| /* |
| * Copyright 2014 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <linux/mm_types.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <linux/sched/signal.h> |
| #include <linux/uaccess.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/memory.h> |
| #include "kfd_priv.h" |
| #include "kfd_events.h" |
| #include <linux/device.h> |
| |
| /* |
| * A task can only be on a single wait_queue at a time, but we need to support |
| * waiting on multiple events (any/all). |
| * Instead of each event simply having a wait_queue with sleeping tasks, it |
| * has a singly-linked list of tasks. |
| * A thread that wants to sleep creates an array of these, one for each event |
| * and adds one to each event's waiter chain. |
| */ |
| struct kfd_event_waiter { |
| struct list_head waiters; |
| struct task_struct *sleeping_task; |
| |
| /* Transitions to true when the event this belongs to is signaled. */ |
| bool activated; |
| |
| /* Event */ |
| struct kfd_event *event; |
| uint32_t input_index; |
| }; |
| |
| /* |
| * Over-complicated pooled allocator for event notification slots. |
| * |
| * Each signal event needs a 64-bit signal slot where the signaler will write |
| * a 1 before sending an interrupt.l (This is needed because some interrupts |
| * do not contain enough spare data bits to identify an event.) |
| * We get whole pages from vmalloc and map them to the process VA. |
| * Individual signal events are then allocated a slot in a page. |
| */ |
| |
| struct signal_page { |
| struct list_head event_pages; /* kfd_process.signal_event_pages */ |
| uint64_t *kernel_address; |
| uint64_t __user *user_address; |
| uint32_t page_index; /* Index into the mmap aperture. */ |
| unsigned int free_slots; |
| unsigned long used_slot_bitmap[0]; |
| }; |
| |
| #define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT |
| #define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE) |
| #define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1) |
| #define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \ |
| SLOT_BITMAP_SIZE * sizeof(long)) |
| |
| /* |
| * For signal events, the event ID is used as the interrupt user data. |
| * For SQ s_sendmsg interrupts, this is limited to 8 bits. |
| */ |
| |
| #define INTERRUPT_DATA_BITS 8 |
| #define SIGNAL_EVENT_ID_SLOT_SHIFT 0 |
| |
| static uint64_t *page_slots(struct signal_page *page) |
| { |
| return page->kernel_address; |
| } |
| |
| static bool allocate_free_slot(struct kfd_process *process, |
| struct signal_page **out_page, |
| unsigned int *out_slot_index) |
| { |
| struct signal_page *page; |
| |
| list_for_each_entry(page, &process->signal_event_pages, event_pages) { |
| if (page->free_slots > 0) { |
| unsigned int slot = |
| find_first_zero_bit(page->used_slot_bitmap, |
| SLOTS_PER_PAGE); |
| |
| __set_bit(slot, page->used_slot_bitmap); |
| page->free_slots--; |
| |
| page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT; |
| |
| *out_page = page; |
| *out_slot_index = slot; |
| |
| pr_debug("allocated event signal slot in page %p, slot %d\n", |
| page, slot); |
| |
| return true; |
| } |
| } |
| |
| pr_debug("No free event signal slots were found for process %p\n", |
| process); |
| |
| return false; |
| } |
| |
| #define list_tail_entry(head, type, member) \ |
| list_entry((head)->prev, type, member) |
| |
| static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p) |
| { |
| void *backing_store; |
| struct signal_page *page; |
| |
| page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL); |
| if (!page) |
| goto fail_alloc_signal_page; |
| |
| page->free_slots = SLOTS_PER_PAGE; |
| |
| backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, |
