
| } |
| switch (ch->guard_interval) { |
| case GUARD_INTERVAL_1_16: |
| value *= 2; |
| break; |
| case GUARD_INTERVAL_1_8: |
| value *= 4; |
| break; |
| case GUARD_INTERVAL_1_4: |
| value *= 8; |
| break; |
| default: |
| case GUARD_INTERVAL_1_32: |
| value *= 1; |
| break; |
| } |
| if (state->cfg.diversity_delay == 0) |
| state->div_sync_wait = (value * 3) / 2 + 48; |
| else |
| state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; |
| |
| /* deactivate the possibility of diversity reception if extended interleaver */ |
| state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K; |
| dib7000p_set_diversity_in(&state->demod, state->div_state); |
| |
| /* channel estimation fine configuration */ |
| switch (ch->modulation) { |
| case QAM_64: |
| est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ |
| est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ |
| est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ |
| est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ |
| break; |
| case QAM_16: |
| est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ |
| est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ |
| est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ |
| est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ |
| break; |
| default: |
| est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ |
| est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ |
| est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ |
| est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ |
| break; |
| } |
| for (value = 0; value < 4; value++) |
| dib7000p_write_word(state, 187 + value, est[value]); |
| } |
| |
| static int dib7000p_autosearch_start(struct dvb_frontend *demod) |
| { |
| struct dtv_frontend_properties *ch = &demod->dtv_property_cache; |
| struct dib7000p_state *state = demod->demodulator_priv; |
| struct dtv_frontend_properties schan; |
| u32 value, factor; |
| u32 internal = dib7000p_get_internal_freq(state); |
| |
| schan = *ch; |
| schan.modulation = QAM_64; |
| schan.guard_interval = GUARD_INTERVAL_1_32; |
| schan.transmission_mode = TRANSMISSION_MODE_8K; |
| schan.code_rate_HP = FEC_2_3; |
| schan.code_rate_LP = FEC_3_4; |
| schan.hierarchy = 0; |
| |
| dib7000p_set_channel(state, &schan, 7); |
| |
| factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz); |
| if (factor >= 5000) { |
| if (state->version == SOC7090) |
| factor = 2; |
| else |
| factor = 1; |
| } else |
| factor = 6; |
| |
| value = 30 * internal * factor; |
| dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); |
| dib7000p_write_word(state, 7, (u16) (value & 0xffff)); |
| value = 100 * internal * factor; |
| dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); |
| dib7000p_write_word(state, 9, (u16) (value & 0xffff)); |
| value = 500 * internal * factor; |
| dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); |
| dib7000p_write_word(state, 11, (u16) (value & 0xffff)); |
| |
| value = dib7000p_read_word(state, 0); |
| dib7000p_write_word(state, 0, (u16) ((1 << 9) | value)); |
| dib7000p_read_word(state, 1284); |
| dib7000p_write_word(state, 0, (u16) value); |
| |
| return 0; |
| } |
| |
| static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| u16 irq_pending = dib7000p_read_word(state, 1284); |
| |
| if (irq_pending & 0x1) |
| return 1; |
| |
| if (irq_pending & 0x2) |
| return 2; |
| |
| return 0; |
| } |
| |
| static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) |
| { |
| static const s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 }; |
| static const u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, |
| 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, |
| 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, |
| 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, |
| 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126, |
| 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, |
| 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165, |
| 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, |
| 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, |
| 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212, |
| 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, |
| 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235, |
| 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243, |
| 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, |
| 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, |
| 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, |
| 255, 255, 255, 255, 255, 255 |
| }; |
| |
| u32 xtal = state->cfg.bw->xtal_hz / 1000; |
| int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz; |
| int k; |
| int coef_re[8], coef_im[8]; |
| int bw_khz = bw; |
| u32 pha; |
| |
| dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)\n", f_rel, rf_khz, xtal); |
| |
| if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2) |
| return; |
| |
| bw_khz /= 100; |
| |
| dib7000p_write_word(state, 142, 0x0610); |
| |
| for (k = 0; k < 8; k++) { |
| pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff; |
| |
| if (pha == 0) { |
| coef_re[k] = 256; |
| coef_im[k] = 0; |
| } else if (pha < 256) { |
| coef_re[k] = sine[256 - (pha & 0xff)]; |
| coef_im[k] = sine[pha & 0xff]; |
| } else if (pha == 256) { |
| coef_re[k] = 0; |
| coef_im[k] = 256; |
| } else if (pha < 512) { |
| coef_re[k] = -sine[pha & 0xff]; |
| coef_im[k] = sine[256 - (pha & 0xff)]; |
| } else if (pha == 512) { |
| coef_re[k] = -256; |
| coef_im[k] = 0; |
| } else if (pha < 768) { |
| coef_re[k] = -sine[256 - (pha & 0xff)]; |
| coef_im[k] = -sine[pha & 0xff]; |
| } else if (pha == 768) { |
| coef_re[k] = 0; |
| coef_im[k] = -256; |
| } else { |
| coef_re[k] = sine[pha & 0xff]; |
| coef_im[k] = -sine[256 - (pha & 0xff)]; |
| } |
| |
| coef_re[k] *= notch[k]; |
| coef_re[k] += (1 << 14); |
| if (coef_re[k] >= (1 << 24)) |
| coef_re[k] = (1 << 24) - 1; |
| coef_re[k] /= (1 << 15); |
| |
| coef_im[k] *= notch[k]; |
| coef_im[k] += (1 << 14); |
| if (coef_im[k] >= (1 << 24)) |
| coef_im[k] = (1 << 24) - 1; |
| coef_im[k] /= (1 << 15); |
