| /* |
| * In-kernel transcendent memory (generic implementation) |
| * |
| * Copyright (c) 2009-2011, Dan Magenheimer, Oracle Corp. |
| * |
| * The primary purpose of Transcedent Memory ("tmem") is to map object-oriented |
| * "handles" (triples containing a pool id, and object id, and an index), to |
| * pages in a page-accessible memory (PAM). Tmem references the PAM pages via |
| * an abstract "pampd" (PAM page-descriptor), which can be operated on by a |
| * set of functions (pamops). Each pampd contains some representation of |
| * PAGE_SIZE bytes worth of data. Tmem must support potentially millions of |
| * pages and must be able to insert, find, and delete these pages at a |
| * potential frequency of thousands per second concurrently across many CPUs, |
| * (and, if used with KVM, across many vcpus across many guests). |
| * Tmem is tracked with a hierarchy of data structures, organized by |
| * the elements in a handle-tuple: pool_id, object_id, and page index. |
| * One or more "clients" (e.g. guests) each provide one or more tmem_pools. |
| * Each pool, contains a hash table of rb_trees of tmem_objs. Each |
| * tmem_obj contains a radix-tree-like tree of pointers, with intermediate |
| * nodes called tmem_objnodes. Each leaf pointer in this tree points to |
| * a pampd, which is accessible only through a small set of callbacks |
| * registered by the PAM implementation (see tmem_register_pamops). Tmem |
| * does all memory allocation via a set of callbacks registered by the tmem |
| * host implementation (e.g. see tmem_register_hostops). |
| */ |
| |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| #include <linux/atomic.h> |
| |
| #include "tmem.h" |
| |
| /* data structure sentinels used for debugging... see tmem.h */ |
| #define POOL_SENTINEL 0x87658765 |
| #define OBJ_SENTINEL 0x12345678 |
| #define OBJNODE_SENTINEL 0xfedcba09 |
| |
| /* |
| * A tmem host implementation must use this function to register callbacks |
| * for memory allocation. |
| */ |
| static struct tmem_hostops tmem_hostops; |
| |
| static void tmem_objnode_tree_init(void); |
| |
| void tmem_register_hostops(struct tmem_hostops *m) |
| { |
| tmem_objnode_tree_init(); |
| tmem_hostops = *m; |
| } |
| |
| /* |
| * A tmem host implementation must use this function to register |
| * callbacks for a page-accessible memory (PAM) implementation |
| */ |
| static struct tmem_pamops tmem_pamops; |
| |
| void tmem_register_pamops(struct tmem_pamops *m) |
| { |
| tmem_pamops = *m; |
| } |
| |
| /* |
| * Oid's are potentially very sparse and tmem_objs may have an indeterminately |
| * short life, being added and deleted at a relatively high frequency. |
| * So an rb_tree is an ideal data structure to manage tmem_objs. But because |
| * of the potentially huge number of tmem_objs, each pool manages a hashtable |
| * of rb_trees to reduce search, insert, delete, and rebalancing time. |
| * Each hashbucket also has a lock to manage concurrent access. |
| * |
| * The following routines manage tmem_objs. When any tmem_obj is accessed, |
| * the hashbucket lock must be held. |
| */ |
| |
| /* searches for object==oid in pool, returns locked object if found */ |
| static struct tmem_obj *tmem_obj_find(struct tmem_hashbucket *hb, |
| struct tmem_oid *oidp) |
| { |
| struct rb_node *rbnode; |
| struct tmem_obj *obj; |
| |
| rbnode = hb->obj_rb_root.rb_node; |
| while (rbnode) { |
| BUG_ON(RB_EMPTY_NODE(rbnode)); |
| obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node); |
| switch (tmem_oid_compare(oidp, &obj->oid)) { |
| case 0: /* equal */ |
| goto out; |
| case -1: |
| rbnode = rbnode->rb_left; |