| get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); |
| if (!backing_store) |
| goto fail_alloc_signal_store; |
| |
| /* prevent user-mode info leaks */ |
| memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, |
| KFD_SIGNAL_EVENT_LIMIT * 8); |
| |
| page->kernel_address = backing_store; |
| |
| if (list_empty(&p->signal_event_pages)) |
| page->page_index = 0; |
| else |
| page->page_index = list_tail_entry(&p->signal_event_pages, |
| struct signal_page, |
| event_pages)->page_index + 1; |
| |
| pr_debug("allocated new event signal page at %p, for process %p\n", |
| page, p); |
| pr_debug("page index is %d\n", page->page_index); |
| |
| list_add(&page->event_pages, &p->signal_event_pages); |
| |
| return true; |
| |
| fail_alloc_signal_store: |
| kfree(page); |
| fail_alloc_signal_page: |
| return false; |
| } |
| |
| static bool allocate_event_notification_slot(struct file *devkfd, |
| struct kfd_process *p, |
| struct signal_page **page, |
| unsigned int *signal_slot_index) |
| { |
| bool ret; |
| |
| ret = allocate_free_slot(p, page, signal_slot_index); |
| if (!ret) { |
| ret = allocate_signal_page(devkfd, p); |
| if (ret) |
| ret = allocate_free_slot(p, page, signal_slot_index); |
| } |
| |
| return ret; |
| } |
| |
| /* Assumes that the process's event_mutex is locked. */ |
| static void release_event_notification_slot(struct signal_page *page, |
| size_t slot_index) |
| { |
| __clear_bit(slot_index, page->used_slot_bitmap); |
| page->free_slots++; |
| |
| /* We don't free signal pages, they are retained by the process |
| * and reused until it exits. */ |
| } |
| |
| static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p, |
| unsigned int page_index) |
| { |
| struct signal_page *page; |
| |
| /* |
| * This is safe because we don't delete signal pages until the |
| * process exits. |
| */ |
| list_for_each_entry(page, &p->signal_event_pages, event_pages) |
| if (page->page_index == page_index) |
| return page; |
| |
| return NULL; |
| } |
| |
| /* |
| * Assumes that p->event_mutex is held and of course that p is not going |
| * away (current or locked). |
| */ |
| static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) |
| { |
| struct kfd_event *ev; |
| |
| hash_for_each_possible(p->events, ev, events, id) |
| if (ev->event_id == id) |
| return ev; |
| |
| return NULL; |
| } |
| |
| static u32 make_signal_event_id(struct signal_page *page, |
| unsigned int signal_slot_index) |
| { |
| return page->page_index | |
| (signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT); |
| } |
| |
| /* |
| * Produce a kfd event id for a nonsignal event. |
| * These are arbitrary numbers, so we do a sequential search through |
| * the hash table for an unused number. |
| */ |
| static u32 make_nonsignal_event_id(struct kfd_process *p) |
| { |
| u32 id; |
| |
| for (id = p->next_nonsignal_event_id; |
| id < KFD_LAST_NONSIGNAL_EVENT_ID && |
| lookup_event_by_id(p, id) != NULL; |
| id++) |
| ; |
| |
| if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { |
| |
| /* |
| * What if id == LAST_NONSIGNAL_EVENT_ID - 1? |
| * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so |
| * the first loop fails immediately and we proceed with the |
| * wraparound loop below. |
| */ |
| p->next_nonsignal_event_id = id + 1; |
| |
| return id; |
| } |
| |
| for (id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| id < KFD_LAST_NONSIGNAL_EVENT_ID && |
| lookup_event_by_id(p, id) != NULL; |
| id++) |
| ; |
| |
| |
| if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { |
| p->next_nonsignal_event_id = id + 1; |
| return id; |
| } |
| |
| p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| return 0; |
