blob: 490b90866baf4cae9feeb4880d33d03e47528bdc [file] [log] [blame]
/*
* Copyright 2011 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include <linux/dma-mapping.h>
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_dp_helper.h>
#include <nvif/class.h>
#include "nouveau_drm.h"
#include "nouveau_dma.h"
#include "nouveau_gem.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include "nouveau_fence.h"
#include "nv50_display.h"
#define EVO_DMA_NR 9
#define EVO_MASTER (0x00)
#define EVO_FLIP(c) (0x01 + (c))
#define EVO_OVLY(c) (0x05 + (c))
#define EVO_OIMM(c) (0x09 + (c))
#define EVO_CURS(c) (0x0d + (c))
/* offsets in shared sync bo of various structures */
#define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
#define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
#define EVO_FLIP_SEM0(c) EVO_SYNC((c) + 1, 0x00)
#define EVO_FLIP_SEM1(c) EVO_SYNC((c) + 1, 0x10)
/******************************************************************************
* EVO channel
*****************************************************************************/
struct nv50_chan {
struct nvif_object user;
};
static int
nv50_chan_create(struct nvif_object *disp, const u32 *oclass, u8 head,
void *data, u32 size, struct nv50_chan *chan)
{
const u32 handle = (oclass[0] << 16) | head;
u32 sclass[8];
int ret, i;
ret = nvif_object_sclass(disp, sclass, ARRAY_SIZE(sclass));
WARN_ON(ret > ARRAY_SIZE(sclass));
if (ret < 0)
return ret;
while (oclass[0]) {
for (i = 0; i < ARRAY_SIZE(sclass); i++) {
if (sclass[i] == oclass[0]) {
ret = nvif_object_init(disp, NULL, handle,
oclass[0], data, size,
&chan->user);
if (ret == 0)
nvif_object_map(&chan->user);
return ret;
}
}
oclass++;
}
return -ENOSYS;
}
static void
nv50_chan_destroy(struct nv50_chan *chan)
{
nvif_object_fini(&chan->user);
}
/******************************************************************************
* PIO EVO channel
*****************************************************************************/
struct nv50_pioc {
struct nv50_chan base;
};
static void
nv50_pioc_destroy(struct nv50_pioc *pioc)
{
nv50_chan_destroy(&pioc->base);
}
static int
nv50_pioc_create(struct nvif_object *disp, const u32 *oclass, u8 head,
void *data, u32 size, struct nv50_pioc *pioc)
{
return nv50_chan_create(disp, oclass, head, data, size, &pioc->base);
}
/******************************************************************************
* Cursor Immediate
*****************************************************************************/
struct nv50_curs {
struct nv50_pioc base;
struct nouveau_bo *image;
};
static int
nv50_curs_create(struct nvif_object *disp, int head, struct nv50_curs *curs)
{
struct nv50_disp_cursor_v0 args = {
.head = head,
};
static const u32 oclass[] = {
GK104_DISP_CURSOR,
GF110_DISP_CURSOR,
GT214_DISP_CURSOR,
G82_DISP_CURSOR,
NV50_DISP_CURSOR,
0
};
return nv50_pioc_create(disp, oclass, head, &args, sizeof(args),
&curs->base);
}
/******************************************************************************
* Overlay Immediate
*****************************************************************************/
struct nv50_oimm {
struct nv50_pioc base;
};
static int
nv50_oimm_create(struct nvif_object *disp, int head, struct nv50_oimm *oimm)
{
struct nv50_disp_cursor_v0 args = {
.head = head,
};
static const u32 oclass[] = {
GK104_DISP_OVERLAY,
GF110_DISP_OVERLAY,
GT214_DISP_OVERLAY,
G82_DISP_OVERLAY,
NV50_DISP_OVERLAY,
0
};
return nv50_pioc_create(disp, oclass, head, &args, sizeof(args),
&oimm->base);
}
/******************************************************************************
* DMA EVO channel
*****************************************************************************/
struct nv50_dmac {
struct nv50_chan base;
dma_addr_t handle;
u32 *ptr;
struct nvif_object sync;
struct nvif_object vram;
/* Protects against concurrent pushbuf access to this channel, lock is
* grabbed by evo_wait (if the pushbuf reservation is successful) and
* dropped again by evo_kick. */
struct mutex lock;
};
static void
nv50_dmac_destroy(struct nv50_dmac *dmac, struct nvif_object *disp)
{
nvif_object_fini(&dmac->vram);
nvif_object_fini(&dmac->sync);
nv50_chan_destroy(&dmac->base);
if (dmac->ptr) {
struct pci_dev *pdev = nvkm_device(nvif_device(disp))->pdev;
pci_free_consistent(pdev, PAGE_SIZE, dmac->ptr, dmac->handle);
}
}
static int
nv50_dmac_create(struct nvif_object *disp, const u32 *oclass, u8 head,
void *data, u32 size, u64 syncbuf,
struct nv50_dmac *dmac)
{
struct nvif_device *device = nvif_device(disp);
struct nv50_disp_core_channel_dma_v0 *args = data;
struct nvif_object pushbuf;
int ret;
mutex_init(&dmac->lock);
dmac->ptr = pci_alloc_consistent(nvkm_device(device)->pdev,
PAGE_SIZE, &dmac->handle);
if (!dmac->ptr)
return -ENOMEM;
ret = nvif_object_init(nvif_object(device), NULL,
args->pushbuf, NV_DMA_FROM_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_PCI_US,
.access = NV_DMA_V0_ACCESS_RD,
.start = dmac->handle + 0x0000,
.limit = dmac->handle + 0x0fff,
}, sizeof(struct nv_dma_v0), &pushbuf);
if (ret)
return ret;
ret = nv50_chan_create(disp, oclass, head, data, size, &dmac->base);
nvif_object_fini(&pushbuf);
if (ret)
return ret;
ret = nvif_object_init(&dmac->base.user, NULL, 0xf0000000,
NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = syncbuf + 0x0000,
.limit = syncbuf + 0x0fff,
}, sizeof(struct nv_dma_v0),
&dmac->sync);
if (ret)
return ret;
ret = nvif_object_init(&dmac->base.user, NULL, 0xf0000001,
NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = 0,
.limit = device->info.ram_user - 1,
}, sizeof(struct nv_dma_v0),
&dmac->vram);
if (ret)
return ret;
return ret;
}
/******************************************************************************
* Core
*****************************************************************************/
struct nv50_mast {
struct nv50_dmac base;
};
static int
nv50_core_create(struct nvif_object *disp, u64 syncbuf, struct nv50_mast *core)
{
struct nv50_disp_core_channel_dma_v0 args = {
.pushbuf = 0xb0007d00,
};
static const u32 oclass[] = {
GM204_DISP_CORE_CHANNEL_DMA,
GM107_DISP_CORE_CHANNEL_DMA,
GK110_DISP_CORE_CHANNEL_DMA,
GK104_DISP_CORE_CHANNEL_DMA,
GF110_DISP_CORE_CHANNEL_DMA,
GT214_DISP_CORE_CHANNEL_DMA,
GT206_DISP_CORE_CHANNEL_DMA,
GT200_DISP_CORE_CHANNEL_DMA,
G82_DISP_CORE_CHANNEL_DMA,
NV50_DISP_CORE_CHANNEL_DMA,
0
};
return nv50_dmac_create(disp, oclass, 0, &args, sizeof(args), syncbuf,
&core->base);
}
/******************************************************************************
* Base
*****************************************************************************/
struct nv50_sync {
struct nv50_dmac base;
u32 addr;
u32 data;
};
static int
nv50_base_create(struct nvif_object *disp, int head, u64 syncbuf,
struct nv50_sync *base)
{
struct nv50_disp_base_channel_dma_v0 args = {
.pushbuf = 0xb0007c00 | head,
.head = head,
};
static const u32 oclass[] = {
GK110_DISP_BASE_CHANNEL_DMA,
GK104_DISP_BASE_CHANNEL_DMA,
GF110_DISP_BASE_CHANNEL_DMA,
GT214_DISP_BASE_CHANNEL_DMA,
GT200_DISP_BASE_CHANNEL_DMA,
G82_DISP_BASE_CHANNEL_DMA,