| |
| dprintk("PALF COEF: %d re: %d im: %d\n", k, coef_re[k], coef_im[k]); |
| |
| dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); |
| dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); |
| dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); |
| } |
| dib7000p_write_word(state, 143, 0); |
| } |
| |
| static int dib7000p_tune(struct dvb_frontend *demod) |
| { |
| struct dtv_frontend_properties *ch = &demod->dtv_property_cache; |
| struct dib7000p_state *state = demod->demodulator_priv; |
| u16 tmp = 0; |
| |
| if (ch != NULL) |
| dib7000p_set_channel(state, ch, 0); |
| else |
| return -EINVAL; |
| |
| // restart demod |
| dib7000p_write_word(state, 770, 0x4000); |
| dib7000p_write_word(state, 770, 0x0000); |
| msleep(45); |
| |
| /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ |
| tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); |
| if (state->sfn_workaround_active) { |
| dprintk("SFN workaround is active\n"); |
| tmp |= (1 << 9); |
| dib7000p_write_word(state, 166, 0x4000); |
| } else { |
| dib7000p_write_word(state, 166, 0x0000); |
| } |
| dib7000p_write_word(state, 29, tmp); |
| |
| // never achieved a lock with that bandwidth so far - wait for osc-freq to update |
| if (state->timf == 0) |
| msleep(200); |
| |
| /* offset loop parameters */ |
| |
| /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ |
| tmp = (6 << 8) | 0x80; |
| switch (ch->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| tmp |= (2 << 12); |
| break; |
| case TRANSMISSION_MODE_4K: |
| tmp |= (3 << 12); |
| break; |
| default: |
| case TRANSMISSION_MODE_8K: |
| tmp |= (4 << 12); |
| break; |
| } |
| dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ |
| |
| /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ |
| tmp = (0 << 4); |
| switch (ch->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| tmp |= 0x6; |
| break; |
| case TRANSMISSION_MODE_4K: |
| tmp |= 0x7; |
| break; |
| default: |
| case TRANSMISSION_MODE_8K: |
| tmp |= 0x8; |
| break; |
| } |
| dib7000p_write_word(state, 32, tmp); |
| |
| /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ |
| tmp = (0 << 4); |
| switch (ch->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| tmp |= 0x6; |
| break; |
| case TRANSMISSION_MODE_4K: |
| tmp |= 0x7; |
| break; |
| default: |
| case TRANSMISSION_MODE_8K: |
| tmp |= 0x8; |
| break; |
| } |
| dib7000p_write_word(state, 33, tmp); |
| |
| tmp = dib7000p_read_word(state, 509); |
| if (!((tmp >> 6) & 0x1)) { |
| /* restart the fec */ |
| tmp = dib7000p_read_word(state, 771); |
| dib7000p_write_word(state, 771, tmp | (1 << 1)); |
| dib7000p_write_word(state, 771, tmp); |
| msleep(40); |
| tmp = dib7000p_read_word(state, 509); |
| } |
| // we achieved a lock - it's time to update the osc freq |
| if ((tmp >> 6) & 0x1) { |
| dib7000p_update_timf(state); |
| /* P_timf_alpha += 2 */ |
| tmp = dib7000p_read_word(state, 26); |
| dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12)); |
| } |
| |
| if (state->cfg.spur_protect) |
| dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); |
| |
| dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz)); |
| |
| dib7000p_reset_stats(demod); |
| |
| return 0; |
| } |
| |
| static int dib7000p_wakeup(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); |
| dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); |
| if (state->version == SOC7090) |
| dib7000p_sad_calib(state); |
| return 0; |
| } |
| |
| static int dib7000p_sleep(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| if (state->version == SOC7090) |
| return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); |
| return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); |
| } |
| |
| static int dib7000p_identify(struct dib7000p_state *st) |
| { |
| u16 value; |
| dprintk("checking demod on I2C address: %d (%x)\n", st->i2c_addr, st->i2c_addr); |
| |
| if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { |
| dprintk("wrong Vendor ID (read=0x%x)\n", value); |
| return -EREMOTEIO; |
| } |
| |
| if ((value = dib7000p_read_word(st, 769)) != 0x4000) { |
| dprintk("wrong Device ID (%x)\n", value); |
| return -EREMOTEIO; |
| } |
| |
| return 0; |
| } |
| |
| static int dib7000p_get_frontend(struct dvb_frontend *fe, |
| struct dtv_frontend_properties *fep) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 tps = dib7000p_read_word(state, 463); |
| |
| fep->inversion = INVERSION_AUTO; |
| |
| fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth); |
| |
| switch ((tps >> 8) & 0x3) { |
| case 0: |
| fep->transmission_mode = TRANSMISSION_MODE_2K; |
| break; |
| case 1: |
| fep->transmission_mode = TRANSMISSION_MODE_8K; |
| break; |
| /* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */ |
| } |
| |
| switch (tps & 0x3) { |
| case 0: |
| fep->guard_interval = GUARD_INTERVAL_1_32; |
| break; |
| case 1: |
| fep->guard_interval = GUARD_INTERVAL_1_16; |
| break; |
| case 2: |
| fep->guard_interval = GUARD_INTERVAL_1_8; |
| break; |
| case 3: |
| fep->guard_interval = GUARD_INTERVAL_1_4; |
| break; |
| } |
| |
| switch ((tps >> 14) & 0x3) { |
| case 0: |
| fep->modulation = QPSK; |
| break; |
| case 1: |
| fep->modulation = QAM_16; |
| break; |
| case 2: |
| default: |
| fep->modulation = QAM_64; |
| break; |
| } |
| |
| /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ |
| /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ |
| |
| fep->hierarchy = HIERARCHY_NONE; |
| switch ((tps >> 5) & 0x7) { |
| case 1: |
| fep->code_rate_HP = FEC_1_2; |
| break; |
| case 2: |
| fep->code_rate_HP = FEC_2_3; |
| break; |
| case 3: |
| fep->code_rate_HP = FEC_3_4; |
| break; |
| case 5: |
| fep->code_rate_HP = FEC_5_6; |
| break; |
| case 7: |
| default: |
| fep->code_rate_HP = FEC_7_8; |
| break; |
| |
| } |
| |
| switch ((tps >> 2) & 0x7) { |
| case 1: |
| fep->code_rate_LP = FEC_1_2; |
| break; |
| case 2: |
| fep->code_rate_LP = FEC_2_3; |
| break; |
| case 3: |
| fep->code_rate_LP = FEC_3_4; |
| break; |
| case 5: |
| fep->code_rate_LP = FEC_5_6; |
| break; |
| case 7: |
| default: |
| fep->code_rate_LP = FEC_7_8; |
| break; |
| } |
| |