| } |
| |
| static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p, |
| struct signal_page *page, |
| unsigned int signal_slot) |
| { |
| return lookup_event_by_id(p, make_signal_event_id(page, signal_slot)); |
| } |
| |
| static int create_signal_event(struct file *devkfd, |
| struct kfd_process *p, |
| struct kfd_event *ev) |
| { |
| if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) { |
| pr_warn("amdkfd: Signal event wasn't created because limit was reached\n"); |
| return -ENOMEM; |
| } |
| |
| if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page, |
| &ev->signal_slot_index)) { |
| pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n"); |
| return -ENOMEM; |
| } |
| |
| p->signal_event_count++; |
| |
| ev->user_signal_address = |
| &ev->signal_page->user_address[ev->signal_slot_index]; |
| |
| ev->event_id = make_signal_event_id(ev->signal_page, |
| ev->signal_slot_index); |
| |
| pr_debug("signal event number %zu created with id %d, address %p\n", |
| p->signal_event_count, ev->event_id, |
| ev->user_signal_address); |
| |
| pr_debug("signal event number %zu created with id %d, address %p\n", |
| p->signal_event_count, ev->event_id, |
| ev->user_signal_address); |
| |
| return 0; |
| } |
| |
| /* |
| * No non-signal events are supported yet. |
| * We create them as events that never signal. |
| * Set event calls from user-mode are failed. |
| */ |
| static int create_other_event(struct kfd_process *p, struct kfd_event *ev) |
| { |
| ev->event_id = make_nonsignal_event_id(p); |
| if (ev->event_id == 0) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| void kfd_event_init_process(struct kfd_process *p) |
| { |
| mutex_init(&p->event_mutex); |
| hash_init(p->events); |
| INIT_LIST_HEAD(&p->signal_event_pages); |
| p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; |
| p->signal_event_count = 0; |
| } |
| |
| static void destroy_event(struct kfd_process *p, struct kfd_event *ev) |
| { |
| if (ev->signal_page != NULL) { |
| release_event_notification_slot(ev->signal_page, |
| ev->signal_slot_index); |
| p->signal_event_count--; |
| } |
| |
| /* |
| * Abandon the list of waiters. Individual waiting threads will |
| * clean up their own data. |
| */ |
| list_del(&ev->waiters); |
| |
| hash_del(&ev->events); |
| kfree(ev); |
| } |
| |
| static void destroy_events(struct kfd_process *p) |
| { |
| struct kfd_event *ev; |
| struct hlist_node *tmp; |
| unsigned int hash_bkt; |
| |
| hash_for_each_safe(p->events, hash_bkt, tmp, ev, events) |
| destroy_event(p, ev); |
| } |
| |
| /* |
| * We assume that the process is being destroyed and there is no need to |
| * unmap the pages or keep bookkeeping data in order. |
| */ |
| static void shutdown_signal_pages(struct kfd_process *p) |
| { |
| struct signal_page *page, *tmp; |
| |
| list_for_each_entry_safe(page, tmp, &p->signal_event_pages, |
| event_pages) { |
| free_pages((unsigned long)page->kernel_address, |
| get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); |
| kfree(page); |
| } |
| } |
| |
| void kfd_event_free_process(struct kfd_process *p) |
| { |
| destroy_events(p); |
| shutdown_signal_pages(p); |
| } |
| |
| static bool event_can_be_gpu_signaled(const struct kfd_event *ev) |
| { |
| return ev->type == KFD_EVENT_TYPE_SIGNAL || |
| ev->type == KFD_EVENT_TYPE_DEBUG; |
| } |
| |
| static bool event_can_be_cpu_signaled(const struct kfd_event *ev) |
| { |
| return ev->type == KFD_EVENT_TYPE_SIGNAL; |
| } |
| |
| int kfd_event_create(struct file *devkfd, struct kfd_process *p, |
| uint32_t event_type, bool auto_reset, uint32_t node_id, |
| uint32_t *event_id, uint32_t *event_trigger_data, |