NV50_DISP_BASE_CHANNEL_DMA,
0
};
return nv50_dmac_create(disp, oclass, head, &args, sizeof(args),
syncbuf, &base->base);
}
/******************************************************************************
* Overlay
*****************************************************************************/
struct nv50_ovly {
struct nv50_dmac base;
};
static int
nv50_ovly_create(struct nvif_object *disp, int head, u64 syncbuf,
struct nv50_ovly *ovly)
{
struct nv50_disp_overlay_channel_dma_v0 args = {
.pushbuf = 0xb0007e00 | head,
.head = head,
};
static const u32 oclass[] = {
GK104_DISP_OVERLAY_CONTROL_DMA,
GF110_DISP_OVERLAY_CONTROL_DMA,
GT214_DISP_OVERLAY_CHANNEL_DMA,
GT200_DISP_OVERLAY_CHANNEL_DMA,
G82_DISP_OVERLAY_CHANNEL_DMA,
NV50_DISP_OVERLAY_CHANNEL_DMA,
0
};
return nv50_dmac_create(disp, oclass, head, &args, sizeof(args),
syncbuf, &ovly->base);
}
struct nv50_head {
struct nouveau_crtc base;
struct nouveau_bo *image;
struct nv50_curs curs;
struct nv50_sync sync;
struct nv50_ovly ovly;
struct nv50_oimm oimm;
};
#define nv50_head(c) ((struct nv50_head *)nouveau_crtc(c))
#define nv50_curs(c) (&nv50_head(c)->curs)
#define nv50_sync(c) (&nv50_head(c)->sync)
#define nv50_ovly(c) (&nv50_head(c)->ovly)
#define nv50_oimm(c) (&nv50_head(c)->oimm)
#define nv50_chan(c) (&(c)->base.base)
#define nv50_vers(c) nv50_chan(c)->user.oclass
struct nv50_fbdma {
struct list_head head;
struct nvif_object core;
struct nvif_object base[4];
};
struct nv50_disp {
struct nvif_object *disp;
struct nv50_mast mast;
struct list_head fbdma;
struct nouveau_bo *sync;
};
static struct nv50_disp *
nv50_disp(struct drm_device *dev)
{
return nouveau_display(dev)->priv;
}
#define nv50_mast(d) (&nv50_disp(d)->mast)
static struct drm_crtc *
nv50_display_crtc_get(struct drm_encoder *encoder)
{
return nouveau_encoder(encoder)->crtc;
}
/******************************************************************************
* EVO channel helpers
*****************************************************************************/
static u32 *
evo_wait(void *evoc, int nr)
{
struct nv50_dmac *dmac = evoc;
u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4;
mutex_lock(&dmac->lock);
if (put + nr >= (PAGE_SIZE / 4) - 8) {
dmac->ptr[put] = 0x20000000;
nvif_wr32(&dmac->base.user, 0x0000, 0x00000000);
if (!nvkm_wait(&dmac->base.user, 0x0004, ~0, 0x00000000)) {
mutex_unlock(&dmac->lock);
nv_error(nvkm_object(&dmac->base.user), "channel stalled\n");
return NULL;
}
put = 0;
}
return dmac->ptr + put;
}
static void
evo_kick(u32 *push, void *evoc)
{
struct nv50_dmac *dmac = evoc;
nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
mutex_unlock(&dmac->lock);
}
#if 1
#define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
#define evo_data(p,d) *((p)++) = (d)
#else
#define evo_mthd(p,m,s) do { \
const u32 _m = (m), _s = (s); \
printk(KERN_ERR "%04x %d %s\n", _m, _s, __func__); \
*((p)++) = ((_s << 18) | _m); \
} while(0)
#define evo_data(p,d) do { \
const u32 _d = (d); \
printk(KERN_ERR "\t%08x\n", _d); \
*((p)++) = _d; \
} while(0)
#endif
static bool
evo_sync_wait(void *data)
{
if (nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000)
return true;
usleep_range(1, 2);
return false;
}
static int
evo_sync(struct drm_device *dev)
{
struct nvif_device *device = &nouveau_drm(dev)->device;
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_mast *mast = nv50_mast(dev);
u32 *push = evo_wait(mast, 8);
if (push) {
nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x80000000 | EVO_MAST_NTFY);
evo_mthd(push, 0x0080, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_kick(push, mast);
if (nv_wait_cb(nvkm_device(device), evo_sync_wait, disp->sync))
return 0;
}
return -EBUSY;
}
/******************************************************************************
* Page flipping channel
*****************************************************************************/
struct nouveau_bo *
nv50_display_crtc_sema(struct drm_device *dev, int crtc)
{
return nv50_disp(dev)->sync;
}
struct nv50_display_flip {
struct nv50_disp *disp;
struct nv50_sync *chan;
};
static bool
nv50_display_flip_wait(void *data)
{
struct nv50_display_flip *flip = data;
if (nouveau_bo_rd32(flip->disp->sync, flip->chan->addr / 4) ==
flip->chan->data)
return true;
usleep_range(1, 2);
return false;
}
void
nv50_display_flip_stop(struct drm_crtc *crtc)
{
struct nvif_device *device = &nouveau_drm(crtc->dev)->device;
struct nv50_display_flip flip = {
.disp = nv50_disp(crtc->dev),
.chan = nv50_sync(crtc),
};
u32 *push;
push = evo_wait(flip.chan, 8);
if (push) {
evo_mthd(push, 0x0084, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0094, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, flip.chan);
}
nv_wait_cb(nvkm_device(device), nv50_display_flip_wait, &flip);
}
int
nv50_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
struct nouveau_channel *chan, u32 swap_interval)
{
struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_head *head = nv50_head(crtc);
struct nv50_sync *sync = nv50_sync(crtc);
u32 *push;
int ret;
swap_interval <<= 4;
if (swap_interval == 0)
swap_interval |= 0x100;
if (chan == NULL)
evo_sync(crtc->dev);
push = evo_wait(sync, 128);
if (unlikely(push == NULL))
return -EBUSY;
if (chan && chan->object->oclass < G82_CHANNEL_GPFIFO) {
ret = RING_SPACE(chan, 8);
if (ret)
return ret;
BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 2);
OUT_RING (chan, NvEvoSema0 + nv_crtc->index);
OUT_RING (chan, sync->addr ^ 0x10);
BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_RELEASE, 1);
OUT_RING (chan, sync->data + 1);
BEGIN_NV04(chan, 0, NV11_SUBCHAN_SEMAPHORE_OFFSET, 2);
OUT_RING (chan, sync->addr);
OUT_RING (chan, sync->data);
} else
if (chan && chan->object->oclass < FERMI_CHANNEL_GPFIFO) {
u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr;
ret = RING_SPACE(chan, 12);
if (ret)
return ret;
BEGIN_NV04(chan, 0, NV11_SUBCHAN_DMA_SEMAPHORE, 1);
OUT_RING (chan, chan->vram.handle);
BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(addr ^ 0x10));
OUT_RING (chan, lower_32_bits(addr ^ 0x10));
OUT_RING (chan, sync->data + 1);
OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG);
BEGIN_NV04(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(addr));
OUT_RING (chan, lower_32_bits(addr));
OUT_RING (chan, sync->data);
OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL);
} else
if (chan) {
u64 addr = nv84_fence_crtc(chan, nv_crtc->index) + sync->addr;
ret = RING_SPACE(chan, 10);
if (ret)
return ret;
BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(addr ^ 0x10));
OUT_RING (chan, lower_32_bits(addr ^ 0x10));
OUT_RING (chan, sync->data + 1);
OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_WRITE_LONG |
NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
OUT_RING (chan, upper_32_bits(addr));
OUT_RING (chan, lower_32_bits(addr));
OUT_RING (chan, sync->data);
OUT_RING (chan, NV84_SUBCHAN_SEMAPHORE_TRIGGER_ACQUIRE_EQUAL |
NVC0_SUBCHAN_SEMAPHORE_TRIGGER_YIELD);
}
if (chan) {
sync->addr ^= 0x10;
sync->data++;
FIRE_RING (chan);
}
/* queue the flip */
evo_mthd(push, 0x0100, 1);