| break; |
| case 1: |
| rbnode = rbnode->rb_right; |
| break; |
| } |
| } |
| obj = NULL; |
| out: |
| return obj; |
| } |
| |
| static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *); |
| |
| /* free an object that has no more pampds in it */ |
| static void tmem_obj_free(struct tmem_obj *obj, struct tmem_hashbucket *hb) |
| { |
| struct tmem_pool *pool; |
| |
| BUG_ON(obj == NULL); |
| ASSERT_SENTINEL(obj, OBJ); |
| BUG_ON(obj->pampd_count > 0); |
| pool = obj->pool; |
| BUG_ON(pool == NULL); |
| if (obj->objnode_tree_root != NULL) /* may be "stump" with no leaves */ |
| tmem_pampd_destroy_all_in_obj(obj); |
| BUG_ON(obj->objnode_tree_root != NULL); |
| BUG_ON((long)obj->objnode_count != 0); |
| atomic_dec(&pool->obj_count); |
| BUG_ON(atomic_read(&pool->obj_count) < 0); |
| INVERT_SENTINEL(obj, OBJ); |
| obj->pool = NULL; |
| tmem_oid_set_invalid(&obj->oid); |
| rb_erase(&obj->rb_tree_node, &hb->obj_rb_root); |
| } |
| |
| /* |
| * initialize, and insert an tmem_object_root (called only if find failed) |
| */ |
| static void tmem_obj_init(struct tmem_obj *obj, struct tmem_hashbucket *hb, |
| struct tmem_pool *pool, |
| struct tmem_oid *oidp) |
| { |
| struct rb_root *root = &hb->obj_rb_root; |
| struct rb_node **new = &(root->rb_node), *parent = NULL; |
| struct tmem_obj *this; |
| |
| BUG_ON(pool == NULL); |
| atomic_inc(&pool->obj_count); |
| obj->objnode_tree_height = 0; |
| obj->objnode_tree_root = NULL; |
| obj->pool = pool; |
| obj->oid = *oidp; |
| obj->objnode_count = 0; |
| obj->pampd_count = 0; |
| SET_SENTINEL(obj, OBJ); |
| while (*new) { |
| BUG_ON(RB_EMPTY_NODE(*new)); |
| this = rb_entry(*new, struct tmem_obj, rb_tree_node); |
| parent = *new; |
| switch (tmem_oid_compare(oidp, &this->oid)) { |
| case 0: |
| BUG(); /* already present; should never happen! */ |
| break; |
| case -1: |
| new = &(*new)->rb_left; |
| break; |
| case 1: |
| new = &(*new)->rb_right; |
| break; |
| } |
| } |
| rb_link_node(&obj->rb_tree_node, parent, new); |
| rb_insert_color(&obj->rb_tree_node, root); |
| } |
| |
| /* |
| * Tmem is managed as a set of tmem_pools with certain attributes, such as |
| * "ephemeral" vs "persistent". These attributes apply to all tmem_objs |
| * and all pampds that belong to a tmem_pool. A tmem_pool is created |
| * or deleted relatively rarely (for example, when a filesystem is |
| * mounted or unmounted. |
| */ |
| |
| /* flush all data from a pool and, optionally, free it */ |
| static void tmem_pool_flush(struct tmem_pool *pool, bool destroy) |
| { |
| struct rb_node *rbnode; |
| struct tmem_obj *obj; |
| struct tmem_hashbucket *hb = &pool->hashbucket[0]; |
| int i; |
| |
| BUG_ON(pool == NULL); |
| for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) { |
| spin_lock(&hb->lock); |
| rbnode = rb_first(&hb->obj_rb_root); |
| while (rbnode != NULL) { |
| obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node); |
| rbnode = rb_next(rbnode); |
| tmem_pampd_destroy_all_in_obj(obj); |
| tmem_obj_free(obj, hb); |
| (*tmem_hostops.obj_free)(obj, pool); |
| } |
| spin_unlock(&hb->lock); |
| } |
| if (destroy) |
| list_del(&pool->pool_list); |
| } |
| |
| /* |
| * A tmem_obj contains a radix-tree-like tree in which the intermediate |
| * nodes are called tmem_objnodes. (The kernel lib/radix-tree.c implementation |
| * is very specialized and tuned for specific uses and is not particularly |
| * suited for use from this code, though some code from the core algorithms has |
| * been reused, thus the copyright notices below). Each tmem_objnode contains |
| * a set of pointers which point to either a set of intermediate tmem_objnodes |