| uint64_t *event_page_offset, uint32_t *event_slot_index) |
| { |
| int ret = 0; |
| struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); |
| |
| if (!ev) |
| return -ENOMEM; |
| |
| ev->type = event_type; |
| ev->auto_reset = auto_reset; |
| ev->signaled = false; |
| |
| INIT_LIST_HEAD(&ev->waiters); |
| |
| *event_page_offset = 0; |
| |
| mutex_lock(&p->event_mutex); |
| |
| switch (event_type) { |
| case KFD_EVENT_TYPE_SIGNAL: |
| case KFD_EVENT_TYPE_DEBUG: |
| ret = create_signal_event(devkfd, p, ev); |
| if (!ret) { |
| *event_page_offset = (ev->signal_page->page_index | |
| KFD_MMAP_EVENTS_MASK); |
| *event_page_offset <<= PAGE_SHIFT; |
| *event_slot_index = ev->signal_slot_index; |
| } |
| break; |
| default: |
| ret = create_other_event(p, ev); |
| break; |
| } |
| |
| if (!ret) { |
| hash_add(p->events, &ev->events, ev->event_id); |
| |
| *event_id = ev->event_id; |
| *event_trigger_data = ev->event_id; |
| } else { |
| kfree(ev); |
| } |
| |
| mutex_unlock(&p->event_mutex); |
| |
| return ret; |
| } |
| |
| /* Assumes that p is current. */ |
| int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) |
| { |
| struct kfd_event *ev; |
| int ret = 0; |
| |
| mutex_lock(&p->event_mutex); |
| |
| ev = lookup_event_by_id(p, event_id); |
| |
| if (ev) |
| destroy_event(p, ev); |
| else |
| ret = -EINVAL; |
| |
| mutex_unlock(&p->event_mutex); |
| return ret; |
| } |
| |
| static void set_event(struct kfd_event *ev) |
| { |
| struct kfd_event_waiter *waiter; |
| struct kfd_event_waiter *next; |
| |
| /* Auto reset if the list is non-empty and we're waking someone. */ |
| ev->signaled = !ev->auto_reset || list_empty(&ev->waiters); |
| |
| list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) { |
| waiter->activated = true; |
| |
| /* _init because free_waiters will call list_del */ |
| list_del_init(&waiter->waiters); |
| |
| wake_up_process(waiter->sleeping_task); |
| } |
| } |
| |
| /* Assumes that p is current. */ |
| int kfd_set_event(struct kfd_process *p, uint32_t event_id) |
| { |
| int ret = 0; |
| struct kfd_event *ev; |
| |
| mutex_lock(&p->event_mutex); |
| |
| ev = lookup_event_by_id(p, event_id); |
| |
| if (ev && event_can_be_cpu_signaled(ev)) |
| set_event(ev); |
| else |
| ret = -EINVAL; |
| |
| mutex_unlock(&p->event_mutex); |
| return ret; |
| } |
| |
| static void reset_event(struct kfd_event *ev) |
| { |
| ev->signaled = false; |
| } |
| |
| /* Assumes that p is current. */ |
| int kfd_reset_event(struct kfd_process *p, uint32_t event_id) |
| { |
| int ret = 0; |
| struct kfd_event *ev; |
| |
| mutex_lock(&p->event_mutex); |
| |
| ev = lookup_event_by_id(p, event_id); |
| |
| if (ev && event_can_be_cpu_signaled(ev)) |
| reset_event(ev); |
| else |
| ret = -EINVAL; |
| |
| mutex_unlock(&p->event_mutex); |
| return ret; |
| |
| } |
| |
| static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) |
| { |
| page_slots(ev->signal_page)[ev->signal_slot_index] = |
| UNSIGNALED_EVENT_SLOT; |
| } |
| |
| static bool is_slot_signaled(struct signal_page *page, unsigned int index) |
| { |
| return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT; |
| } |
| |
| static void set_event_from_interrupt(struct kfd_process *p, |
| struct kfd_event *ev) |
| { |
| if (ev && event_can_be_gpu_signaled(ev)) { |
| acknowledge_signal(p, ev); |
| set_event(ev); |
| } |
| } |
| |
| void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, |
| uint32_t valid_id_bits) |
| { |
| struct kfd_event *ev; |
| |
| /* |
| * Because we are called from arbitrary context (workqueue) as opposed |
| * to process context, kfd_process could attempt to exit while we are |
| * running so the lookup function returns a locked process. |