evo_data(push, 0xfffe0000);
evo_mthd(push, 0x0084, 1);
evo_data(push, swap_interval);
if (!(swap_interval & 0x00000100)) {
evo_mthd(push, 0x00e0, 1);
evo_data(push, 0x40000000);
}
evo_mthd(push, 0x0088, 4);
evo_data(push, sync->addr);
evo_data(push, sync->data++);
evo_data(push, sync->data);
evo_data(push, sync->base.sync.handle);
evo_mthd(push, 0x00a0, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x00c0, 1);
evo_data(push, nv_fb->r_handle);
evo_mthd(push, 0x0110, 2);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
if (nv50_vers(sync) < GF110_DISP_BASE_CHANNEL_DMA) {
evo_mthd(push, 0x0800, 5);
evo_data(push, nv_fb->nvbo->bo.offset >> 8);
evo_data(push, 0);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nv_fb->r_pitch);
evo_data(push, nv_fb->r_format);
} else {
evo_mthd(push, 0x0400, 5);
evo_data(push, nv_fb->nvbo->bo.offset >> 8);
evo_data(push, 0);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nv_fb->r_pitch);
evo_data(push, nv_fb->r_format);
}
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, sync);
nouveau_bo_ref(nv_fb->nvbo, &head->image);
return 0;
}
/******************************************************************************
* CRTC
*****************************************************************************/
static int
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
struct nouveau_connector *nv_connector;
struct drm_connector *connector;
u32 *push, mode = 0x00;
nv_connector = nouveau_crtc_connector_get(nv_crtc);
connector = &nv_connector->base;
if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
if (nv_crtc->base.primary->fb->depth > connector->display_info.bpc * 3)
mode = DITHERING_MODE_DYNAMIC2X2;
} else {
mode = nv_connector->dithering_mode;
}
if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
if (connector->display_info.bpc >= 8)
mode |= DITHERING_DEPTH_8BPC;
} else {
mode |= nv_connector->dithering_depth;
}
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x08a0 + (nv_crtc->index * 0x0400), 1);
evo_data(push, mode);
} else
if (nv50_vers(mast) < GK104_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0490 + (nv_crtc->index * 0x0300), 1);
evo_data(push, mode);
} else {
evo_mthd(push, 0x04a0 + (nv_crtc->index * 0x0300), 1);
evo_data(push, mode);
}
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
return 0;
}
static int
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
struct drm_crtc *crtc = &nv_crtc->base;
struct nouveau_connector *nv_connector;
int mode = DRM_MODE_SCALE_NONE;
u32 oX, oY, *push;
/* start off at the resolution we programmed the crtc for, this
* effectively handles NONE/FULL scaling
*/
nv_connector = nouveau_crtc_connector_get(nv_crtc);
if (nv_connector && nv_connector->native_mode)
mode = nv_connector->scaling_mode;
if (mode != DRM_MODE_SCALE_NONE)
omode = nv_connector->native_mode;
else
omode = umode;
oX = omode->hdisplay;
oY = omode->vdisplay;
if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
oY *= 2;
/* add overscan compensation if necessary, will keep the aspect
* ratio the same as the backend mode unless overridden by the
* user setting both hborder and vborder properties.
*/
if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
(nv_connector->underscan == UNDERSCAN_AUTO &&
nv_connector->edid &&
drm_detect_hdmi_monitor(nv_connector->edid)))) {
u32 bX = nv_connector->underscan_hborder;
u32 bY = nv_connector->underscan_vborder;
u32 aspect = (oY << 19) / oX;
if (bX) {
oX -= (bX * 2);
if (bY) oY -= (bY * 2);
else oY = ((oX * aspect) + (aspect / 2)) >> 19;
} else {
oX -= (oX >> 4) + 32;
if (bY) oY -= (bY * 2);
else oY = ((oX * aspect) + (aspect / 2)) >> 19;
}
}
/* handle CENTER/ASPECT scaling, taking into account the areas
* removed already for overscan compensation
*/
switch (mode) {
case DRM_MODE_SCALE_CENTER:
oX = min((u32)umode->hdisplay, oX);
oY = min((u32)umode->vdisplay, oY);
/* fall-through */
case DRM_MODE_SCALE_ASPECT:
if (oY < oX) {
u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
oX = ((oY * aspect) + (aspect / 2)) >> 19;
} else {
u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
oY = ((oX * aspect) + (aspect / 2)) >> 19;
}
break;
default:
break;
}
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
/*XXX: SCALE_CTRL_ACTIVE??? */
evo_mthd(push, 0x08d8 + (nv_crtc->index * 0x400), 2);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_mthd(push, 0x08a4 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x08c8 + (nv_crtc->index * 0x400), 1);
evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
} else {
evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_data(push, (oY << 16) | oX);
evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
evo_data(push, umode->vdisplay << 16 | umode->hdisplay);
}
evo_kick(push, mast);
if (update) {
nv50_display_flip_stop(crtc);
nv50_display_flip_next(crtc, crtc->primary->fb,
NULL, 1);
}
}
return 0;
}
static int
nv50_crtc_set_raster_vblank_dmi(struct nouveau_crtc *nv_crtc, u32 usec)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push;
push = evo_wait(mast, 8);
if (!push)
return -ENOMEM;
evo_mthd(push, 0x0828 + (nv_crtc->index * 0x400), 1);
evo_data(push, usec);
evo_kick(push, mast);
return 0;
}
static int
nv50_crtc_set_color_vibrance(struct nouveau_crtc *nv_crtc, bool update)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push, hue, vib;
int adj;
adj = (nv_crtc->color_vibrance > 0) ? 50 : 0;
vib = ((nv_crtc->color_vibrance * 2047 + adj) / 100) & 0xfff;
hue = ((nv_crtc->vibrant_hue * 2047) / 100) & 0xfff;
push = evo_wait(mast, 16);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x08a8 + (nv_crtc->index * 0x400), 1);
evo_data(push, (hue << 20) | (vib << 8));
} else {
evo_mthd(push, 0x0498 + (nv_crtc->index * 0x300), 1);
evo_data(push, (hue << 20) | (vib << 8));
}
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
return 0;
}
static int
nv50_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
int x, int y, bool update)
{
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push;
push = evo_wait(mast, 16);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0860 + (nv_crtc->index * 0x400), 1);
evo_data(push, nvfb->nvbo->bo.offset >> 8);
evo_mthd(push, 0x0868 + (nv_crtc->index * 0x400), 3);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nvfb->r_pitch);
evo_data(push, nvfb->r_format);
evo_mthd(push, 0x08c0 + (nv_crtc->index * 0x400), 1);
evo_data(push, (y << 16) | x);
if (nv50_vers(mast) > NV50_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, nvfb->r_handle);
}
} else {
evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
evo_data(push, nvfb->nvbo->bo.offset >> 8);
evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
evo_data(push, (fb->height << 16) | fb->width);
evo_data(push, nvfb->r_pitch);
evo_data(push, nvfb->r_format);
evo_data(push, nvfb->r_handle);
evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
evo_data(push, (y << 16) | x);
}
if (update) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
nv_crtc->fb.handle = nvfb->r_handle;
return 0;
}
static void
