blob: 23ad052528dbe72b4d4129d400793d9b00c554c7 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2012 - 2014 Allwinner Tech
* Pan Nan <pannan@allwinnertech.com>
*
* Copyright (C) 2014 Maxime Ripard
* Maxime Ripard <maxime.ripard@free-electrons.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/dmaengine.h>
#include <linux/spi/spi.h>
#define SUN6I_AUTOSUSPEND_TIMEOUT 2000
#define SUN6I_FIFO_DEPTH 128
#define SUN8I_FIFO_DEPTH 64
#define SUN6I_GBL_CTL_REG 0x04
#define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
#define SUN6I_GBL_CTL_MASTER BIT(1)
#define SUN6I_GBL_CTL_TP BIT(7)
#define SUN6I_GBL_CTL_RST BIT(31)
#define SUN6I_TFR_CTL_REG 0x08
#define SUN6I_TFR_CTL_CPHA BIT(0)
#define SUN6I_TFR_CTL_CPOL BIT(1)
#define SUN6I_TFR_CTL_SPOL BIT(2)
#define SUN6I_TFR_CTL_CS_MASK 0x30
#define SUN6I_TFR_CTL_CS(cs) (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
#define SUN6I_TFR_CTL_CS_MANUAL BIT(6)
#define SUN6I_TFR_CTL_CS_LEVEL BIT(7)
#define SUN6I_TFR_CTL_DHB BIT(8)
#define SUN6I_TFR_CTL_FBS BIT(12)
#define SUN6I_TFR_CTL_XCH BIT(31)
#define SUN6I_INT_CTL_REG 0x10
#define SUN6I_INT_CTL_RF_RDY BIT(0)
#define SUN6I_INT_CTL_TF_ERQ BIT(4)
#define SUN6I_INT_CTL_RF_OVF BIT(8)
#define SUN6I_INT_CTL_TC BIT(12)
#define SUN6I_INT_STA_REG 0x14
#define SUN6I_FIFO_CTL_REG 0x18
#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK 0xff
#define SUN6I_FIFO_CTL_RF_DRQ_EN BIT(8)
#define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS 0
#define SUN6I_FIFO_CTL_RF_RST BIT(15)
#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK 0xff
#define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS 16
#define SUN6I_FIFO_CTL_TF_DRQ_EN BIT(24)
#define SUN6I_FIFO_CTL_TF_RST BIT(31)
#define SUN6I_FIFO_STA_REG 0x1c
#define SUN6I_FIFO_STA_RF_CNT_MASK GENMASK(7, 0)
#define SUN6I_FIFO_STA_TF_CNT_MASK GENMASK(23, 16)
#define SUN6I_CLK_CTL_REG 0x24
#define SUN6I_CLK_CTL_CDR2_MASK 0xff
#define SUN6I_CLK_CTL_CDR2(div) (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
#define SUN6I_CLK_CTL_CDR1_MASK 0xf
#define SUN6I_CLK_CTL_CDR1(div) (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
#define SUN6I_CLK_CTL_DRS BIT(12)
#define SUN6I_MAX_XFER_SIZE 0xffffff
#define SUN6I_BURST_CNT_REG 0x30
#define SUN6I_XMIT_CNT_REG 0x34
#define SUN6I_BURST_CTL_CNT_REG 0x38
#define SUN6I_TXDATA_REG 0x200
#define SUN6I_RXDATA_REG 0x300
struct sun6i_spi {
struct spi_master *master;
void __iomem *base_addr;
dma_addr_t dma_addr_rx;
dma_addr_t dma_addr_tx;
struct clk *hclk;
struct clk *mclk;
struct reset_control *rstc;
struct completion done;
const u8 *tx_buf;
u8 *rx_buf;
int len;
unsigned long fifo_depth;
};
static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
{
return readl(sspi->base_addr + reg);
}
static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
{
writel(value, sspi->base_addr + reg);
}
static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
{
u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
}
static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
{
u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
}
static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
{
u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
reg &= ~mask;
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
}
static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
{
u32 len;
u8 byte;
/* See how much data is available */
len = sun6i_spi_get_rx_fifo_count(sspi);
while (len--) {
byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
if (sspi->rx_buf)
*sspi->rx_buf++ = byte;
}
}
static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
{
u32 cnt;
int len;
u8 byte;
/* See how much data we can fit */
cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
len = min((int)cnt, sspi->len);
while (len--) {
byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
sspi->len--;
}
}
static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
{
struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
u32 reg;
reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
reg &= ~SUN6I_TFR_CTL_CS_MASK;
reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
if (enable)
reg |= SUN6I_TFR_CTL_CS_LEVEL;
else
reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
}
static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
{
return SUN6I_MAX_XFER_SIZE - 1;
}
static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
struct spi_transfer *tfr)
{
struct dma_async_tx_descriptor *rxdesc, *txdesc;
struct spi_master *master = sspi->master;
rxdesc = NULL;
if (tfr->rx_buf) {
struct dma_slave_config rxconf = {
.direction = DMA_DEV_TO_MEM,
.src_addr = sspi->dma_addr_rx,
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.src_maxburst = 8,
};
dmaengine_slave_config(master->dma_rx, &rxconf);
rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
tfr->rx_sg.sgl,
tfr->rx_sg.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT);
if (!rxdesc)
return -EINVAL;
}
txdesc = NULL;
if (tfr->tx_buf) {
struct dma_slave_config txconf = {
.direction = DMA_MEM_TO_DEV,
.dst_addr = sspi->dma_addr_tx,
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
.dst_maxburst = 8,
};
dmaengine_slave_config(master->dma_tx, &txconf);
txdesc = dmaengine_prep_slave_sg(master->dma_tx,
tfr->tx_sg.sgl,
tfr->tx_sg.nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT);
if (!txdesc) {
if (rxdesc)
dmaengine_terminate_sync(master->dma_rx);
return -EINVAL;
}
}
if (tfr->rx_buf) {
dmaengine_submit(rxdesc);
dma_async_issue_pending(master->dma_rx);
}
if (tfr->tx_buf) {
dmaengine_submit(txdesc);
dma_async_issue_pending(master->dma_tx);
}
return 0;
}
static int sun6i_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr)
{
struct sun6i_spi *sspi = spi_master_get_devdata(master);
unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
unsigned int start, end, tx_time;
unsigned int trig_level;
unsigned int tx_len = 0, rx_len = 0;
bool use_dma;
int ret = 0;
u32 reg;
if (tfr->len > SUN6I_MAX_XFER_SIZE)
return -EINVAL;
reinit_completion(&sspi->done);
sspi->tx_buf = tfr->tx_buf;
sspi->rx_buf = tfr->rx_buf;
sspi->len = tfr->len;
use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
/* Clear pending interrupts */
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
/* Reset FIFO */
sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
reg = 0;
if (!use_dma) {
/*
* Setup FIFO interrupt trigger level
* Here we choose 3/4 of the full fifo depth, as it's
* the hardcoded value used in old generation of Allwinner
* SPI controller. (See spi-sun4i.c)
*/
trig_level = sspi->fifo_depth / 4 * 3;
} else {
/*
* Setup FIFO DMA request trigger level
* We choose 1/2 of the full fifo depth, that value will
* be used as DMA burst length.
*/
trig_level = sspi->fifo_depth / 2;
if (tfr->tx_buf)
reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
if (tfr->rx_buf)
reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
}
reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
(trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
/*
* Setup the transfer control register: Chip Select,
* polarities, etc.
*/
reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
if (spi->mode & SPI_CPOL)
reg |= SUN6I_TFR_CTL_CPOL;
else
reg &= ~SUN6I_TFR_CTL_CPOL;
if (spi->mode & SPI_CPHA)
reg |= SUN6I_TFR_CTL_CPHA;
else
reg &= ~SUN6I_TFR_CTL_CPHA;
if (spi->mode & SPI_LSB_FIRST)
reg |= SUN6I_TFR_CTL_FBS;
else
reg &= ~SUN6I_TFR_CTL_FBS;
/*
* If it's a TX only transfer, we don't want to fill the RX
* FIFO with bogus data
*/
if (sspi->rx_buf) {
reg &= ~SUN6I_TFR_CTL_DHB;
rx_len = tfr->len;
} else {
reg |= SUN6I_TFR_CTL_DHB;
}
/* We want to control the chip select manually */
reg |= SUN6I_TFR_CTL_CS_MANUAL;
sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
/* Ensure that we have a parent clock fast enough */
mclk_rate = clk_get_rate(sspi->mclk);
if (mclk_rate < (2 * tfr->speed_hz)) {
clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
mclk_rate = clk_get_rate(sspi->mclk);
}
/*
* Setup clock divider.