| */ |
| struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| |
| if (!p) |
| return; /* Presumably process exited. */ |
| |
| mutex_lock(&p->event_mutex); |
| |
| if (valid_id_bits >= INTERRUPT_DATA_BITS) { |
| /* Partial ID is a full ID. */ |
| ev = lookup_event_by_id(p, partial_id); |
| set_event_from_interrupt(p, ev); |
| } else { |
| /* |
| * Partial ID is in fact partial. For now we completely |
| * ignore it, but we could use any bits we did receive to |
| * search faster. |
| */ |
| struct signal_page *page; |
| unsigned i; |
| |
| list_for_each_entry(page, &p->signal_event_pages, event_pages) |
| for (i = 0; i < SLOTS_PER_PAGE; i++) |
| if (is_slot_signaled(page, i)) { |
| ev = lookup_event_by_page_slot(p, |
| page, i); |
| set_event_from_interrupt(p, ev); |
| } |
| } |
| |
| mutex_unlock(&p->event_mutex); |
| mutex_unlock(&p->mutex); |
| } |
| |
| static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) |
| { |
| struct kfd_event_waiter *event_waiters; |
| uint32_t i; |
| |
| event_waiters = kmalloc_array(num_events, |
| sizeof(struct kfd_event_waiter), |
| GFP_KERNEL); |
| |
| for (i = 0; (event_waiters) && (i < num_events) ; i++) { |
| INIT_LIST_HEAD(&event_waiters[i].waiters); |
| event_waiters[i].sleeping_task = current; |
| event_waiters[i].activated = false; |
| } |
| |
| return event_waiters; |
| } |
| |
| static int init_event_waiter(struct kfd_process *p, |
| struct kfd_event_waiter *waiter, |
| uint32_t event_id, |
| uint32_t input_index) |
| { |
| struct kfd_event *ev = lookup_event_by_id(p, event_id); |
| |
| if (!ev) |
| return -EINVAL; |
| |
| waiter->event = ev; |
| waiter->input_index = input_index; |
| waiter->activated = ev->signaled; |
| ev->signaled = ev->signaled && !ev->auto_reset; |
| |
| list_add(&waiter->waiters, &ev->waiters); |
| |
| return 0; |
| } |
| |
| static bool test_event_condition(bool all, uint32_t num_events, |
| struct kfd_event_waiter *event_waiters) |
| { |
| uint32_t i; |
| uint32_t activated_count = 0; |
| |
| for (i = 0; i < num_events; i++) { |
| if (event_waiters[i].activated) { |
| if (!all) |
| return true; |
| |
| activated_count++; |
| } |
| } |
| |
| return activated_count == num_events; |
| } |
| |
| /* |
| * Copy event specific data, if defined. |
| * Currently only memory exception events have additional data to copy to user |
| */ |
| static bool copy_signaled_event_data(uint32_t num_events, |
| struct kfd_event_waiter *event_waiters, |
| struct kfd_event_data __user *data) |
| { |
| struct kfd_hsa_memory_exception_data *src; |
| struct kfd_hsa_memory_exception_data __user *dst; |
| struct kfd_event_waiter *waiter; |
| struct kfd_event *event; |
| uint32_t i; |
| |
| for (i = 0; i < num_events; i++) { |
| waiter = &event_waiters[i]; |
| event = waiter->event; |
| if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { |
| dst = &data[waiter->input_index].memory_exception_data; |
| src = &event->memory_exception_data; |
| if (copy_to_user(dst, src, |
| sizeof(struct kfd_hsa_memory_exception_data))) |
| return false; |
| } |
| } |
| |
| return true; |
| |
| } |
| |
| |
| |
| static long user_timeout_to_jiffies(uint32_t user_timeout_ms) |
| { |
| if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) |
| return 0; |
| |
| if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) |
| return MAX_SCHEDULE_TIMEOUT; |
| |
| /* |
| * msecs_to_jiffies interprets all values above 2^31-1 as infinite, |
| * but we consider them finite. |
| * This hack is wrong, but nobody is likely to notice. |
| */ |
| user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); |
| |
| return msecs_to_jiffies(user_timeout_ms) + 1; |
| } |
| |