nv50_crtc_cursor_show(struct nouveau_crtc *nv_crtc)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
struct nv50_curs *curs = nv50_curs(&nv_crtc->base);
u32 *push = evo_wait(mast, 16);
if (push) {
if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0x85000000);
evo_data(push, curs->image->bo.offset >> 8);
} else
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0x85000000);
evo_data(push, curs->image->bo.offset >> 8);
evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
evo_data(push, mast->base.vram.handle);
} else {
evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
evo_data(push, 0x85000000);
evo_data(push, curs->image->bo.offset >> 8);
evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
evo_data(push, mast->base.vram.handle);
}
evo_kick(push, mast);
}
}
static void
nv50_crtc_cursor_hide(struct nouveau_crtc *nv_crtc)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
u32 *push = evo_wait(mast, 16);
if (push) {
if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x05000000);
} else
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0880 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x089c + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x05000000);
evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
}
static void
nv50_crtc_cursor_show_hide(struct nouveau_crtc *nv_crtc, bool show, bool update)
{
struct nv50_mast *mast = nv50_mast(nv_crtc->base.dev);
struct nv50_curs *curs = nv50_curs(&nv_crtc->base);
if (show && curs->image)
nv50_crtc_cursor_show(nv_crtc);
else
nv50_crtc_cursor_hide(nv_crtc);
if (update) {
u32 *push = evo_wait(mast, 2);
if (push) {
evo_mthd(push, 0x0080, 1);
evo_data(push, 0x00000000);
evo_kick(push, mast);
}
}
}
static void
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}
static void
nv50_crtc_prepare(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_mast *mast = nv50_mast(crtc->dev);
u32 *push;
nv50_display_flip_stop(crtc);
push = evo_wait(mast, 6);
if (push) {
if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x40000000);
} else
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x40000000);
evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x03000000);
evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
nv50_crtc_cursor_show_hide(nv_crtc, false, false);
}
static void
nv50_crtc_commit(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_mast *mast = nv50_mast(crtc->dev);
u32 *push;
push = evo_wait(mast, 32);
if (push) {
if (nv50_vers(mast) < G82_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, nv_crtc->fb.handle);
evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0xc0000000);
evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
} else
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0874 + (nv_crtc->index * 0x400), 1);
evo_data(push, nv_crtc->fb.handle);
evo_mthd(push, 0x0840 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0xc0000000);
evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
evo_mthd(push, 0x085c + (nv_crtc->index * 0x400), 1);
evo_data(push, mast->base.vram.handle);
} else {
evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
evo_data(push, nv_crtc->fb.handle);
evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
evo_data(push, 0x83000000);
evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
evo_data(push, 0x00000000);
evo_data(push, 0x00000000);
evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
evo_data(push, mast->base.vram.handle);
evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
evo_data(push, 0xffffff00);
}
evo_kick(push, mast);
}
nv50_crtc_cursor_show_hide(nv_crtc, true, true);
nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1);
}
static bool
nv50_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
return true;
}
static int
nv50_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
{
struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->primary->fb);
struct nv50_head *head = nv50_head(crtc);
int ret;
ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM, true);
if (ret == 0) {
if (head->image)
nouveau_bo_unpin(head->image);
nouveau_bo_ref(nvfb->nvbo, &head->image);
}
return ret;
}
static int
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
struct drm_display_mode *mode, int x, int y,
struct drm_framebuffer *old_fb)
{
struct nv50_mast *mast = nv50_mast(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nouveau_connector *nv_connector;
u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
u32 vblan2e = 0, vblan2s = 1, vblankus = 0;
u32 *push;
int ret;
hactive = mode->htotal;
hsynce = mode->hsync_end - mode->hsync_start - 1;
hbackp = mode->htotal - mode->hsync_end;
hblanke = hsynce + hbackp;
hfrontp = mode->hsync_start - mode->hdisplay;
hblanks = mode->htotal - hfrontp - 1;
vactive = mode->vtotal * vscan / ilace;
vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
vblanke = vsynce + vbackp;
vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
vblanks = vactive - vfrontp - 1;
/* XXX: Safe underestimate, even "0" works */
vblankus = (vactive - mode->vdisplay - 2) * hactive;
vblankus *= 1000;
vblankus /= mode->clock;
if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
vblan2e = vactive + vsynce + vbackp;
vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
vactive = (vactive * 2) + 1;
}
ret = nv50_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
push = evo_wait(mast, 64);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0804 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0x00800000 | mode->clock);
evo_data(push, (ilace == 2) ? 2 : 0);
evo_mthd(push, 0x0810 + (nv_crtc->index * 0x400), 6);
evo_data(push, 0x00000000);
evo_data(push, (vactive << 16) | hactive);
evo_data(push, ( vsynce << 16) | hsynce);
evo_data(push, (vblanke << 16) | hblanke);
evo_data(push, (vblanks << 16) | hblanks);
evo_data(push, (vblan2e << 16) | vblan2s);
evo_mthd(push, 0x082c + (nv_crtc->index * 0x400), 1);
evo_data(push, 0x00000000);
evo_mthd(push, 0x0900 + (nv_crtc->index * 0x400), 2);
evo_data(push, 0x00000311);
evo_data(push, 0x00000100);
} else {
evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
evo_data(push, 0x00000000);
evo_data(push, (vactive << 16) | hactive);
evo_data(push, ( vsynce << 16) | hsynce);
evo_data(push, (vblanke << 16) | hblanke);
evo_data(push, (vblanks << 16) | hblanks);
evo_data(push, (vblan2e << 16) | vblan2s);
evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
evo_data(push, 0x00000000); /* ??? */
evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
evo_data(push, mode->clock * 1000);
evo_data(push, 0x00200000); /* ??? */
evo_data(push, mode->clock * 1000);
evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
evo_data(push, 0x00000311);
evo_data(push, 0x00000100);
}
evo_kick(push, mast);
}
nv_connector = nouveau_crtc_connector_get(nv_crtc);
nv50_crtc_set_dither(nv_crtc, false);
nv50_crtc_set_scale(nv_crtc, false);
/* G94 only accepts this after setting scale */
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA)
nv50_crtc_set_raster_vblank_dmi(nv_crtc, vblankus);