| /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ |
| |
| return 0; |
| } |
| |
| static int dib7000p_set_frontend(struct dvb_frontend *fe) |
| { |
| struct dtv_frontend_properties *fep = &fe->dtv_property_cache; |
| struct dib7000p_state *state = fe->demodulator_priv; |
| int time, ret; |
| |
| if (state->version == SOC7090) |
| dib7090_set_diversity_in(fe, 0); |
| else |
| dib7000p_set_output_mode(state, OUTMODE_HIGH_Z); |
| |
| /* maybe the parameter has been changed */ |
| state->sfn_workaround_active = buggy_sfn_workaround; |
| |
| if (fe->ops.tuner_ops.set_params) |
| fe->ops.tuner_ops.set_params(fe); |
| |
| /* start up the AGC */ |
| state->agc_state = 0; |
| do { |
| time = dib7000p_agc_startup(fe); |
| if (time != -1) |
| msleep(time); |
| } while (time != -1); |
| |
| if (fep->transmission_mode == TRANSMISSION_MODE_AUTO || |
| fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) { |
| int i = 800, found; |
| |
| dib7000p_autosearch_start(fe); |
| do { |
| msleep(1); |
| found = dib7000p_autosearch_is_irq(fe); |
| } while (found == 0 && i--); |
| |
| dprintk("autosearch returns: %d\n", found); |
| if (found == 0 || found == 1) |
| return 0; |
| |
| dib7000p_get_frontend(fe, fep); |
| } |
| |
| ret = dib7000p_tune(fe); |
| |
| /* make this a config parameter */ |
| if (state->version == SOC7090) { |
| dib7090_set_output_mode(fe, state->cfg.output_mode); |
| if (state->cfg.enMpegOutput == 0) { |
| dib7090_setDibTxMux(state, MPEG_ON_DIBTX); |
| dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| } |
| } else |
| dib7000p_set_output_mode(state, state->cfg.output_mode); |
| |
| return ret; |
| } |
| |
| static int dib7000p_get_stats(struct dvb_frontend *fe, enum fe_status stat); |
| |
| static int dib7000p_read_status(struct dvb_frontend *fe, enum fe_status *stat) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 lock = dib7000p_read_word(state, 509); |
| |
| *stat = 0; |
| |
| if (lock & 0x8000) |
| *stat |= FE_HAS_SIGNAL; |
| if (lock & 0x3000) |
| *stat |= FE_HAS_CARRIER; |
| if (lock & 0x0100) |
| *stat |= FE_HAS_VITERBI; |
| if (lock & 0x0010) |
| *stat |= FE_HAS_SYNC; |
| if ((lock & 0x0038) == 0x38) |
| *stat |= FE_HAS_LOCK; |
| |
| dib7000p_get_stats(fe, *stat); |
| |
| return 0; |
| } |
| |
| static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); |
| return 0; |
| } |
| |
| static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| *unc = dib7000p_read_word(state, 506); |
| return 0; |
| } |
| |
| static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 val = dib7000p_read_word(state, 394); |
| *strength = 65535 - val; |
| return 0; |
| } |
| |
| static u32 dib7000p_get_snr(struct dvb_frontend *fe) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 val; |
| s32 signal_mant, signal_exp, noise_mant, noise_exp; |
| u32 result = 0; |
| |
| val = dib7000p_read_word(state, 479); |
| noise_mant = (val >> 4) & 0xff; |
| noise_exp = ((val & 0xf) << 2); |
| val = dib7000p_read_word(state, 480); |
| noise_exp += ((val >> 14) & 0x3); |
| if ((noise_exp & 0x20) != 0) |
| noise_exp -= 0x40; |
| |
| signal_mant = (val >> 6) & 0xFF; |
| signal_exp = (val & 0x3F); |
| if ((signal_exp & 0x20) != 0) |
| signal_exp -= 0x40; |
| |
| if (signal_mant != 0) |
| result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant); |
| else |
| result = intlog10(2) * 10 * signal_exp - 100; |
| |
| if (noise_mant != 0) |
| result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant); |
| else |
| result -= intlog10(2) * 10 * noise_exp - 100; |
| |
| return result; |
| } |
| |
| static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr) |
| { |
| u32 result; |
| |
| result = dib7000p_get_snr(fe); |
| |
| *snr = result / ((1 << 24) / 10); |
| return 0; |
| } |
| |
| static void dib7000p_reset_stats(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| struct dtv_frontend_properties *c = &demod->dtv_property_cache; |
| u32 ucb; |
| |
| memset(&c->strength, 0, sizeof(c->strength)); |
| memset(&c->cnr, 0, sizeof(c->cnr)); |
| memset(&c->post_bit_error, 0, sizeof(c->post_bit_error)); |
| memset(&c->post_bit_count, 0, sizeof(c->post_bit_count)); |
| memset(&c->block_error, 0, sizeof(c->block_error)); |
| |
| c->strength.len = 1; |
| c->cnr.len = 1; |
| c->block_error.len = 1; |
| c->block_count.len = 1; |
| c->post_bit_error.len = 1; |
| c->post_bit_count.len = 1; |
| |
| c->strength.stat[0].scale = FE_SCALE_DECIBEL; |
| c->strength.stat[0].uvalue = 0; |
| |
| c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| |
| dib7000p_read_unc_blocks(demod, &ucb); |
| |
| state->old_ucb = ucb; |
| state->ber_jiffies_stats = 0; |
| state->per_jiffies_stats = 0; |
| } |
| |
| struct linear_segments { |
| unsigned x; |
| signed y; |
| }; |
| |
| /* |
| * Table to estimate signal strength in dBm. |
| * This table should be empirically determinated by measuring the signal |
| * strength generated by a RF generator directly connected into |
| * a device. |
| * This table was determinated by measuring the signal strength generated |
| * by a DTA-2111 RF generator directly connected into a dib7000p device |
| * (a Hauppauge Nova-TD stick), using a good quality 3 meters length |
| * RC6 cable and good RC6 connectors, connected directly to antenna 1. |
| * As the minimum output power of DTA-2111 is -31dBm, a 16 dBm attenuator |
| * were used, for the lower power values. |
| * The real value can actually be on other devices, or even at the |
| * second antena input, depending on several factors, like if LNA |
| * is enabled or not, if diversity is enabled, type of connectors, etc. |
| * Yet, it is better to use this measure in dB than a random non-linear |
| * percentage value, especially for antenna adjustments. |
| * On my tests, the precision of the measure using this table is about |
| * 0.5 dB, with sounds reasonable enough to adjust antennas. |
| */ |
| #define DB_OFFSET 131000 |
| |
| static struct linear_segments strength_to_db_table[] = { |
| { 63630, DB_OFFSET - 20500}, |
| { 62273, DB_OFFSET - 21000}, |
| { 60162, DB_OFFSET - 22000}, |
| { 58730, DB_OFFSET - 23000}, |