| * or a set of of pampds. |
| * |
| * Portions Copyright (C) 2001 Momchil Velikov |
| * Portions Copyright (C) 2001 Christoph Hellwig |
| * Portions Copyright (C) 2005 SGI, Christoph Lameter <clameter@sgi.com> |
| */ |
| |
| struct tmem_objnode_tree_path { |
| struct tmem_objnode *objnode; |
| int offset; |
| }; |
| |
| /* objnode height_to_maxindex translation */ |
| static unsigned long tmem_objnode_tree_h2max[OBJNODE_TREE_MAX_PATH + 1]; |
| |
| static void tmem_objnode_tree_init(void) |
| { |
| unsigned int ht, tmp; |
| |
| for (ht = 0; ht < ARRAY_SIZE(tmem_objnode_tree_h2max); ht++) { |
| tmp = ht * OBJNODE_TREE_MAP_SHIFT; |
| if (tmp >= OBJNODE_TREE_INDEX_BITS) |
| tmem_objnode_tree_h2max[ht] = ~0UL; |
| else |
| tmem_objnode_tree_h2max[ht] = |
| (~0UL >> (OBJNODE_TREE_INDEX_BITS - tmp - 1)) >> 1; |
| } |
| } |
| |
| static struct tmem_objnode *tmem_objnode_alloc(struct tmem_obj *obj) |
| { |
| struct tmem_objnode *objnode; |
| |
| ASSERT_SENTINEL(obj, OBJ); |
| BUG_ON(obj->pool == NULL); |
| ASSERT_SENTINEL(obj->pool, POOL); |
| objnode = (*tmem_hostops.objnode_alloc)(obj->pool); |
| if (unlikely(objnode == NULL)) |
| goto out; |
| objnode->obj = obj; |
| SET_SENTINEL(objnode, OBJNODE); |
| memset(&objnode->slots, 0, sizeof(objnode->slots)); |
| objnode->slots_in_use = 0; |
| obj->objnode_count++; |
| out: |
| return objnode; |
| } |
| |
| static void tmem_objnode_free(struct tmem_objnode *objnode) |
| { |
| struct tmem_pool *pool; |
| int i; |
| |
| BUG_ON(objnode == NULL); |
| for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++) |
| BUG_ON(objnode->slots[i] != NULL); |
| ASSERT_SENTINEL(objnode, OBJNODE); |
| INVERT_SENTINEL(objnode, OBJNODE); |
| BUG_ON(objnode->obj == NULL); |
| ASSERT_SENTINEL(objnode->obj, OBJ); |
| pool = objnode->obj->pool; |
| BUG_ON(pool == NULL); |
| ASSERT_SENTINEL(pool, POOL); |
| objnode->obj->objnode_count--; |
| objnode->obj = NULL; |
| (*tmem_hostops.objnode_free)(objnode, pool); |
| } |
| |
| /* |
| * lookup index in object and return associated pampd (or NULL if not found) |
| */ |
| static void *tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index) |
| { |
| unsigned int height, shift; |
| struct tmem_objnode **slot = NULL; |
| |
| BUG_ON(obj == NULL); |
| ASSERT_SENTINEL(obj, OBJ); |
| BUG_ON(obj->pool == NULL); |
| ASSERT_SENTINEL(obj->pool, POOL); |
| |
| height = obj->objnode_tree_height; |
| if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height]) |
| goto out; |
| if (height == 0 && obj->objnode_tree_root) { |
| slot = &obj->objnode_tree_root; |
| goto out; |
| } |
| shift = (height-1) * OBJNODE_TREE_MAP_SHIFT; |
| slot = &obj->objnode_tree_root; |
| while (height > 0) { |
| if (*slot == NULL) |
| goto out; |
| slot = (struct tmem_objnode **) |
| ((*slot)->slots + |
| ((index >> shift) & OBJNODE_TREE_MAP_MASK)); |
| shift -= OBJNODE_TREE_MAP_SHIFT; |
| height--; |
| } |
| out: |
| return slot != NULL ? *slot : NULL; |
| } |
| |
| static int tmem_pampd_add_to_obj(struct tmem_obj *obj, uint32_t index, |
| void *pampd) |
| { |
| int ret = 0; |
| struct tmem_objnode *objnode = NULL, *newnode, *slot; |
| unsigned int height, shift; |
| int offset = 0; |
| |
| /* if necessary, extend the tree to be higher */ |
| if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height]) { |
| height = obj->objnode_tree_height + 1; |
| if (index > tmem_objnode_tree_h2max[height]) |
| while (index > tmem_objnode_tree_h2max[height]) |
| height++; |
| if (obj->objnode_tree_root == NULL) { |
| obj->objnode_tree_height = height; |
| goto insert; |
| } |
| do { |
| newnode = tmem_objnode_alloc(obj); |