nv50_crtc_set_color_vibrance(nv_crtc, false);
nv50_crtc_set_image(nv_crtc, crtc->primary->fb, x, y, false);
return 0;
}
static int
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
int ret;
if (!crtc->primary->fb) {
NV_DEBUG(drm, "No FB bound\n");
return 0;
}
ret = nv50_crtc_swap_fbs(crtc, old_fb);
if (ret)
return ret;
nv50_display_flip_stop(crtc);
nv50_crtc_set_image(nv_crtc, crtc->primary->fb, x, y, true);
nv50_display_flip_next(crtc, crtc->primary->fb, NULL, 1);
return 0;
}
static int
nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
struct drm_framebuffer *fb, int x, int y,
enum mode_set_atomic state)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nv50_display_flip_stop(crtc);
nv50_crtc_set_image(nv_crtc, fb, x, y, true);
return 0;
}
static void
nv50_crtc_lut_load(struct drm_crtc *crtc)
{
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
int i;
for (i = 0; i < 256; i++) {
u16 r = nv_crtc->lut.r[i] >> 2;
u16 g = nv_crtc->lut.g[i] >> 2;
u16 b = nv_crtc->lut.b[i] >> 2;
if (disp->disp->oclass < GF110_DISP) {
writew(r + 0x0000, lut + (i * 0x08) + 0);
writew(g + 0x0000, lut + (i * 0x08) + 2);
writew(b + 0x0000, lut + (i * 0x08) + 4);
} else {
writew(r + 0x6000, lut + (i * 0x20) + 0);
writew(g + 0x6000, lut + (i * 0x20) + 2);
writew(b + 0x6000, lut + (i * 0x20) + 4);
}
}
}
static void
nv50_crtc_disable(struct drm_crtc *crtc)
{
struct nv50_head *head = nv50_head(crtc);
evo_sync(crtc->dev);
if (head->image)
nouveau_bo_unpin(head->image);
nouveau_bo_ref(NULL, &head->image);
}
static int
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
uint32_t handle, uint32_t width, uint32_t height)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_curs *curs = nv50_curs(crtc);
struct drm_device *dev = crtc->dev;
struct drm_gem_object *gem = NULL;
struct nouveau_bo *nvbo = NULL;
int ret = 0;
if (handle) {
if (width != 64 || height != 64)
return -EINVAL;
gem = drm_gem_object_lookup(dev, file_priv, handle);
if (unlikely(!gem))
return -ENOENT;
nvbo = nouveau_gem_object(gem);
ret = nouveau_bo_pin(nvbo, TTM_PL_FLAG_VRAM, true);
}
if (ret == 0) {
if (curs->image)
nouveau_bo_unpin(curs->image);
nouveau_bo_ref(nvbo, &curs->image);
}
drm_gem_object_unreference_unlocked(gem);
nv50_crtc_cursor_show_hide(nv_crtc, true, true);
return ret;
}
static int
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct nv50_curs *curs = nv50_curs(crtc);
struct nv50_chan *chan = nv50_chan(curs);
nvif_wr32(&chan->user, 0x0084, (y << 16) | (x & 0xffff));
nvif_wr32(&chan->user, 0x0080, 0x00000000);
return 0;
}
static void
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
uint32_t start, uint32_t size)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
u32 end = min_t(u32, start + size, 256);
u32 i;
for (i = start; i < end; i++) {
nv_crtc->lut.r[i] = r[i];
nv_crtc->lut.g[i] = g[i];
nv_crtc->lut.b[i] = b[i];
}
nv50_crtc_lut_load(crtc);
}
static void
nv50_crtc_destroy(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nv50_disp *disp = nv50_disp(crtc->dev);
struct nv50_head *head = nv50_head(crtc);
struct nv50_fbdma *fbdma;
list_for_each_entry(fbdma, &disp->fbdma, head) {
nvif_object_fini(&fbdma->base[nv_crtc->index]);
}
nv50_dmac_destroy(&head->ovly.base, disp->disp);
nv50_pioc_destroy(&head->oimm.base);
nv50_dmac_destroy(&head->sync.base, disp->disp);
nv50_pioc_destroy(&head->curs.base);
/*XXX: this shouldn't be necessary, but the core doesn't call
* disconnect() during the cleanup paths
*/
if (head->image)
nouveau_bo_unpin(head->image);
nouveau_bo_ref(NULL, &head->image);
/*XXX: ditto */
if (head->curs.image)
nouveau_bo_unpin(head->curs.image);
nouveau_bo_ref(NULL, &head->curs.image);
nouveau_bo_unmap(nv_crtc->lut.nvbo);
if (nv_crtc->lut.nvbo)
nouveau_bo_unpin(nv_crtc->lut.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
drm_crtc_cleanup(crtc);
kfree(crtc);
}
static const struct drm_crtc_helper_funcs nv50_crtc_hfunc = {
.dpms = nv50_crtc_dpms,
.prepare = nv50_crtc_prepare,
.commit = nv50_crtc_commit,
.mode_fixup = nv50_crtc_mode_fixup,
.mode_set = nv50_crtc_mode_set,
.mode_set_base = nv50_crtc_mode_set_base,
.mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
.load_lut = nv50_crtc_lut_load,
.disable = nv50_crtc_disable,
};
static const struct drm_crtc_funcs nv50_crtc_func = {
.cursor_set = nv50_crtc_cursor_set,
.cursor_move = nv50_crtc_cursor_move,
.gamma_set = nv50_crtc_gamma_set,
.set_config = nouveau_crtc_set_config,
.destroy = nv50_crtc_destroy,
.page_flip = nouveau_crtc_page_flip,
};
static int
nv50_crtc_create(struct drm_device *dev, int index)
{
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_head *head;
struct drm_crtc *crtc;
int ret, i;
head = kzalloc(sizeof(*head), GFP_KERNEL);
if (!head)
return -ENOMEM;
head->base.index = index;
head->base.set_dither = nv50_crtc_set_dither;
head->base.set_scale = nv50_crtc_set_scale;
head->base.set_color_vibrance = nv50_crtc_set_color_vibrance;
head->base.color_vibrance = 50;
head->base.vibrant_hue = 0;
for (i = 0; i < 256; i++) {
head->base.lut.r[i] = i << 8;
head->base.lut.g[i] = i << 8;
head->base.lut.b[i] = i << 8;
}
crtc = &head->base.base;
drm_crtc_init(dev, crtc, &nv50_crtc_func);
drm_crtc_helper_add(crtc, &nv50_crtc_hfunc);
drm_mode_crtc_set_gamma_size(crtc, 256);
ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, NULL, &head->base.lut.nvbo);
if (!ret) {
ret = nouveau_bo_pin(head->base.lut.nvbo, TTM_PL_FLAG_VRAM, true);
if (!ret) {
ret = nouveau_bo_map(head->base.lut.nvbo);
if (ret)
nouveau_bo_unpin(head->base.lut.nvbo);
}
if (ret)
nouveau_bo_ref(NULL, &head->base.lut.nvbo);
}
if (ret)
goto out;
nv50_crtc_lut_load(crtc);
/* allocate cursor resources */
ret = nv50_curs_create(disp->disp, index, &head->curs);
if (ret)
goto out;
/* allocate page flip / sync resources */
ret = nv50_base_create(disp->disp, index, disp->sync->bo.offset,
&head->sync);
if (ret)
goto out;
head->sync.addr = EVO_FLIP_SEM0(index);
head->sync.data = 0x00000000;
/* allocate overlay resources */
ret = nv50_oimm_create(disp->disp, index, &head->oimm);
if (ret)
goto out;
ret = nv50_ovly_create(disp->disp, index, disp->sync->bo.offset,
&head->ovly);
if (ret)
goto out;
out:
if (ret)
nv50_crtc_destroy(crtc);
return ret;
}
/******************************************************************************
* DAC
*****************************************************************************/
static void
nv50_dac_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_dac_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_DAC_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
.pwr.state = 1,
.pwr.data = 1,
.pwr.vsync = (mode != DRM_MODE_DPMS_SUSPEND &&
mode != DRM_MODE_DPMS_OFF),
.pwr.hsync = (mode != DRM_MODE_DPMS_STANDBY &&
mode != DRM_MODE_DPMS_OFF),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static bool
nv50_dac_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->native_mode) {
if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
int id = adjusted_mode->base.id;
*adjusted_mode = *nv_connector->native_mode;
adjusted_mode->base.id = id;
}
}
return true;
}
static void