| { 58294, DB_OFFSET - 24000}, |
| { 57778, DB_OFFSET - 25000}, |
| { 57320, DB_OFFSET - 26000}, |
| { 56779, DB_OFFSET - 27000}, |
| { 56293, DB_OFFSET - 28000}, |
| { 55724, DB_OFFSET - 29000}, |
| { 55145, DB_OFFSET - 30000}, |
| { 54680, DB_OFFSET - 31000}, |
| { 54293, DB_OFFSET - 32000}, |
| { 53813, DB_OFFSET - 33000}, |
| { 53427, DB_OFFSET - 34000}, |
| { 52981, DB_OFFSET - 35000}, |
| |
| { 52636, DB_OFFSET - 36000}, |
| { 52014, DB_OFFSET - 37000}, |
| { 51674, DB_OFFSET - 38000}, |
| { 50692, DB_OFFSET - 39000}, |
| { 49824, DB_OFFSET - 40000}, |
| { 49052, DB_OFFSET - 41000}, |
| { 48436, DB_OFFSET - 42000}, |
| { 47836, DB_OFFSET - 43000}, |
| { 47368, DB_OFFSET - 44000}, |
| { 46468, DB_OFFSET - 45000}, |
| { 45597, DB_OFFSET - 46000}, |
| { 44586, DB_OFFSET - 47000}, |
| { 43667, DB_OFFSET - 48000}, |
| { 42673, DB_OFFSET - 49000}, |
| { 41816, DB_OFFSET - 50000}, |
| { 40876, DB_OFFSET - 51000}, |
| { 0, 0}, |
| }; |
| |
| static u32 interpolate_value(u32 value, struct linear_segments *segments, |
| unsigned len) |
| { |
| u64 tmp64; |
| u32 dx; |
| s32 dy; |
| int i, ret; |
| |
| if (value >= segments[0].x) |
| return segments[0].y; |
| if (value < segments[len-1].x) |
| return segments[len-1].y; |
| |
| for (i = 1; i < len - 1; i++) { |
| /* If value is identical, no need to interpolate */ |
| if (value == segments[i].x) |
| return segments[i].y; |
| if (value > segments[i].x) |
| break; |
| } |
| |
| /* Linear interpolation between the two (x,y) points */ |
| dy = segments[i - 1].y - segments[i].y; |
| dx = segments[i - 1].x - segments[i].x; |
| |
| tmp64 = value - segments[i].x; |
| tmp64 *= dy; |
| do_div(tmp64, dx); |
| ret = segments[i].y + tmp64; |
| |
| return ret; |
| } |
| |
| /* FIXME: may require changes - this one was borrowed from dib8000 */ |
| static u32 dib7000p_get_time_us(struct dvb_frontend *demod) |
| { |
| struct dtv_frontend_properties *c = &demod->dtv_property_cache; |
| u64 time_us, tmp64; |
| u32 tmp, denom; |
| int guard, rate_num, rate_denum = 1, bits_per_symbol; |
| int interleaving = 0, fft_div; |
| |
| switch (c->guard_interval) { |
| case GUARD_INTERVAL_1_4: |
| guard = 4; |
| break; |
| case GUARD_INTERVAL_1_8: |
| guard = 8; |
| break; |
| case GUARD_INTERVAL_1_16: |
| guard = 16; |
| break; |
| default: |
| case GUARD_INTERVAL_1_32: |
| guard = 32; |
| break; |
| } |
| |
| switch (c->transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| fft_div = 4; |
| break; |
| case TRANSMISSION_MODE_4K: |
| fft_div = 2; |
| break; |
| default: |
| case TRANSMISSION_MODE_8K: |
| fft_div = 1; |
| break; |
| } |
| |
| switch (c->modulation) { |
| case DQPSK: |
| case QPSK: |
| bits_per_symbol = 2; |
| break; |
| case QAM_16: |
| bits_per_symbol = 4; |
| break; |
| default: |
| case QAM_64: |
| bits_per_symbol = 6; |
| break; |
| } |
| |
| switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) { |
| case FEC_1_2: |
| rate_num = 1; |
| rate_denum = 2; |
| break; |
| case FEC_2_3: |
| rate_num = 2; |
| rate_denum = 3; |
| break; |
| case FEC_3_4: |
| rate_num = 3; |
| rate_denum = 4; |
| break; |
| case FEC_5_6: |
| rate_num = 5; |
| rate_denum = 6; |
| break; |
| default: |
| case FEC_7_8: |
| rate_num = 7; |
| rate_denum = 8; |
| break; |
| } |
| |
| denom = bits_per_symbol * rate_num * fft_div * 384; |
| |
| /* |
| * FIXME: check if the math makes sense. If so, fill the |
| * interleaving var. |
| */ |
| |
| /* If calculus gets wrong, wait for 1s for the next stats */ |
| if (!denom) |
| return 0; |
| |
| /* Estimate the period for the total bit rate */ |
| time_us = rate_denum * (1008 * 1562500L); |
| tmp64 = time_us; |
| do_div(tmp64, guard); |
| time_us = time_us + tmp64; |
| time_us += denom / 2; |
| do_div(time_us, denom); |
| |
| tmp = 1008 * 96 * interleaving; |
| time_us += tmp + tmp / guard; |
| |
| return time_us; |
| } |
| |
| static int dib7000p_get_stats(struct dvb_frontend *demod, enum fe_status stat) |
| { |
| struct dib7000p_state *state = demod->demodulator_priv; |
| struct dtv_frontend_properties *c = &demod->dtv_property_cache; |
| int show_per_stats = 0; |
| u32 time_us = 0, val, snr; |
| u64 blocks, ucb; |
| s32 db; |
| u16 strength; |
| |
| /* Get Signal strength */ |
| dib7000p_read_signal_strength(demod, &strength); |
| val = strength; |
| db = interpolate_value(val, |
| strength_to_db_table, |
| ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET; |
| c->strength.stat[0].svalue = db; |
| |
| /* UCB/BER/CNR measures require lock */ |
| if (!(stat & FE_HAS_LOCK)) { |
| c->cnr.len = 1; |
| c->block_count.len = 1; |
| c->block_error.len = 1; |
| c->post_bit_error.len = 1; |
| c->post_bit_count.len = 1; |
| c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; |
| return 0; |
| } |
| |
| /* Check if time for stats was elapsed */ |
| if (time_after(jiffies, state->per_jiffies_stats)) { |
| state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000); |
| |
| /* Get SNR */ |
| snr = dib7000p_get_snr(demod); |
| if (snr) |
| snr = (1000L * snr) >> 24; |
| else |
| snr = 0; |
| c->cnr.stat[0].svalue = snr; |
| c->cnr.stat[0].scale = FE_SCALE_DECIBEL; |
| |
| /* Get UCB measures */ |
| dib7000p_read_unc_blocks(demod, &val); |
| ucb = val - state->old_ucb; |
| if (val < state->old_ucb) |
| ucb += 0x100000000LL; |
| |
| c->block_error.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_error.stat[0].uvalue = ucb; |
| |
| /* Estimate the number of packets based on bitrate */ |
| if (!time_us) |
| time_us = dib7000p_get_time_us(demod); |
| |
| if (time_us) { |
| blocks = 1250000ULL * 1000000ULL; |
| do_div(blocks, time_us * 8 * 204); |
| c->block_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_count.stat[0].uvalue += blocks; |
| } |
| |
| show_per_stats = 1; |
| } |
| |
| /* Get post-BER measures */ |
| if (time_after(jiffies, state->ber_jiffies_stats)) { |
| time_us = dib7000p_get_time_us(demod); |
| state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000); |
| |
| dprintk("Next all layers stats available in %u us.\n", time_us); |
| |
| dib7000p_read_ber(demod, &val); |
| c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; |
