| /* |
| * Alchemy Semi Au1000 IrDA driver |
| * |
| * Copyright 2001 MontaVista Software Inc. |
| * Author: MontaVista Software, Inc. |
| * ppopov@mvista.com or source@mvista.com |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/module.h> |
| #include <linux/netdevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| |
| #include <net/irda/irda.h> |
| #include <net/irda/irmod.h> |
| #include <net/irda/wrapper.h> |
| #include <net/irda/irda_device.h> |
| #include <asm/mach-au1x00/au1000.h> |
| |
| /* registers */ |
| #define IR_RING_PTR_STATUS 0x00 |
| #define IR_RING_BASE_ADDR_H 0x04 |
| #define IR_RING_BASE_ADDR_L 0x08 |
| #define IR_RING_SIZE 0x0C |
| #define IR_RING_PROMPT 0x10 |
| #define IR_RING_ADDR_CMPR 0x14 |
| #define IR_INT_CLEAR 0x18 |
| #define IR_CONFIG_1 0x20 |
| #define IR_SIR_FLAGS 0x24 |
| #define IR_STATUS 0x28 |
| #define IR_READ_PHY_CONFIG 0x2C |
| #define IR_WRITE_PHY_CONFIG 0x30 |
| #define IR_MAX_PKT_LEN 0x34 |
| #define IR_RX_BYTE_CNT 0x38 |
| #define IR_CONFIG_2 0x3C |
| #define IR_ENABLE 0x40 |
| |
| /* Config1 */ |
| #define IR_RX_INVERT_LED (1 << 0) |
| #define IR_TX_INVERT_LED (1 << 1) |
| #define IR_ST (1 << 2) |
| #define IR_SF (1 << 3) |
| #define IR_SIR (1 << 4) |
| #define IR_MIR (1 << 5) |
| #define IR_FIR (1 << 6) |
| #define IR_16CRC (1 << 7) |
| #define IR_TD (1 << 8) |
| #define IR_RX_ALL (1 << 9) |
| #define IR_DMA_ENABLE (1 << 10) |
| #define IR_RX_ENABLE (1 << 11) |
| #define IR_TX_ENABLE (1 << 12) |
| #define IR_LOOPBACK (1 << 14) |
| #define IR_SIR_MODE (IR_SIR | IR_DMA_ENABLE | \ |
| IR_RX_ALL | IR_RX_ENABLE | IR_SF | \ |
| IR_16CRC) |
| |
| /* ir_status */ |
| #define IR_RX_STATUS (1 << 9) |
| #define IR_TX_STATUS (1 << 10) |
| #define IR_PHYEN (1 << 15) |
| |
| /* ir_write_phy_config */ |
| #define IR_BR(x) (((x) & 0x3f) << 10) /* baud rate */ |
| #define IR_PW(x) (((x) & 0x1f) << 5) /* pulse width */ |
| #define IR_P(x) ((x) & 0x1f) /* preamble bits */ |
| |
| /* Config2 */ |
| #define IR_MODE_INV (1 << 0) |
| #define IR_ONE_PIN (1 << 1) |
| #define IR_PHYCLK_40MHZ (0 << 2) |
| #define IR_PHYCLK_48MHZ (1 << 2) |
| #define IR_PHYCLK_56MHZ (2 << 2) |
| #define IR_PHYCLK_64MHZ (3 << 2) |
| #define IR_DP (1 << 4) |
| #define IR_DA (1 << 5) |
| #define IR_FLT_HIGH (0 << 6) |
| #define IR_FLT_MEDHI (1 << 6) |
| #define IR_FLT_MEDLO (2 << 6) |
| #define IR_FLT_LO (3 << 6) |
| #define IR_IEN (1 << 8) |
| |
| /* ir_enable */ |
| #define IR_HC (1 << 3) /* divide SBUS clock by 2 */ |
| #define IR_CE (1 << 2) /* clock enable */ |
| #define IR_C (1 << 1) /* coherency bit */ |
| #define IR_BE (1 << 0) /* set in big endian mode */ |
| |
| #define NUM_IR_DESC 64 |
| #define RING_SIZE_4 0x0 |
| #define RING_SIZE_16 0x3 |
| #define RING_SIZE_64 0xF |
| #define MAX_NUM_IR_DESC 64 |
| #define MAX_BUF_SIZE 2048 |
| |
| /* Ring descriptor flags */ |
| #define AU_OWN (1 << 7) /* tx,rx */ |
| #define IR_DIS_CRC (1 << 6) /* tx */ |
| #define IR_BAD_CRC (1 << 5) /* tx */ |
| #define IR_NEED_PULSE (1 << 4) /* tx */ |
| #define IR_FORCE_UNDER (1 << 3) /* tx */ |
| #define IR_DISABLE_TX (1 << 2) /* tx */ |
| #define IR_HW_UNDER (1 << 0) /* tx */ |
| #define IR_TX_ERROR (IR_DIS_CRC | IR_BAD_CRC | IR_HW_UNDER) |
| |
| #define IR_PHY_ERROR (1 << 6) /* rx */ |
| #define IR_CRC_ERROR (1 << 5) /* rx */ |
| #define IR_MAX_LEN (1 << 4) /* rx */ |
| #define IR_FIFO_OVER (1 << 3) /* rx */ |
| #define IR_SIR_ERROR (1 << 2) /* rx */ |
| #define IR_RX_ERROR (IR_PHY_ERROR | IR_CRC_ERROR | \ |
| IR_MAX_LEN | IR_FIFO_OVER | IR_SIR_ERROR) |
| |
| struct db_dest { |
| struct db_dest *pnext; |
| volatile u32 *vaddr; |
| dma_addr_t dma_addr; |
| }; |
| |
| struct ring_dest { |
| u8 count_0; /* 7:0 */ |
| u8 count_1; /* 12:8 */ |
| u8 reserved; |
| u8 flags; |
| u8 addr_0; /* 7:0 */ |
| u8 addr_1; /* 15:8 */ |
| u8 addr_2; /* 23:16 */ |
| u8 addr_3; /* 31:24 */ |
| }; |
| |
| /* Private data for each instance */ |
| struct au1k_private { |