nv50_dac_commit(struct drm_encoder *encoder)
{
}
static void
nv50_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
u32 *push;
nv50_dac_dpms(encoder, DRM_MODE_DPMS_ON);
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
u32 syncs = 0x00000000;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000002;
evo_mthd(push, 0x0400 + (nv_encoder->or * 0x080), 2);
evo_data(push, 1 << nv_crtc->index);
evo_data(push, syncs);
} else {
u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
u32 syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs);
evo_data(push, magic);
evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 1);
evo_data(push, 1 << nv_crtc->index);
}
evo_kick(push, mast);
}
nv_encoder->crtc = encoder->crtc;
}
static void
nv50_dac_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_mast *mast = nv50_mast(encoder->dev);
const int or = nv_encoder->or;
u32 *push;
if (nv_encoder->crtc) {
nv50_crtc_prepare(nv_encoder->crtc);
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0400 + (or * 0x080), 1);
evo_data(push, 0x00000000);
} else {
evo_mthd(push, 0x0180 + (or * 0x020), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
}
nv_encoder->crtc = NULL;
}
static enum drm_connector_status
nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_dac_load_v0 load;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
int ret;
args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
if (args.load.data == 0)
args.load.data = 340;
ret = nvif_mthd(disp->disp, 0, &args, sizeof(args));
if (ret || !args.load.load)
return connector_status_disconnected;
return connector_status_connected;
}
static void
nv50_dac_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nv50_dac_hfunc = {
.dpms = nv50_dac_dpms,
.mode_fixup = nv50_dac_mode_fixup,
.prepare = nv50_dac_disconnect,
.commit = nv50_dac_commit,
.mode_set = nv50_dac_mode_set,
.disable = nv50_dac_disconnect,
.get_crtc = nv50_display_crtc_get,
.detect = nv50_dac_detect
};
static const struct drm_encoder_funcs nv50_dac_func = {
.destroy = nv50_dac_destroy,
};
static int
nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nouveau_i2c *i2c = nvkm_i2c(&drm->device);
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type = DRM_MODE_ENCODER_DAC;
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type);
drm_encoder_helper_add(encoder, &nv50_dac_hfunc);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Audio
*****************************************************************************/
static void
nv50_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct __packed {
struct {
struct nv50_disp_mthd_v1 mthd;
struct nv50_disp_sor_hda_eld_v0 eld;
} base;
u8 data[sizeof(nv_connector->base.eld)];
} args = {
.base.mthd.version = 1,
.base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.mthd.hasht = nv_encoder->dcb->hasht,
.base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_monitor_audio(nv_connector->edid))
return;
drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
nvif_mthd(disp->disp, 0, &args,
sizeof(args.base) + drm_eld_size(args.data));
}
static void
nv50_audio_disconnect(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hda_eld_v0 eld;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
/******************************************************************************
* HDMI
*****************************************************************************/
static void
nv50_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
.pwr.state = 1,
.pwr.rekey = 56, /* binary driver, and tegra, constant */
};
struct nouveau_connector *nv_connector;
u32 max_ac_packet;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (!drm_detect_hdmi_monitor(nv_connector->edid))
return;
max_ac_packet = mode->htotal - mode->hdisplay;
max_ac_packet -= args.pwr.rekey;
max_ac_packet -= 18; /* constant from tegra */
args.pwr.max_ac_packet = max_ac_packet / 32;
nvif_mthd(disp->disp, 0, &args, sizeof(args));
nv50_audio_mode_set(encoder, mode);
}
static void
nv50_hdmi_disconnect(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_hdmi_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
(0x0100 << nv_crtc->index),
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
/******************************************************************************
* SOR
*****************************************************************************/
static void
nv50_sor_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
.pwr.state = mode == DRM_MODE_DPMS_ON,
};
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_dp_pwr_v0 pwr;
} link = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_DP_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
.pwr.state = mode == DRM_MODE_DPMS_ON,
};
struct drm_device *dev = encoder->dev;
struct drm_encoder *partner;
nv_encoder->last_dpms = mode;
list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
continue;
if (nv_partner != nv_encoder &&
nv_partner->dcb->or == nv_encoder->dcb->or) {
if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
return;
break;
}
}
if (nv_encoder->dcb->type == DCB_OUTPUT_DP) {
args.pwr.state = 1;
nvif_mthd(disp->disp, 0, &args, sizeof(args));
nvif_mthd(disp->disp, 0, &link, sizeof(link));
} else {
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
}
static bool
nv50_sor_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->native_mode) {
if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
int id = adjusted_mode->base.id;
*adjusted_mode = *nv_connector->native_mode;
adjusted_mode->base.id = id;
}
}
return true;
}
static void
nv50_sor_ctrl(struct nouveau_encoder *nv_encoder, u32 mask, u32 data)
{
struct nv50_mast *mast = nv50_mast(nv_encoder->base.base.dev);
u32 temp = (nv_encoder->ctrl & ~mask) | (data & mask), *push;
if (temp != nv_encoder->ctrl && (push = evo_wait(mast, 2))) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0600 + (nv_encoder->or * 0x40), 1);
evo_data(push, (nv_encoder->ctrl = temp));
} else {
evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
evo_data(push, (nv_encoder->ctrl = temp));
}
evo_kick(push, mast);
}
}
static void
nv50_sor_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
nv_encoder->crtc = NULL;
if (nv_crtc) {
nv50_crtc_prepare(&nv_crtc->base);
nv50_sor_ctrl(nv_encoder, 1 << nv_crtc->index, 0);
nv50_audio_disconnect(encoder, nv_crtc);
nv50_hdmi_disconnect(&nv_encoder->base.base, nv_crtc);
}
}
static void
nv50_sor_commit(struct drm_encoder *encoder)
{
}
static void
nv50_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
struct drm_display_mode *mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_sor_lvds_script_v0 lvds;
} lvds = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
};
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct drm_device *dev = encoder->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_connector *nv_connector;
struct nvbios *bios = &drm->vbios;
u32 mask, ctrl;
u8 owner = 1 << nv_crtc->index;
u8 proto = 0xf;
u8 depth = 0x0;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
nv_encoder->crtc = encoder->crtc;