| c->post_bit_error.stat[0].uvalue += val; |
| |
| c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->post_bit_count.stat[0].uvalue += 100000000; |
| } |
| |
| /* Get PER measures */ |
| if (show_per_stats) { |
| dib7000p_read_unc_blocks(demod, &val); |
| |
| c->block_error.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_error.stat[0].uvalue += val; |
| |
| time_us = dib7000p_get_time_us(demod); |
| if (time_us) { |
| blocks = 1250000ULL * 1000000ULL; |
| do_div(blocks, time_us * 8 * 204); |
| c->block_count.stat[0].scale = FE_SCALE_COUNTER; |
| c->block_count.stat[0].uvalue += blocks; |
| } |
| } |
| return 0; |
| } |
| |
| static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) |
| { |
| tune->min_delay_ms = 1000; |
| return 0; |
| } |
| |
| static void dib7000p_release(struct dvb_frontend *demod) |
| { |
| struct dib7000p_state *st = demod->demodulator_priv; |
| dibx000_exit_i2c_master(&st->i2c_master); |
| i2c_del_adapter(&st->dib7090_tuner_adap); |
| kfree(st); |
| } |
| |
| static int dib7000pc_detection(struct i2c_adapter *i2c_adap) |
| { |
| u8 *tx, *rx; |
| struct i2c_msg msg[2] = { |
| {.addr = 18 >> 1, .flags = 0, .len = 2}, |
| {.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2}, |
| }; |
| int ret = 0; |
| |
| tx = kzalloc(2, GFP_KERNEL); |
| if (!tx) |
| return -ENOMEM; |
| rx = kzalloc(2, GFP_KERNEL); |
| if (!rx) { |
| ret = -ENOMEM; |
| goto rx_memory_error; |
| } |
| |
| msg[0].buf = tx; |
| msg[1].buf = rx; |
| |
| tx[0] = 0x03; |
| tx[1] = 0x00; |
| |
| if (i2c_transfer(i2c_adap, msg, 2) == 2) |
| if (rx[0] == 0x01 && rx[1] == 0xb3) { |
| dprintk("-D- DiB7000PC detected\n"); |
| ret = 1; |
| goto out; |
| } |
| |
| msg[0].addr = msg[1].addr = 0x40; |
| |
| if (i2c_transfer(i2c_adap, msg, 2) == 2) |
| if (rx[0] == 0x01 && rx[1] == 0xb3) { |
| dprintk("-D- DiB7000PC detected\n"); |
| ret = 1; |
| goto out; |
| } |
| |
| dprintk("-D- DiB7000PC not detected\n"); |
| |
| out: |
| kfree(rx); |
| rx_memory_error: |
| kfree(tx); |
| return ret; |
| } |
| |
| static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) |
| { |
| struct dib7000p_state *st = demod->demodulator_priv; |
| return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); |
| } |
| |
| static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 val = dib7000p_read_word(state, 235) & 0xffef; |
| val |= (onoff & 0x1) << 4; |
| dprintk("PID filter enabled %d\n", onoff); |
| return dib7000p_write_word(state, 235, val); |
| } |
| |
| static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| dprintk("PID filter: index %x, PID %d, OnOff %d\n", id, pid, onoff); |
| return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0); |
| } |
| |
| static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) |
| { |
| struct dib7000p_state *dpst; |
| int k = 0; |
| u8 new_addr = 0; |
| |
| dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); |
| if (!dpst) |
| return -ENOMEM; |
| |
| dpst->i2c_adap = i2c; |
| mutex_init(&dpst->i2c_buffer_lock); |
| |
| for (k = no_of_demods - 1; k >= 0; k--) { |
| dpst->cfg = cfg[k]; |
| |
| /* designated i2c address */ |
| if (cfg[k].default_i2c_addr != 0) |
| new_addr = cfg[k].default_i2c_addr + (k << 1); |
| else |
| new_addr = (0x40 + k) << 1; |
| dpst->i2c_addr = new_addr; |
| dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ |
| if (dib7000p_identify(dpst) != 0) { |
| dpst->i2c_addr = default_addr; |
| dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ |
| if (dib7000p_identify(dpst) != 0) { |
| dprintk("DiB7000P #%d: not identified\n", k); |
| kfree(dpst); |
| return -EIO; |
| } |
| } |
| |
| /* start diversity to pull_down div_str - just for i2c-enumeration */ |
| dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY); |
| |
| /* set new i2c address and force divstart */ |
| dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2); |
| |
| dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); |
| } |
| |
| for (k = 0; k < no_of_demods; k++) { |
| dpst->cfg = cfg[k]; |
| if (cfg[k].default_i2c_addr != 0) |
| dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1; |
| else |
| dpst->i2c_addr = (0x40 + k) << 1; |
| |
| // unforce divstr |
| dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2); |
| |
| /* deactivate div - it was just for i2c-enumeration */ |
| dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z); |
| } |
| |
| kfree(dpst); |
| return 0; |
| } |
| |
| static const s32 lut_1000ln_mant[] = { |
| 6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600 |
| }; |
| |
| static s32 dib7000p_get_adc_power(struct dvb_frontend *fe) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u32 tmp_val = 0, exp = 0, mant = 0; |
| s32 pow_i; |
| u16 buf[2]; |
| u8 ix = 0; |
| |
| buf[0] = dib7000p_read_word(state, 0x184); |
| buf[1] = dib7000p_read_word(state, 0x185); |
| pow_i = (buf[0] << 16) | buf[1]; |
| dprintk("raw pow_i = %d\n", pow_i); |
| |
| tmp_val = pow_i; |
| while (tmp_val >>= 1) |
| exp++; |
| |
| mant = (pow_i * 1000 / (1 << exp)); |
| dprintk(" mant = %d exp = %d\n", mant / 1000, exp); |
| |
| ix = (u8) ((mant - 1000) / 100); /* index of the LUT */ |
| dprintk(" ix = %d\n", ix); |
| |
| pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908); |
| pow_i = (pow_i << 8) / 1000; |
| dprintk(" pow_i = %d\n", pow_i); |
| |
| return pow_i; |
| } |
| |
| static int map_addr_to_serpar_number(struct i2c_msg *msg) |
| { |
| if ((msg->buf[0] <= 15)) |
| msg->buf[0] -= 1; |
| else if (msg->buf[0] == 17) |
| msg->buf[0] = 15; |
| else if (msg->buf[0] == 16) |
| msg->buf[0] = 17; |
| else if (msg->buf[0] == 19) |
| msg->buf[0] = 16; |
| else if (msg->buf[0] >= 21 && msg->buf[0] <= 25) |
| msg->buf[0] -= 3; |
| else if (msg->buf[0] == 28) |
| msg->buf[0] = 23; |
| else |
| return -EINVAL; |
| return 0; |
| } |
| |
| static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) |
| { |
| struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); |
| u8 n_overflow = 1; |
| u16 i = 1000; |
| u16 serpar_num = msg[0].buf[0]; |
| |
| while (n_overflow == 1 && i) { |
| n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; |