*
* We have two choices there. Either we can use the clock
* divide rate 1, which is calculated thanks to this formula:
* SPI_CLK = MOD_CLK / (2 ^ cdr)
* Or we can use CDR2, which is calculated with the formula:
* SPI_CLK = MOD_CLK / (2 * (cdr + 1))
* Wether we use the former or the latter is set through the
* DRS bit.
*
* First try CDR2, and if we can't reach the expected
* frequency, fall back to CDR1.
*/
div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
} else {
div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
reg = SUN6I_CLK_CTL_CDR1(div);
tfr->effective_speed_hz = mclk_rate / (1 << div);
}
sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
/* Finally enable the bus - doing so before might raise SCK to HIGH */
reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
reg |= SUN6I_GBL_CTL_BUS_ENABLE;
sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
/* Setup the transfer now... */
if (sspi->tx_buf)
tx_len = tfr->len;
/* Setup the counters */
sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
if (!use_dma) {
/* Fill the TX FIFO */
sun6i_spi_fill_fifo(sspi);
} else {
ret = sun6i_spi_prepare_dma(sspi, tfr);
if (ret) {
dev_warn(&master->dev,
"%s: prepare DMA failed, ret=%d",
dev_name(&spi->dev), ret);
return ret;
}
}
/* Enable the interrupts */
reg = SUN6I_INT_CTL_TC;
if (!use_dma) {
if (rx_len > sspi->fifo_depth)
reg |= SUN6I_INT_CTL_RF_RDY;
if (tx_len > sspi->fifo_depth)
reg |= SUN6I_INT_CTL_TF_ERQ;
}
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
/* Start the transfer */
reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
start = jiffies;
timeout = wait_for_completion_timeout(&sspi->done,
msecs_to_jiffies(tx_time));
end = jiffies;
if (!timeout) {
dev_warn(&master->dev,
"%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
dev_name(&spi->dev), tfr->len, tfr->speed_hz,
jiffies_to_msecs(end - start), tx_time);
ret = -ETIMEDOUT;
}
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
if (ret && use_dma) {
dmaengine_terminate_sync(master->dma_rx);
dmaengine_terminate_sync(master->dma_tx);
}
return ret;
}
static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
{
struct sun6i_spi *sspi = dev_id;
u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
/* Transfer complete */
if (status & SUN6I_INT_CTL_TC) {
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
sun6i_spi_drain_fifo(sspi);
complete(&sspi->done);
return IRQ_HANDLED;
}
/* Receive FIFO 3/4 full */
if (status & SUN6I_INT_CTL_RF_RDY) {
sun6i_spi_drain_fifo(sspi);
/* Only clear the interrupt _after_ draining the FIFO */
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
return IRQ_HANDLED;
}
/* Transmit FIFO 3/4 empty */
if (status & SUN6I_INT_CTL_TF_ERQ) {
sun6i_spi_fill_fifo(sspi);
if (!sspi->len)
/* nothing left to transmit */
sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
/* Only clear the interrupt _after_ re-seeding the FIFO */
sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int sun6i_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sun6i_spi *sspi = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(sspi->hclk);
if (ret) {
dev_err(dev, "Couldn't enable AHB clock\n");
goto out;
}
ret = clk_prepare_enable(sspi->mclk);
if (ret) {
dev_err(dev, "Couldn't enable module clock\n");
goto err;
}
ret = reset_control_deassert(sspi->rstc);
if (ret) {
dev_err(dev, "Couldn't deassert the device from reset\n");
goto err2;
}
sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
return 0;
err2:
clk_disable_unprepare(sspi->mclk);
err:
clk_disable_unprepare(sspi->hclk);
out:
return ret;
}
static int sun6i_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sun6i_spi *sspi = spi_master_get_devdata(master);
reset_control_assert(sspi->rstc);
clk_disable_unprepare(sspi->mclk);
clk_disable_unprepare(sspi->hclk);
return 0;
}
static bool sun6i_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct sun6i_spi *sspi = spi_master_get_devdata(master);
/*
* If the number of spi words to transfer is less or equal than
* the fifo length we can just fill the fifo and wait for a single
* irq, so don't bother setting up dma
*/