| static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < num_events; i++) |
| list_del(&waiters[i].waiters); |
| |
| kfree(waiters); |
| } |
| |
| int kfd_wait_on_events(struct kfd_process *p, |
| uint32_t num_events, void __user *data, |
| bool all, uint32_t user_timeout_ms, |
| enum kfd_event_wait_result *wait_result) |
| { |
| struct kfd_event_data __user *events = |
| (struct kfd_event_data __user *) data; |
| uint32_t i; |
| int ret = 0; |
| struct kfd_event_waiter *event_waiters = NULL; |
| long timeout = user_timeout_to_jiffies(user_timeout_ms); |
| |
| mutex_lock(&p->event_mutex); |
| |
| event_waiters = alloc_event_waiters(num_events); |
| if (!event_waiters) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| for (i = 0; i < num_events; i++) { |
| struct kfd_event_data event_data; |
| |
| if (copy_from_user(&event_data, &events[i], |
| sizeof(struct kfd_event_data))) { |
| ret = -EFAULT; |
| goto fail; |
| } |
| |
| ret = init_event_waiter(p, &event_waiters[i], |
| event_data.event_id, i); |
| if (ret) |
| goto fail; |
| } |
| |
| mutex_unlock(&p->event_mutex); |
| |
| while (true) { |
| if (fatal_signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| |
| if (signal_pending(current)) { |
| /* |
| * This is wrong when a nonzero, non-infinite timeout |
| * is specified. We need to use |
| * ERESTARTSYS_RESTARTBLOCK, but struct restart_block |
| * contains a union with data for each user and it's |
| * in generic kernel code that I don't want to |
| * touch yet. |
| */ |
| ret = -ERESTARTSYS; |
| break; |
| } |
| |
| if (test_event_condition(all, num_events, event_waiters)) { |
| if (copy_signaled_event_data(num_events, |
| event_waiters, events)) |
| *wait_result = KFD_WAIT_COMPLETE; |
| else |
| *wait_result = KFD_WAIT_ERROR; |
| break; |
| } |
| |
| if (timeout <= 0) { |
| *wait_result = KFD_WAIT_TIMEOUT; |
| break; |
| } |
| |
| timeout = schedule_timeout_interruptible(timeout); |
| } |
| __set_current_state(TASK_RUNNING); |
| |
| mutex_lock(&p->event_mutex); |
| free_waiters(num_events, event_waiters); |
| mutex_unlock(&p->event_mutex); |
| |
| return ret; |
| |
| fail: |
| if (event_waiters) |
| free_waiters(num_events, event_waiters); |
| |
| mutex_unlock(&p->event_mutex); |
| |
| *wait_result = KFD_WAIT_ERROR; |
| |
| return ret; |
| } |
| |
| int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) |
| { |
| |
| unsigned int page_index; |
| unsigned long pfn; |
| struct signal_page *page; |
| |
| /* check required size is logical */ |
| if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) != |
| get_order(vma->vm_end - vma->vm_start)) { |
| pr_err("amdkfd: event page mmap requested illegal size\n"); |
| return -EINVAL; |
| } |
| |
| page_index = vma->vm_pgoff; |
| |
| page = lookup_signal_page_by_index(p, page_index); |
| if (!page) { |
| /* Probably KFD bug, but mmap is user-accessible. */ |
| pr_debug("signal page could not be found for page_index %u\n", |
| page_index); |
| return -EINVAL; |
| } |
| |
| pfn = __pa(page->kernel_address); |
| pfn >>= PAGE_SHIFT; |
| |
| vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
| | VM_DONTDUMP | VM_PFNMAP; |
| |
| pr_debug("mapping signal page\n"); |
| pr_debug(" start user address == 0x%08lx\n", vma->vm_start); |
| pr_debug(" end user address == 0x%08lx\n", vma->vm_end); |
| pr_debug(" pfn == 0x%016lX\n", pfn); |
| pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); |
| pr_debug(" size == 0x%08lX\n", |
| vma->vm_end - vma->vm_start); |
| |
| page->user_address = (uint64_t __user *)vma->vm_start; |
| |
| /* mapping the page to user process */ |
| return remap_pfn_range(vma, vma->vm_start, pfn, |
| vma->vm_end - vma->vm_start, vma->vm_page_prot); |