| i--; |
| if (i == 0) |
| dprintk("Tuner ITF: write busy (overflow)\n"); |
| } |
| dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f)); |
| dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]); |
| |
| return num; |
| } |
| |
| static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) |
| { |
| struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); |
| u8 n_overflow = 1, n_empty = 1; |
| u16 i = 1000; |
| u16 serpar_num = msg[0].buf[0]; |
| u16 read_word; |
| |
| while (n_overflow == 1 && i) { |
| n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1; |
| i--; |
| if (i == 0) |
| dprintk("TunerITF: read busy (overflow)\n"); |
| } |
| dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f)); |
| |
| i = 1000; |
| while (n_empty == 1 && i) { |
| n_empty = dib7000p_read_word(state, 1984) & 0x1; |
| i--; |
| if (i == 0) |
| dprintk("TunerITF: read busy (empty)\n"); |
| } |
| read_word = dib7000p_read_word(state, 1987); |
| msg[1].buf[0] = (read_word >> 8) & 0xff; |
| msg[1].buf[1] = (read_word) & 0xff; |
| |
| return num; |
| } |
| |
| static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) |
| { |
| if (map_addr_to_serpar_number(&msg[0]) == 0) { /* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */ |
| if (num == 1) { /* write */ |
| return w7090p_tuner_write_serpar(i2c_adap, msg, 1); |
| } else { /* read */ |
| return w7090p_tuner_read_serpar(i2c_adap, msg, 2); |
| } |
| } |
| return num; |
| } |
| |
| static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, |
| struct i2c_msg msg[], int num, u16 apb_address) |
| { |
| struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); |
| u16 word; |
| |
| if (num == 1) { /* write */ |
| dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2]))); |
| } else { |
| word = dib7000p_read_word(state, apb_address); |
| msg[1].buf[0] = (word >> 8) & 0xff; |
| msg[1].buf[1] = (word) & 0xff; |
| } |
| |
| return num; |
| } |
| |
| static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) |
| { |
| struct dib7000p_state *state = i2c_get_adapdata(i2c_adap); |
| |
| u16 apb_address = 0, word; |
| int i = 0; |
| switch (msg[0].buf[0]) { |
| case 0x12: |
| apb_address = 1920; |
| break; |
| case 0x14: |
| apb_address = 1921; |
| break; |
| case 0x24: |
| apb_address = 1922; |
| break; |
| case 0x1a: |
| apb_address = 1923; |
| break; |
| case 0x22: |
| apb_address = 1924; |
| break; |
| case 0x33: |
| apb_address = 1926; |
| break; |
| case 0x34: |
| apb_address = 1927; |
| break; |
| case 0x35: |
| apb_address = 1928; |
| break; |
| case 0x36: |
| apb_address = 1929; |
| break; |
| case 0x37: |
| apb_address = 1930; |
| break; |
| case 0x38: |
| apb_address = 1931; |
| break; |
| case 0x39: |
| apb_address = 1932; |
| break; |
| case 0x2a: |
| apb_address = 1935; |
| break; |
| case 0x2b: |
| apb_address = 1936; |
| break; |
| case 0x2c: |
| apb_address = 1937; |
| break; |
| case 0x2d: |
| apb_address = 1938; |
| break; |
| case 0x2e: |
| apb_address = 1939; |
| break; |
| case 0x2f: |
| apb_address = 1940; |
| break; |
| case 0x30: |
| apb_address = 1941; |
| break; |
| case 0x31: |
| apb_address = 1942; |
| break; |
| case 0x32: |
| apb_address = 1943; |
| break; |
| case 0x3e: |
| apb_address = 1944; |
| break; |
| case 0x3f: |
| apb_address = 1945; |
| break; |
| case 0x40: |
| apb_address = 1948; |
| break; |
| case 0x25: |
| apb_address = 914; |
| break; |
| case 0x26: |
| apb_address = 915; |
| break; |
| case 0x27: |
| apb_address = 917; |
| break; |
| case 0x28: |
| apb_address = 916; |
| break; |
| case 0x1d: |
| i = ((dib7000p_read_word(state, 72) >> 12) & 0x3); |
| word = dib7000p_read_word(state, 384 + i); |
| msg[1].buf[0] = (word >> 8) & 0xff; |
| msg[1].buf[1] = (word) & 0xff; |
| return num; |
| case 0x1f: |
| if (num == 1) { /* write */ |
| word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]); |
| word &= 0x3; |
| word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); |
| dib7000p_write_word(state, 72, word); /* Set the proper input */ |
| return num; |
| } |
| } |
| |
| if (apb_address != 0) /* R/W access via APB */ |
| return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address); |
| else /* R/W access via SERPAR */ |
| return w7090p_tuner_rw_serpar(i2c_adap, msg, num); |
| |
| return 0; |
| } |
| |
| static u32 dib7000p_i2c_func(struct i2c_adapter *adapter) |
| { |
| return I2C_FUNC_I2C; |
| } |
| |
| static const struct i2c_algorithm dib7090_tuner_xfer_algo = { |
| .master_xfer = dib7090_tuner_xfer, |
| .functionality = dib7000p_i2c_func, |
| }; |
| |
| static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe) |
| { |
| struct dib7000p_state *st = fe->demodulator_priv; |
| return &st->dib7090_tuner_adap; |
| } |
| |
| static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive) |
| { |
| u16 reg; |
| |
| /* drive host bus 2, 3, 4 */ |
| reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); |
| reg |= (drive << 12) | (drive << 6) | drive; |
| dib7000p_write_word(state, 1798, reg); |
| |
| /* drive host bus 5,6 */ |
| reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8)); |
| reg |= (drive << 8) | (drive << 2); |
| dib7000p_write_word(state, 1799, reg); |
| |
| /* drive host bus 7, 8, 9 */ |
| reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); |
| reg |= (drive << 12) | (drive << 6) | drive; |
| dib7000p_write_word(state, 1800, reg); |
| |
| /* drive host bus 10, 11 */ |
| reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8)); |
| reg |= (drive << 8) | (drive << 2); |
| dib7000p_write_word(state, 1801, reg); |
| |
| /* drive host bus 12, 13, 14 */ |
| reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12)); |
| reg |= (drive << 12) | (drive << 6) | drive; |
| dib7000p_write_word(state, 1802, reg); |
| |
| return 0; |
| } |
| |
| static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize) |
| { |
| u32 quantif = 3; |
| u32 nom = (insertExtSynchro * P_Kin + syncSize); |
| u32 denom = P_Kout; |
| u32 syncFreq = ((nom << quantif) / denom); |
| |
| if ((syncFreq & ((1 << quantif) - 1)) != 0) |
| syncFreq = (syncFreq >> quantif) + 1; |
| else |