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
if (nv_encoder->dcb->sorconf.link & 1) {
if (mode->clock < 165000)
proto = 0x1;
else
proto = 0x5;
} else {
proto = 0x2;
}
nv50_hdmi_mode_set(&nv_encoder->base.base, mode);
break;
case DCB_OUTPUT_LVDS:
proto = 0x0;
if (bios->fp_no_ddc) {
if (bios->fp.dual_link)
lvds.lvds.script |= 0x0100;
if (bios->fp.if_is_24bit)
lvds.lvds.script |= 0x0200;
} else {
if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
if (((u8 *)nv_connector->edid)[121] == 2)
lvds.lvds.script |= 0x0100;
} else
if (mode->clock >= bios->fp.duallink_transition_clk) {
lvds.lvds.script |= 0x0100;
}
if (lvds.lvds.script & 0x0100) {
if (bios->fp.strapless_is_24bit & 2)
lvds.lvds.script |= 0x0200;
} else {
if (bios->fp.strapless_is_24bit & 1)
lvds.lvds.script |= 0x0200;
}
if (nv_connector->base.display_info.bpc == 8)
lvds.lvds.script |= 0x0200;
}
nvif_mthd(disp->disp, 0, &lvds, sizeof(lvds));
break;
case DCB_OUTPUT_DP:
if (nv_connector->base.display_info.bpc == 6) {
nv_encoder->dp.datarate = mode->clock * 18 / 8;
depth = 0x2;
} else
if (nv_connector->base.display_info.bpc == 8) {
nv_encoder->dp.datarate = mode->clock * 24 / 8;
depth = 0x5;
} else {
nv_encoder->dp.datarate = mode->clock * 30 / 8;
depth = 0x6;
}
if (nv_encoder->dcb->sorconf.link & 1)
proto = 0x8;
else
proto = 0x9;
nv50_audio_mode_set(encoder, mode);
break;
default:
BUG_ON(1);
break;
}
nv50_sor_dpms(&nv_encoder->base.base, DRM_MODE_DPMS_ON);
if (nv50_vers(mast) >= GF110_DISP) {
u32 *push = evo_wait(mast, 3);
if (push) {
u32 magic = 0x31ec6000 | (nv_crtc->index << 25);
u32 syncs = 0x00000001;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
syncs |= 0x00000008;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
syncs |= 0x00000010;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
magic |= 0x00000001;
evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
evo_data(push, syncs | (depth << 6));
evo_data(push, magic);
evo_kick(push, mast);
}
ctrl = proto << 8;
mask = 0x00000f00;
} else {
ctrl = (depth << 16) | (proto << 8);
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
ctrl |= 0x00001000;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
ctrl |= 0x00002000;
mask = 0x000f3f00;
}
nv50_sor_ctrl(nv_encoder, mask | owner, ctrl | owner);
}
static void
nv50_sor_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nv50_sor_hfunc = {
.dpms = nv50_sor_dpms,
.mode_fixup = nv50_sor_mode_fixup,
.prepare = nv50_sor_disconnect,
.commit = nv50_sor_commit,
.mode_set = nv50_sor_mode_set,
.disable = nv50_sor_disconnect,
.get_crtc = nv50_display_crtc_get,
};
static const struct drm_encoder_funcs nv50_sor_func = {
.destroy = nv50_sor_destroy,
};
static int
nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nouveau_i2c *i2c = nvkm_i2c(&drm->device);
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type;
switch (dcbe->type) {
case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_DP:
default:
type = DRM_MODE_ENCODER_TMDS;
break;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
nv_encoder->i2c = i2c->find(i2c, dcbe->i2c_index);
nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type);
drm_encoder_helper_add(encoder, &nv50_sor_hfunc);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* PIOR
*****************************************************************************/
static void
nv50_pior_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_disp *disp = nv50_disp(encoder->dev);
struct {
struct nv50_disp_mthd_v1 base;
struct nv50_disp_pior_pwr_v0 pwr;
} args = {
.base.version = 1,
.base.method = NV50_DISP_MTHD_V1_PIOR_PWR,
.base.hasht = nv_encoder->dcb->hasht,
.base.hashm = nv_encoder->dcb->hashm,
.pwr.state = mode == DRM_MODE_DPMS_ON,
.pwr.type = nv_encoder->dcb->type,
};
nvif_mthd(disp->disp, 0, &args, sizeof(args));
}
static bool
nv50_pior_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
if (nv_connector && nv_connector->native_mode) {
if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
int id = adjusted_mode->base.id;
*adjusted_mode = *nv_connector->native_mode;
adjusted_mode->base.id = id;
}
}
adjusted_mode->clock *= 2;
return true;
}
static void
nv50_pior_commit(struct drm_encoder *encoder)
{
}
static void
nv50_pior_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nv50_mast *mast = nv50_mast(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector;
u8 owner = 1 << nv_crtc->index;
u8 proto, depth;
u32 *push;
nv_connector = nouveau_encoder_connector_get(nv_encoder);
switch (nv_connector->base.display_info.bpc) {
case 10: depth = 0x6; break;
case 8: depth = 0x5; break;
case 6: depth = 0x2; break;
default: depth = 0x0; break;
}
switch (nv_encoder->dcb->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_DP:
proto = 0x0;
break;
default:
BUG_ON(1);
break;
}
nv50_pior_dpms(encoder, DRM_MODE_DPMS_ON);
push = evo_wait(mast, 8);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
u32 ctrl = (depth << 16) | (proto << 8) | owner;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
ctrl |= 0x00001000;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
ctrl |= 0x00002000;
evo_mthd(push, 0x0700 + (nv_encoder->or * 0x040), 1);
evo_data(push, ctrl);
}
evo_kick(push, mast);
}
nv_encoder->crtc = encoder->crtc;
}
static void
nv50_pior_disconnect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nv50_mast *mast = nv50_mast(encoder->dev);
const int or = nv_encoder->or;
u32 *push;
if (nv_encoder->crtc) {
nv50_crtc_prepare(nv_encoder->crtc);
push = evo_wait(mast, 4);
if (push) {
if (nv50_vers(mast) < GF110_DISP_CORE_CHANNEL_DMA) {
evo_mthd(push, 0x0700 + (or * 0x040), 1);
evo_data(push, 0x00000000);
}
evo_kick(push, mast);
}
}
nv_encoder->crtc = NULL;
}
static void
nv50_pior_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
kfree(encoder);
}
static const struct drm_encoder_helper_funcs nv50_pior_hfunc = {
.dpms = nv50_pior_dpms,
.mode_fixup = nv50_pior_mode_fixup,
.prepare = nv50_pior_disconnect,
.commit = nv50_pior_commit,
.mode_set = nv50_pior_mode_set,
.disable = nv50_pior_disconnect,
.get_crtc = nv50_display_crtc_get,
};
static const struct drm_encoder_funcs nv50_pior_func = {
.destroy = nv50_pior_destroy,
};
static int
nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
{
struct nouveau_drm *drm = nouveau_drm(connector->dev);
struct nouveau_i2c *i2c = nvkm_i2c(&drm->device);
struct nouveau_i2c_port *ddc = NULL;
struct nouveau_encoder *nv_encoder;
struct drm_encoder *encoder;
int type;
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
ddc = i2c->find_type(i2c, NV_I2C_TYPE_EXTDDC(dcbe->extdev));
type = DRM_MODE_ENCODER_TMDS;
break;
case DCB_OUTPUT_DP:
ddc = i2c->find_type(i2c, NV_I2C_TYPE_EXTAUX(dcbe->extdev));
type = DRM_MODE_ENCODER_TMDS;
break;
default:
return -ENODEV;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->dcb = dcbe;
nv_encoder->or = ffs(dcbe->or) - 1;
nv_encoder->i2c = ddc;
encoder = to_drm_encoder(nv_encoder);
encoder->possible_crtcs = dcbe->heads;
encoder->possible_clones = 0;
drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type);