| if (!newnode) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| newnode->slots[0] = obj->objnode_tree_root; |
| newnode->slots_in_use = 1; |
| obj->objnode_tree_root = newnode; |
| obj->objnode_tree_height++; |
| } while (height > obj->objnode_tree_height); |
| } |
| insert: |
| slot = obj->objnode_tree_root; |
| height = obj->objnode_tree_height; |
| shift = (height-1) * OBJNODE_TREE_MAP_SHIFT; |
| while (height > 0) { |
| if (slot == NULL) { |
| /* add a child objnode. */ |
| slot = tmem_objnode_alloc(obj); |
| if (!slot) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| if (objnode) { |
| |
| objnode->slots[offset] = slot; |
| objnode->slots_in_use++; |
| } else |
| obj->objnode_tree_root = slot; |
| } |
| /* go down a level */ |
| offset = (index >> shift) & OBJNODE_TREE_MAP_MASK; |
| objnode = slot; |
| slot = objnode->slots[offset]; |
| shift -= OBJNODE_TREE_MAP_SHIFT; |
| height--; |
| } |
| BUG_ON(slot != NULL); |
| if (objnode) { |
| objnode->slots_in_use++; |
| objnode->slots[offset] = pampd; |
| } else |
| obj->objnode_tree_root = pampd; |
| obj->pampd_count++; |
| out: |
| return ret; |
| } |
| |
| static void *tmem_pampd_delete_from_obj(struct tmem_obj *obj, uint32_t index) |
| { |
| struct tmem_objnode_tree_path path[OBJNODE_TREE_MAX_PATH + 1]; |
| struct tmem_objnode_tree_path *pathp = path; |
| struct tmem_objnode *slot = NULL; |
| unsigned int height, shift; |
| int offset; |
| |
| BUG_ON(obj == NULL); |
| ASSERT_SENTINEL(obj, OBJ); |
| BUG_ON(obj->pool == NULL); |
| ASSERT_SENTINEL(obj->pool, POOL); |
| height = obj->objnode_tree_height; |
| if (index > tmem_objnode_tree_h2max[height]) |
| goto out; |
| slot = obj->objnode_tree_root; |
| if (height == 0 && obj->objnode_tree_root) { |
| obj->objnode_tree_root = NULL; |
| goto out; |
| } |
| shift = (height - 1) * OBJNODE_TREE_MAP_SHIFT; |
| pathp->objnode = NULL; |
| do { |
| if (slot == NULL) |
| goto out; |
| pathp++; |
| offset = (index >> shift) & OBJNODE_TREE_MAP_MASK; |
| pathp->offset = offset; |
| pathp->objnode = slot; |
| slot = slot->slots[offset]; |
| shift -= OBJNODE_TREE_MAP_SHIFT; |
| height--; |
| } while (height > 0); |
| if (slot == NULL) |
| goto out; |
| while (pathp->objnode) { |
| pathp->objnode->slots[pathp->offset] = NULL; |
| pathp->objnode->slots_in_use--; |
| if (pathp->objnode->slots_in_use) { |
| if (pathp->objnode == obj->objnode_tree_root) { |
| while (obj->objnode_tree_height > 0 && |
| obj->objnode_tree_root->slots_in_use == 1 && |
| obj->objnode_tree_root->slots[0]) { |
| struct tmem_objnode *to_free = |
| obj->objnode_tree_root; |
| |
| obj->objnode_tree_root = |
| to_free->slots[0]; |
| obj->objnode_tree_height--; |
| to_free->slots[0] = NULL; |
| to_free->slots_in_use = 0; |
| tmem_objnode_free(to_free); |
| } |
| } |
| goto out; |
| } |
| tmem_objnode_free(pathp->objnode); /* 0 slots used, free it */ |
| pathp--; |
| } |
| obj->objnode_tree_height = 0; |
| obj->objnode_tree_root = NULL; |
| |
| out: |
| if (slot != NULL) |
| obj->pampd_count--; |
| BUG_ON(obj->pampd_count < 0); |
| return slot; |
| } |
| |
| /* recursively walk the objnode_tree destroying pampds and objnodes */ |
| static void tmem_objnode_node_destroy(struct tmem_obj *obj, |
| struct tmem_objnode *objnode, |
| unsigned int ht) |
| { |
| int i; |
| |
| if (ht == 0) |
| return; |
| for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++) { |
| if (objnode->slots[i]) { |
| if (ht == 1) { |
| obj->pampd_count--; |
| (*tmem_pamops.free)(objnode->slots[i], |
| obj->pool); |
| objnode->slots[i] = NULL; |
| continue; |
| } |
| tmem_objnode_node_destroy(obj, objnode->slots[i], ht-1); |
| tmem_objnode_free(objnode->slots[i]); |