| syncFreq = (syncFreq >> quantif); |
| |
| if (syncFreq != 0) |
| syncFreq = syncFreq - 1; |
| |
| return syncFreq; |
| } |
| |
| static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize) |
| { |
| dprintk("Configure DibStream Tx\n"); |
| |
| dib7000p_write_word(state, 1615, 1); |
| dib7000p_write_word(state, 1603, P_Kin); |
| dib7000p_write_word(state, 1605, P_Kout); |
| dib7000p_write_word(state, 1606, insertExtSynchro); |
| dib7000p_write_word(state, 1608, synchroMode); |
| dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff); |
| dib7000p_write_word(state, 1610, syncWord & 0xffff); |
| dib7000p_write_word(state, 1612, syncSize); |
| dib7000p_write_word(state, 1615, 0); |
| |
| return 0; |
| } |
| |
| static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize, |
| u32 dataOutRate) |
| { |
| u32 syncFreq; |
| |
| dprintk("Configure DibStream Rx\n"); |
| if ((P_Kin != 0) && (P_Kout != 0)) { |
| syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize); |
| dib7000p_write_word(state, 1542, syncFreq); |
| } |
| dib7000p_write_word(state, 1554, 1); |
| dib7000p_write_word(state, 1536, P_Kin); |
| dib7000p_write_word(state, 1537, P_Kout); |
| dib7000p_write_word(state, 1539, synchroMode); |
| dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff); |
| dib7000p_write_word(state, 1541, syncWord & 0xffff); |
| dib7000p_write_word(state, 1543, syncSize); |
| dib7000p_write_word(state, 1544, dataOutRate); |
| dib7000p_write_word(state, 1554, 0); |
| |
| return 0; |
| } |
| |
| static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff) |
| { |
| u16 reg_1287 = dib7000p_read_word(state, 1287); |
| |
| switch (onoff) { |
| case 1: |
| reg_1287 &= ~(1<<7); |
| break; |
| case 0: |
| reg_1287 |= (1<<7); |
| break; |
| } |
| |
| dib7000p_write_word(state, 1287, reg_1287); |
| } |
| |
| static void dib7090_configMpegMux(struct dib7000p_state *state, |
| u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2) |
| { |
| dprintk("Enable Mpeg mux\n"); |
| |
| dib7090_enMpegMux(state, 0); |
| |
| /* If the input mode is MPEG do not divide the serial clock */ |
| if ((enSerialMode == 1) && (state->input_mode_mpeg == 1)) |
| enSerialClkDiv2 = 0; |
| |
| dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2) |
| | ((enSerialMode & 0x1) << 1) |
| | (enSerialClkDiv2 & 0x1)); |
| |
| dib7090_enMpegMux(state, 1); |
| } |
| |
| static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode) |
| { |
| u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7); |
| |
| switch (mode) { |
| case MPEG_ON_DIBTX: |
| dprintk("SET MPEG ON DIBSTREAM TX\n"); |
| dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0); |
| reg_1288 |= (1<<9); |
| break; |
| case DIV_ON_DIBTX: |
| dprintk("SET DIV_OUT ON DIBSTREAM TX\n"); |
| dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0); |
| reg_1288 |= (1<<8); |
| break; |
| case ADC_ON_DIBTX: |
| dprintk("SET ADC_OUT ON DIBSTREAM TX\n"); |
| dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0); |
| reg_1288 |= (1<<7); |
| break; |
| default: |
| break; |
| } |
| dib7000p_write_word(state, 1288, reg_1288); |
| } |
| |
| static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode) |
| { |
| u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4); |
| |
| switch (mode) { |
| case DEMOUT_ON_HOSTBUS: |
| dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n"); |
| dib7090_enMpegMux(state, 0); |
| reg_1288 |= (1<<6); |
| break; |
| case DIBTX_ON_HOSTBUS: |
| dprintk("SET DIBSTREAM TX ON HOST BUS\n"); |
| dib7090_enMpegMux(state, 0); |
| reg_1288 |= (1<<5); |
| break; |
| case MPEG_ON_HOSTBUS: |
| dprintk("SET MPEG MUX ON HOST BUS\n"); |
| reg_1288 |= (1<<4); |
| break; |
| default: |
| break; |
| } |
| dib7000p_write_word(state, 1288, reg_1288); |
| } |
| |
| static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 reg_1287; |
| |
| switch (onoff) { |
| case 0: /* only use the internal way - not the diversity input */ |
| dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", __func__); |
| dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); |
| |
| /* Do not divide the serial clock of MPEG MUX */ |
| /* in SERIAL MODE in case input mode MPEG is used */ |
| reg_1287 = dib7000p_read_word(state, 1287); |
| /* enSerialClkDiv2 == 1 ? */ |
| if ((reg_1287 & 0x1) == 1) { |
| /* force enSerialClkDiv2 = 0 */ |
| reg_1287 &= ~0x1; |
| dib7000p_write_word(state, 1287, reg_1287); |
| } |
| state->input_mode_mpeg = 1; |
| break; |
| case 1: /* both ways */ |
| case 2: /* only the diversity input */ |
| dprintk("%s ON : Enable diversity INPUT\n", __func__); |
| dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0); |
| state->input_mode_mpeg = 0; |
| break; |
| } |
| |
| dib7000p_set_diversity_in(&state->demod, onoff); |
| return 0; |
| } |
| |
| static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| |
| u16 outreg, smo_mode, fifo_threshold; |
| u8 prefer_mpeg_mux_use = 1; |
| int ret = 0; |
| |
| dib7090_host_bus_drive(state, 1); |
| |
| fifo_threshold = 1792; |
| smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); |
| outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1)); |
| |
| switch (mode) { |
| case OUTMODE_HIGH_Z: |
| outreg = 0; |
| break; |
| |
| case OUTMODE_MPEG2_SERIAL: |
| if (prefer_mpeg_mux_use) { |
| dprintk("setting output mode TS_SERIAL using Mpeg Mux\n"); |
| dib7090_configMpegMux(state, 3, 1, 1); |
| dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); |
| } else {/* Use Smooth block */ |
| dprintk("setting output mode TS_SERIAL using Smooth bloc\n"); |
| dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); |
| outreg |= (2<<6) | (0 << 1); |
| } |
| break; |
| |
| case OUTMODE_MPEG2_PAR_GATED_CLK: |
| if (prefer_mpeg_mux_use) { |
| dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux\n"); |
| dib7090_configMpegMux(state, 2, 0, 0); |
| dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS); |
| } else { /* Use Smooth block */ |
| dprintk("setting output mode TS_PARALLEL_GATED using Smooth block\n"); |
| dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); |
| outreg |= (0<<6); |
| } |
| break; |
| |