drm_encoder_helper_add(encoder, &nv50_pior_hfunc);
drm_mode_connector_attach_encoder(connector, encoder);
return 0;
}
/******************************************************************************
* Framebuffer
*****************************************************************************/
static void
nv50_fbdma_fini(struct nv50_fbdma *fbdma)
{
int i;
for (i = 0; i < ARRAY_SIZE(fbdma->base); i++)
nvif_object_fini(&fbdma->base[i]);
nvif_object_fini(&fbdma->core);
list_del(&fbdma->head);
kfree(fbdma);
}
static int
nv50_fbdma_init(struct drm_device *dev, u32 name, u64 offset, u64 length, u8 kind)
{
struct nouveau_drm *drm = nouveau_drm(dev);
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_mast *mast = nv50_mast(dev);
struct __attribute__ ((packed)) {
struct nv_dma_v0 base;
union {
struct nv50_dma_v0 nv50;
struct gf100_dma_v0 gf100;
struct gf110_dma_v0 gf110;
};
} args = {};
struct nv50_fbdma *fbdma;
struct drm_crtc *crtc;
u32 size = sizeof(args.base);
int ret;
list_for_each_entry(fbdma, &disp->fbdma, head) {
if (fbdma->core.handle == name)
return 0;
}
fbdma = kzalloc(sizeof(*fbdma), GFP_KERNEL);
if (!fbdma)
return -ENOMEM;
list_add(&fbdma->head, &disp->fbdma);
args.base.target = NV_DMA_V0_TARGET_VRAM;
args.base.access = NV_DMA_V0_ACCESS_RDWR;
args.base.start = offset;
args.base.limit = offset + length - 1;
if (drm->device.info.chipset < 0x80) {
args.nv50.part = NV50_DMA_V0_PART_256;
size += sizeof(args.nv50);
} else
if (drm->device.info.chipset < 0xc0) {
args.nv50.part = NV50_DMA_V0_PART_256;
args.nv50.kind = kind;
size += sizeof(args.nv50);
} else
if (drm->device.info.chipset < 0xd0) {
args.gf100.kind = kind;
size += sizeof(args.gf100);
} else {
args.gf110.page = GF110_DMA_V0_PAGE_LP;
args.gf110.kind = kind;
size += sizeof(args.gf110);
}
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct nv50_head *head = nv50_head(crtc);
int ret = nvif_object_init(&head->sync.base.base.user, NULL,
name, NV_DMA_IN_MEMORY, &args, size,
&fbdma->base[head->base.index]);
if (ret) {
nv50_fbdma_fini(fbdma);
return ret;
}
}
ret = nvif_object_init(&mast->base.base.user, NULL, name,
NV_DMA_IN_MEMORY, &args, size,
&fbdma->core);
if (ret) {
nv50_fbdma_fini(fbdma);
return ret;
}
return 0;
}
static void
nv50_fb_dtor(struct drm_framebuffer *fb)
{
}
static int
nv50_fb_ctor(struct drm_framebuffer *fb)
{
struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
struct nouveau_drm *drm = nouveau_drm(fb->dev);
struct nouveau_bo *nvbo = nv_fb->nvbo;
struct nv50_disp *disp = nv50_disp(fb->dev);
u8 kind = nouveau_bo_tile_layout(nvbo) >> 8;
u8 tile = nvbo->tile_mode;
if (drm->device.info.chipset >= 0xc0)
tile >>= 4; /* yep.. */
switch (fb->depth) {
case 8: nv_fb->r_format = 0x1e00; break;
case 15: nv_fb->r_format = 0xe900; break;
case 16: nv_fb->r_format = 0xe800; break;
case 24:
case 32: nv_fb->r_format = 0xcf00; break;
case 30: nv_fb->r_format = 0xd100; break;
default:
NV_ERROR(drm, "unknown depth %d\n", fb->depth);
return -EINVAL;
}
if (disp->disp->oclass < G82_DISP) {
nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
(fb->pitches[0] | 0x00100000);
nv_fb->r_format |= kind << 16;
} else
if (disp->disp->oclass < GF110_DISP) {
nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
(fb->pitches[0] | 0x00100000);
} else {
nv_fb->r_pitch = kind ? (((fb->pitches[0] / 4) << 4) | tile) :
(fb->pitches[0] | 0x01000000);
}
nv_fb->r_handle = 0xffff0000 | kind;
return nv50_fbdma_init(fb->dev, nv_fb->r_handle, 0,
drm->device.info.ram_user, kind);
}
/******************************************************************************
* Init
*****************************************************************************/
void
nv50_display_fini(struct drm_device *dev)
{
}
int
nv50_display_init(struct drm_device *dev)
{
struct nv50_disp *disp = nv50_disp(dev);
struct drm_crtc *crtc;
u32 *push;
push = evo_wait(nv50_mast(dev), 32);
if (!push)
return -EBUSY;
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
struct nv50_sync *sync = nv50_sync(crtc);
nouveau_bo_wr32(disp->sync, sync->addr / 4, sync->data);
}
evo_mthd(push, 0x0088, 1);
evo_data(push, nv50_mast(dev)->base.sync.handle);
evo_kick(push, nv50_mast(dev));
return 0;
}
void
nv50_display_destroy(struct drm_device *dev)
{
struct nv50_disp *disp = nv50_disp(dev);
struct nv50_fbdma *fbdma, *fbtmp;
list_for_each_entry_safe(fbdma, fbtmp, &disp->fbdma, head) {
nv50_fbdma_fini(fbdma);
}
nv50_dmac_destroy(&disp->mast.base, disp->disp);
nouveau_bo_unmap(disp->sync);
if (disp->sync)
nouveau_bo_unpin(disp->sync);
nouveau_bo_ref(NULL, &disp->sync);
nouveau_display(dev)->priv = NULL;
kfree(disp);
}
int
nv50_display_create(struct drm_device *dev)
{
struct nvif_device *device = &nouveau_drm(dev)->device;
struct nouveau_drm *drm = nouveau_drm(dev);
struct dcb_table *dcb = &drm->vbios.dcb;
struct drm_connector *connector, *tmp;
struct nv50_disp *disp;
struct dcb_output *dcbe;
int crtcs, ret, i;
disp = kzalloc(sizeof(*disp), GFP_KERNEL);
if (!disp)
return -ENOMEM;
INIT_LIST_HEAD(&disp->fbdma);
nouveau_display(dev)->priv = disp;
nouveau_display(dev)->dtor = nv50_display_destroy;
nouveau_display(dev)->init = nv50_display_init;
nouveau_display(dev)->fini = nv50_display_fini;
nouveau_display(dev)->fb_ctor = nv50_fb_ctor;
nouveau_display(dev)->fb_dtor = nv50_fb_dtor;
disp->disp = &nouveau_display(dev)->disp;
/* small shared memory area we use for notifiers and semaphores */
ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
0, 0x0000, NULL, NULL, &disp->sync);
if (!ret) {
ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
if (!ret) {
ret = nouveau_bo_map(disp->sync);
if (ret)
nouveau_bo_unpin(disp->sync);
}
if (ret)
nouveau_bo_ref(NULL, &disp->sync);
}
if (ret)
goto out;
/* allocate master evo channel */
ret = nv50_core_create(disp->disp, disp->sync->bo.offset,
&disp->mast);
if (ret)
goto out;
/* create crtc objects to represent the hw heads */
if (disp->disp->oclass >= GF110_DISP)
crtcs = nvif_rd32(device, 0x022448);
else
crtcs = 2;
for (i = 0; i < crtcs; i++) {
ret = nv50_crtc_create(dev, i);
if (ret)
goto out;
}
/* create encoder/connector objects based on VBIOS DCB table */
for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
connector = nouveau_connector_create(dev, dcbe->connector);
if (IS_ERR(connector))
continue;
if (dcbe->location == DCB_LOC_ON_CHIP) {
switch (dcbe->type) {
case DCB_OUTPUT_TMDS:
case DCB_OUTPUT_LVDS:
case DCB_OUTPUT_DP:
ret = nv50_sor_create(connector, dcbe);
break;
case DCB_OUTPUT_ANALOG:
ret = nv50_dac_create(connector, dcbe);
break;
default:
ret = -ENODEV;
break;
}
} else {
ret = nv50_pior_create(connector, dcbe);
}
if (ret) {
NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
dcbe->location, dcbe->type,
ffs(dcbe->or) - 1, ret);
ret = 0;
}
}
/* cull any connectors we created that don't have an encoder */
list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
if (connector->encoder_ids[0])
continue;
NV_WARN(drm, "%s has no encoders, removing\n",
connector->name);
connector->funcs->destroy(connector);
}
out:
if (ret)
nv50_display_destroy(dev);
return ret;
}