| objnode->slots[i] = NULL; |
| } |
| } |
| } |
| |
| static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *obj) |
| { |
| if (obj->objnode_tree_root == NULL) |
| return; |
| if (obj->objnode_tree_height == 0) { |
| obj->pampd_count--; |
| (*tmem_pamops.free)(obj->objnode_tree_root, obj->pool); |
| } else { |
| tmem_objnode_node_destroy(obj, obj->objnode_tree_root, |
| obj->objnode_tree_height); |
| tmem_objnode_free(obj->objnode_tree_root); |
| obj->objnode_tree_height = 0; |
| } |
| obj->objnode_tree_root = NULL; |
| } |
| |
| /* |
| * Tmem is operated on by a set of well-defined actions: |
| * "put", "get", "flush", "flush_object", "new pool" and "destroy pool". |
| * (The tmem ABI allows for subpages and exchanges but these operations |
| * are not included in this implementation.) |
| * |
| * These "tmem core" operations are implemented in the following functions. |
| */ |
| |
| /* |
| * "Put" a page, e.g. copy a page from the kernel into newly allocated |
| * PAM space (if such space is available). Tmem_put is complicated by |
| * a corner case: What if a page with matching handle already exists in |
| * tmem? To guarantee coherency, one of two actions is necessary: Either |
| * the data for the page must be overwritten, or the page must be |
| * "flushed" so that the data is not accessible to a subsequent "get". |
| * Since these "duplicate puts" are relatively rare, this implementation |
| * always flushes for simplicity. |
| */ |
| int tmem_put(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index, |
| struct page *page) |
| { |
| struct tmem_obj *obj = NULL, *objfound = NULL, *objnew = NULL; |
| void *pampd = NULL, *pampd_del = NULL; |
| int ret = -ENOMEM; |
| bool ephemeral; |
| struct tmem_hashbucket *hb; |
| |
| ephemeral = is_ephemeral(pool); |
| hb = &pool->hashbucket[tmem_oid_hash(oidp)]; |
| spin_lock(&hb->lock); |
| obj = objfound = tmem_obj_find(hb, oidp); |
| if (obj != NULL) { |
| pampd = tmem_pampd_lookup_in_obj(objfound, index); |
| if (pampd != NULL) { |
| /* if found, is a dup put, flush the old one */ |
| pampd_del = tmem_pampd_delete_from_obj(obj, index); |
| BUG_ON(pampd_del != pampd); |
| (*tmem_pamops.free)(pampd, pool); |
| if (obj->pampd_count == 0) { |
| objnew = obj; |
| objfound = NULL; |
| } |
| pampd = NULL; |
| } |
| } else { |
| obj = objnew = (*tmem_hostops.obj_alloc)(pool); |
| if (unlikely(obj == NULL)) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| tmem_obj_init(obj, hb, pool, oidp); |
| } |
| BUG_ON(obj == NULL); |
| BUG_ON(((objnew != obj) && (objfound != obj)) || (objnew == objfound)); |
| pampd = (*tmem_pamops.create)(obj->pool, &obj->oid, index, page); |
| if (unlikely(pampd == NULL)) |
| goto free; |
| ret = tmem_pampd_add_to_obj(obj, index, pampd); |
| if (unlikely(ret == -ENOMEM)) |
| /* may have partially built objnode tree ("stump") */ |
| goto delete_and_free; |
| goto out; |
| |
| delete_and_free: |
| (void)tmem_pampd_delete_from_obj(obj, index); |
| free: |
| if (pampd) |
| (*tmem_pamops.free)(pampd, pool); |
| if (objnew) { |
| tmem_obj_free(objnew, hb); |
| (*tmem_hostops.obj_free)(objnew, pool); |
| } |
| out: |
| spin_unlock(&hb->lock); |
| return ret; |
| } |
| |
| /* |
| * "Get" a page, e.g. if one can be found, copy the tmem page with the |
| * matching handle from PAM space to the kernel. By tmem definition, |
| * when a "get" is successful on an ephemeral page, the page is "flushed", |
| * and when a "get" is successful on a persistent page, the page is retained |
| * in tmem. Note that to preserve |
| * coherency, "get" can never be skipped if tmem contains the data. |