| case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */ |
| dprintk("setting output mode TS_PARALLEL_CONT using Smooth block\n"); |
| dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); |
| outreg |= (1<<6); |
| break; |
| |
| case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */ |
| dprintk("setting output mode TS_FIFO using Smooth block\n"); |
| dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS); |
| outreg |= (5<<6); |
| smo_mode |= (3 << 1); |
| fifo_threshold = 512; |
| break; |
| |
| case OUTMODE_DIVERSITY: |
| dprintk("setting output mode MODE_DIVERSITY\n"); |
| dib7090_setDibTxMux(state, DIV_ON_DIBTX); |
| dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| break; |
| |
| case OUTMODE_ANALOG_ADC: |
| dprintk("setting output mode MODE_ANALOG_ADC\n"); |
| dib7090_setDibTxMux(state, ADC_ON_DIBTX); |
| dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS); |
| break; |
| } |
| if (mode != OUTMODE_HIGH_Z) |
| outreg |= (1 << 10); |
| |
| if (state->cfg.output_mpeg2_in_188_bytes) |
| smo_mode |= (1 << 5); |
| |
| ret |= dib7000p_write_word(state, 235, smo_mode); |
| ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ |
| ret |= dib7000p_write_word(state, 1286, outreg); |
| |
| return ret; |
| } |
| |
| static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 en_cur_state; |
| |
| dprintk("sleep dib7090: %d\n", onoff); |
| |
| en_cur_state = dib7000p_read_word(state, 1922); |
| |
| if (en_cur_state > 0xff) |
| state->tuner_enable = en_cur_state; |
| |
| if (onoff) |
| en_cur_state &= 0x00ff; |
| else { |
| if (state->tuner_enable != 0) |
| en_cur_state = state->tuner_enable; |
| } |
| |
| dib7000p_write_word(state, 1922, en_cur_state); |
| |
| return 0; |
| } |
| |
| static int dib7090_get_adc_power(struct dvb_frontend *fe) |
| { |
| return dib7000p_get_adc_power(fe); |
| } |
| |
| static int dib7090_slave_reset(struct dvb_frontend *fe) |
| { |
| struct dib7000p_state *state = fe->demodulator_priv; |
| u16 reg; |
| |
| reg = dib7000p_read_word(state, 1794); |
| dib7000p_write_word(state, 1794, reg | (4 << 12)); |
| |
| dib7000p_write_word(state, 1032, 0xffff); |
| return 0; |
| } |
| |
| static const struct dvb_frontend_ops dib7000p_ops; |
| static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) |
| { |
| struct dvb_frontend *demod; |
| struct dib7000p_state *st; |
| st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); |
| if (st == NULL) |
| return NULL; |
| |
| memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); |
| st->i2c_adap = i2c_adap; |
| st->i2c_addr = i2c_addr; |
| st->gpio_val = cfg->gpio_val; |
| st->gpio_dir = cfg->gpio_dir; |
| |
| /* Ensure the output mode remains at the previous default if it's |
| * not specifically set by the caller. |
| */ |
| if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) |
| st->cfg.output_mode = OUTMODE_MPEG2_FIFO; |
| |
| demod = &st->demod; |
| demod->demodulator_priv = st; |
| memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); |
| mutex_init(&st->i2c_buffer_lock); |
| |
| dib7000p_write_word(st, 1287, 0x0003); /* sram lead in, rdy */ |
| |
| if (dib7000p_identify(st) != 0) |
| goto error; |
| |
| st->version = dib7000p_read_word(st, 897); |
| |
| /* FIXME: make sure the dev.parent field is initialized, or else |
| request_firmware() will hit an OOPS (this should be moved somewhere |
| more common) */ |
| st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent; |
| |
| dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); |
| |
| /* init 7090 tuner adapter */ |
| strscpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", |
| sizeof(st->dib7090_tuner_adap.name)); |
| st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo; |
| st->dib7090_tuner_adap.algo_data = NULL; |
| st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent; |
| i2c_set_adapdata(&st->dib7090_tuner_adap, st); |
| i2c_add_adapter(&st->dib7090_tuner_adap); |
| |
| dib7000p_demod_reset(st); |
| |
| dib7000p_reset_stats(demod); |
| |
| if (st->version == SOC7090) { |
| dib7090_set_output_mode(demod, st->cfg.output_mode); |
| dib7090_set_diversity_in(demod, 0); |
| } |
| |
| return demod; |
| |
| error: |
| kfree(st); |
| return NULL; |
| } |
| |
| void *dib7000p_attach(struct dib7000p_ops *ops) |
| { |
| if (!ops) |
| return NULL; |
| |
| ops->slave_reset = dib7090_slave_reset; |
| ops->get_adc_power = dib7090_get_adc_power; |
| ops->dib7000pc_detection = dib7000pc_detection; |
| ops->get_i2c_tuner = dib7090_get_i2c_tuner; |
| ops->tuner_sleep = dib7090_tuner_sleep; |
| ops->init = dib7000p_init; |
| ops->set_agc1_min = dib7000p_set_agc1_min; |
| ops->set_gpio = dib7000p_set_gpio; |
| ops->i2c_enumeration = dib7000p_i2c_enumeration; |
| ops->pid_filter = dib7000p_pid_filter; |
| ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl; |
| ops->get_i2c_master = dib7000p_get_i2c_master; |
| ops->update_pll = dib7000p_update_pll; |
| ops->ctrl_timf = dib7000p_ctrl_timf; |
| ops->get_agc_values = dib7000p_get_agc_values; |
| ops->set_wbd_ref = dib7000p_set_wbd_ref; |
| |
| return ops; |
| } |
| EXPORT_SYMBOL(dib7000p_attach); |
| |
| static const struct dvb_frontend_ops dib7000p_ops = { |
| .delsys = { SYS_DVBT }, |
| .info = { |
| .name = "DiBcom 7000PC", |
| .frequency_min_hz = 44250 * kHz, |
| .frequency_max_hz = 867250 * kHz, |
| .frequency_stepsize_hz = 62500, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, |
| }, |
| |
| .release = dib7000p_release, |
| |
| .init = dib7000p_wakeup, |
| .sleep = dib7000p_sleep, |
| |
| .set_frontend = dib7000p_set_frontend, |
| .get_tune_settings = dib7000p_fe_get_tune_settings, |
| .get_frontend = dib7000p_get_frontend, |
| |
| .read_status = dib7000p_read_status, |
| .read_ber = dib7000p_read_ber, |
| .read_signal_strength = dib7000p_read_signal_strength, |
| .read_snr = dib7000p_read_snr, |
| .read_ucblocks = dib7000p_read_unc_blocks, |
| }; |
| |
| MODULE_AUTHOR("Olivier Grenie <olivie.grenie@parrot.com>"); |
| MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>"); |
| MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); |
| MODULE_LICENSE("GPL"); |