return xfer->len > sspi->fifo_depth;
}
static int sun6i_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct sun6i_spi *sspi;
struct resource *mem;
int ret = 0, irq;
master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
if (!master) {
dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
sspi = spi_master_get_devdata(master);
sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
if (IS_ERR(sspi->base_addr)) {
ret = PTR_ERR(sspi->base_addr);
goto err_free_master;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto err_free_master;
}
ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
0, "sun6i-spi", sspi);
if (ret) {
dev_err(&pdev->dev, "Cannot request IRQ\n");
goto err_free_master;
}
sspi->master = master;
sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
master->max_speed_hz = 100 * 1000 * 1000;
master->min_speed_hz = 3 * 1000;
master->use_gpio_descriptors = true;
master->set_cs = sun6i_spi_set_cs;
master->transfer_one = sun6i_spi_transfer_one;
master->num_chipselect = 4;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->dev.of_node = pdev->dev.of_node;
master->auto_runtime_pm = true;
master->max_transfer_size = sun6i_spi_max_transfer_size;
sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(sspi->hclk)) {
dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
ret = PTR_ERR(sspi->hclk);
goto err_free_master;
}
sspi->mclk = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(sspi->mclk)) {
dev_err(&pdev->dev, "Unable to acquire module clock\n");
ret = PTR_ERR(sspi->mclk);
goto err_free_master;
}
init_completion(&sspi->done);
sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(sspi->rstc)) {
dev_err(&pdev->dev, "Couldn't get reset controller\n");
ret = PTR_ERR(sspi->rstc);
goto err_free_master;
}
master->dma_tx = dma_request_chan(&pdev->dev, "tx");
if (IS_ERR(master->dma_tx)) {
/* Check tx to see if we need defer probing driver */
if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_free_master;
}
dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
master->dma_tx = NULL;
}
master->dma_rx = dma_request_chan(&pdev->dev, "rx");
if (IS_ERR(master->dma_rx)) {
if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err_free_dma_tx;
}
dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
master->dma_rx = NULL;
}
if (master->dma_tx && master->dma_rx) {
sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
master->can_dma = sun6i_spi_can_dma;
}
/*
* This wake-up/shutdown pattern is to be able to have the
* device woken up, even if runtime_pm is disabled
*/
ret = sun6i_spi_runtime_resume(&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "Couldn't resume the device\n");
goto err_free_dma_rx;
}
pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = devm_spi_register_master(&pdev->dev, master);
if (ret) {
dev_err(&pdev->dev, "cannot register SPI master\n");
goto err_pm_disable;
}
return 0;
err_pm_disable:
pm_runtime_disable(&pdev->dev);
sun6i_spi_runtime_suspend(&pdev->dev);
err_free_dma_rx:
if (master->dma_rx)
dma_release_channel(master->dma_rx);
err_free_dma_tx:
if (master->dma_tx)
dma_release_channel(master->dma_tx);
err_free_master:
spi_master_put(master);
return ret;
}
static int sun6i_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
pm_runtime_force_suspend(&pdev->dev);
if (master->dma_tx)
dma_release_channel(master->dma_tx);
if (master->dma_rx)
dma_release_channel(master->dma_rx);
return 0;
}
static const struct of_device_id sun6i_spi_match[] = {
{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
{ .compatible = "allwinner,sun8i-h3-spi", .data = (void *)SUN8I_FIFO_DEPTH },
{}
};
MODULE_DEVICE_TABLE(of, sun6i_spi_match);
static const struct dev_pm_ops sun6i_spi_pm_ops = {
.runtime_resume = sun6i_spi_runtime_resume,
.runtime_suspend = sun6i_spi_runtime_suspend,
};
static struct platform_driver sun6i_spi_driver = {
.probe = sun6i_spi_probe,
.remove = sun6i_spi_remove,
.driver = {
.name = "sun6i-spi",
.of_match_table = sun6i_spi_match,
.pm = &sun6i_spi_pm_ops,
},
};
module_platform_driver(sun6i_spi_driver);
MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
MODULE_LICENSE("GPL");