| * That is, if a get is done with a certain handle and fails, any |
| * subsequent "get" must also fail (unless of course there is a |
| * "put" done with the same handle). |
| |
| */ |
| int tmem_get(struct tmem_pool *pool, struct tmem_oid *oidp, |
| uint32_t index, struct page *page) |
| { |
| struct tmem_obj *obj; |
| void *pampd; |
| bool ephemeral = is_ephemeral(pool); |
| uint32_t ret = -1; |
| struct tmem_hashbucket *hb; |
| |
| hb = &pool->hashbucket[tmem_oid_hash(oidp)]; |
| spin_lock(&hb->lock); |
| obj = tmem_obj_find(hb, oidp); |
| if (obj == NULL) |
| goto out; |
| ephemeral = is_ephemeral(pool); |
| if (ephemeral) |
| pampd = tmem_pampd_delete_from_obj(obj, index); |
| else |
| pampd = tmem_pampd_lookup_in_obj(obj, index); |
| if (pampd == NULL) |
| goto out; |
| ret = (*tmem_pamops.get_data)(page, pampd, pool); |
| if (ret < 0) |
| goto out; |
| if (ephemeral) { |
| (*tmem_pamops.free)(pampd, pool); |
| if (obj->pampd_count == 0) { |
| tmem_obj_free(obj, hb); |
| (*tmem_hostops.obj_free)(obj, pool); |
| obj = NULL; |
| } |
| } |
| ret = 0; |
| out: |
| spin_unlock(&hb->lock); |
| return ret; |
| } |
| |
| /* |
| * If a page in tmem matches the handle, "flush" this page from tmem such |
| * that any subsequent "get" does not succeed (unless, of course, there |
| * was another "put" with the same handle). |
| */ |
| int tmem_flush_page(struct tmem_pool *pool, |
| struct tmem_oid *oidp, uint32_t index) |
| { |
| struct tmem_obj *obj; |
| void *pampd; |
| int ret = -1; |
| struct tmem_hashbucket *hb; |
| |
| hb = &pool->hashbucket[tmem_oid_hash(oidp)]; |
| spin_lock(&hb->lock); |
| obj = tmem_obj_find(hb, oidp); |
| if (obj == NULL) |
| goto out; |
| pampd = tmem_pampd_delete_from_obj(obj, index); |
| if (pampd == NULL) |
| goto out; |
| (*tmem_pamops.free)(pampd, pool); |
| if (obj->pampd_count == 0) { |
| tmem_obj_free(obj, hb); |
| (*tmem_hostops.obj_free)(obj, pool); |
| } |
| ret = 0; |
| |
| out: |
| spin_unlock(&hb->lock); |
| return ret; |
| } |
| |
| /* |
| * "Flush" all pages in tmem matching this oid. |
| */ |
| int tmem_flush_object(struct tmem_pool *pool, struct tmem_oid *oidp) |
| { |
| struct tmem_obj *obj; |
| struct tmem_hashbucket *hb; |
| int ret = -1; |
| |
| hb = &pool->hashbucket[tmem_oid_hash(oidp)]; |
| spin_lock(&hb->lock); |
| obj = tmem_obj_find(hb, oidp); |
| if (obj == NULL) |
| goto out; |
| tmem_pampd_destroy_all_in_obj(obj); |
| tmem_obj_free(obj, hb); |
| (*tmem_hostops.obj_free)(obj, pool); |
| ret = 0; |
| |
| out: |
| spin_unlock(&hb->lock); |
| return ret; |
| } |
| |
| /* |
| * "Flush" all pages (and tmem_objs) from this tmem_pool and disable |
| * all subsequent access to this tmem_pool. |
| */ |
| int tmem_destroy_pool(struct tmem_pool *pool) |
| { |
| int ret = -1; |
| |
| if (pool == NULL) |
| goto out; |
| tmem_pool_flush(pool, 1); |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| static LIST_HEAD(tmem_global_pool_list); |
| |
| /* |
| * Create a new tmem_pool with the provided flag and return |
| * a pool id provided by the tmem host implementation. |
| */ |
| void tmem_new_pool(struct tmem_pool *pool, uint32_t flags) |
| { |
| int persistent = flags & TMEM_POOL_PERSIST; |
| int shared = flags & TMEM_POOL_SHARED; |
| struct tmem_hashbucket *hb = &pool->hashbucket[0]; |
| int i; |
| |
| for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) { |
| hb->obj_rb_root = RB_ROOT; |
| spin_lock_init(&hb->lock); |
| } |
| INIT_LIST_HEAD(&pool->pool_list); |
| atomic_set(&pool->obj_count, 0); |
| SET_SENTINEL(pool, POOL); |
| list_add_tail(&pool->pool_list, &tmem_global_pool_list); |
| pool->persistent = persistent; |
| pool->shared = shared; |
| } |