| } |
| |
| /* |
| * Assumes that p->event_mutex is held and of course |
| * that p is not going away (current or locked). |
| */ |
| static void lookup_events_by_type_and_signal(struct kfd_process *p, |
| int type, void *event_data) |
| { |
| struct kfd_hsa_memory_exception_data *ev_data; |
| struct kfd_event *ev; |
| int bkt; |
| bool send_signal = true; |
| |
| ev_data = (struct kfd_hsa_memory_exception_data *) event_data; |
| |
| hash_for_each(p->events, bkt, ev, events) |
| if (ev->type == type) { |
| send_signal = false; |
| dev_dbg(kfd_device, |
| "Event found: id %X type %d", |
| ev->event_id, ev->type); |
| set_event(ev); |
| if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) |
| ev->memory_exception_data = *ev_data; |
| } |
| |
| /* Send SIGTERM no event of type "type" has been found*/ |
| if (send_signal) { |
| if (send_sigterm) { |
| dev_warn(kfd_device, |
| "Sending SIGTERM to HSA Process with PID %d ", |
| p->lead_thread->pid); |
| send_sig(SIGTERM, p->lead_thread, 0); |
| } else { |
| dev_err(kfd_device, |
| "HSA Process (PID %d) got unhandled exception", |
| p->lead_thread->pid); |
| } |
| } |
| } |
| |
| void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, |
| unsigned long address, bool is_write_requested, |
| bool is_execute_requested) |
| { |
| struct kfd_hsa_memory_exception_data memory_exception_data; |
| struct vm_area_struct *vma; |
| |
| /* |
| * Because we are called from arbitrary context (workqueue) as opposed |
| * to process context, kfd_process could attempt to exit while we are |
| * running so the lookup function returns a locked process. |
| */ |
| struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| |
| if (!p) |
| return; /* Presumably process exited. */ |
| |
| memset(&memory_exception_data, 0, sizeof(memory_exception_data)); |
| |
| down_read(&p->mm->mmap_sem); |
| vma = find_vma(p->mm, address); |
| |
| memory_exception_data.gpu_id = dev->id; |
| memory_exception_data.va = address; |
| /* Set failure reason */ |
| memory_exception_data.failure.NotPresent = 1; |
| memory_exception_data.failure.NoExecute = 0; |
| memory_exception_data.failure.ReadOnly = 0; |
| if (vma) { |
| if (vma->vm_start > address) { |
| memory_exception_data.failure.NotPresent = 1; |
| memory_exception_data.failure.NoExecute = 0; |
| memory_exception_data.failure.ReadOnly = 0; |
| } else { |
| memory_exception_data.failure.NotPresent = 0; |
| if (is_write_requested && !(vma->vm_flags & VM_WRITE)) |
| memory_exception_data.failure.ReadOnly = 1; |
| else |
| memory_exception_data.failure.ReadOnly = 0; |
| if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) |
| memory_exception_data.failure.NoExecute = 1; |
| else |
| memory_exception_data.failure.NoExecute = 0; |
| } |
| } |
| |
| up_read(&p->mm->mmap_sem); |
| |
| mutex_lock(&p->event_mutex); |
| |
| /* Lookup events by type and signal them */ |
| lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, |
| &memory_exception_data); |
| |
| mutex_unlock(&p->event_mutex); |
| mutex_unlock(&p->mutex); |
| } |
| |
| void kfd_signal_hw_exception_event(unsigned int pasid) |
| { |
| /* |
| * Because we are called from arbitrary context (workqueue) as opposed |
| * to process context, kfd_process could attempt to exit while we are |
| * running so the lookup function returns a locked process. |
| */ |
| struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); |
| |
| if (!p) |
| return; /* Presumably process exited. */ |
| |
| mutex_lock(&p->event_mutex); |
| |
| /* Lookup events by type and signal them */ |
| lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); |
| |
| mutex_unlock(&p->event_mutex); |
| mutex_unlock(&p->mutex); |
| } |