| void __iomem *iobase; |
| int irq_rx, irq_tx; |
| |
| struct db_dest *pDBfree; |
| struct db_dest db[2 * NUM_IR_DESC]; |
| volatile struct ring_dest *rx_ring[NUM_IR_DESC]; |
| volatile struct ring_dest *tx_ring[NUM_IR_DESC]; |
| struct db_dest *rx_db_inuse[NUM_IR_DESC]; |
| struct db_dest *tx_db_inuse[NUM_IR_DESC]; |
| u32 rx_head; |
| u32 tx_head; |
| u32 tx_tail; |
| u32 tx_full; |
| |
| iobuff_t rx_buff; |
| |
| struct net_device *netdev; |
| struct qos_info qos; |
| struct irlap_cb *irlap; |
| |
| u8 open; |
| u32 speed; |
| u32 newspeed; |
| |
| struct resource *ioarea; |
| struct au1k_irda_platform_data *platdata; |
| struct clk *irda_clk; |
| }; |
| |
| static int qos_mtt_bits = 0x07; /* 1 ms or more */ |
| |
| static void au1k_irda_plat_set_phy_mode(struct au1k_private *p, int mode) |
| { |
| if (p->platdata && p->platdata->set_phy_mode) |
| p->platdata->set_phy_mode(mode); |
| } |
| |
| static inline unsigned long irda_read(struct au1k_private *p, |
| unsigned long ofs) |
| { |
| /* |
| * IrDA peripheral bug. You have to read the register |
| * twice to get the right value. |
| */ |
| (void)__raw_readl(p->iobase + ofs); |
| return __raw_readl(p->iobase + ofs); |
| } |
| |
| static inline void irda_write(struct au1k_private *p, unsigned long ofs, |
| unsigned long val) |
| { |
| __raw_writel(val, p->iobase + ofs); |
| wmb(); |
| } |
| |
| /* |
| * Buffer allocation/deallocation routines. The buffer descriptor returned |
| * has the virtual and dma address of a buffer suitable for |
| * both, receive and transmit operations. |
| */ |
| static struct db_dest *GetFreeDB(struct au1k_private *aup) |
| { |
| struct db_dest *db; |
| db = aup->pDBfree; |
| |
| if (db) |
| aup->pDBfree = db->pnext; |
| return db; |
| } |
| |
| /* |
| DMA memory allocation, derived from pci_alloc_consistent. |
| However, the Au1000 data cache is coherent (when programmed |
| so), therefore we return KSEG0 address, not KSEG1. |
| */ |
| static void *dma_alloc(size_t size, dma_addr_t *dma_handle) |
| { |
| void *ret; |
| int gfp = GFP_ATOMIC | GFP_DMA; |
| |
| ret = (void *)__get_free_pages(gfp, get_order(size)); |
| |
| if (ret != NULL) { |
| memset(ret, 0, size); |
| *dma_handle = virt_to_bus(ret); |
| ret = (void *)KSEG0ADDR(ret); |
| } |
| return ret; |
| } |
| |
| static void dma_free(void *vaddr, size_t size) |
| { |
| vaddr = (void *)KSEG0ADDR(vaddr); |
| free_pages((unsigned long) vaddr, get_order(size)); |
| } |
| |
| |
| static void setup_hw_rings(struct au1k_private *aup, u32 rx_base, u32 tx_base) |
| { |
| int i; |
| for (i = 0; i < NUM_IR_DESC; i++) { |
| aup->rx_ring[i] = (volatile struct ring_dest *) |
| (rx_base + sizeof(struct ring_dest) * i); |
| } |
| for (i = 0; i < NUM_IR_DESC; i++) { |
| aup->tx_ring[i] = (volatile struct ring_dest *) |
| (tx_base + sizeof(struct ring_dest) * i); |
| } |
| } |
| |
| static int au1k_irda_init_iobuf(iobuff_t *io, int size) |
| { |
| io->head = kmalloc(size, GFP_KERNEL); |
| if (io->head != NULL) { |
| io->truesize = size; |
| io->in_frame = FALSE; |
| io->state = OUTSIDE_FRAME; |
| io->data = io->head; |
| } |
| return io->head ? 0 : -ENOMEM; |
| } |
| |
| /* |
| * Set the IrDA communications speed. |
| */ |
| static int au1k_irda_set_speed(struct net_device *dev, int speed) |
| { |
| struct au1k_private *aup = netdev_priv(dev); |
| volatile struct ring_dest *ptxd; |
| unsigned long control; |
| int ret = 0, timeout = 10, i; |
| |
| if (speed == aup->speed) |
| return ret; |
| |
| /* disable PHY first */ |
| au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF); |
| irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN); |
| |
| /* disable RX/TX */ |
| irda_write(aup, IR_CONFIG_1, |
| irda_read(aup, IR_CONFIG_1) & ~(IR_RX_ENABLE | IR_TX_ENABLE)); |
| msleep(20); |
| while (irda_read(aup, IR_STATUS) & (IR_RX_STATUS | IR_TX_STATUS)) { |
| msleep(20); |
| if (!timeout--) { |
| printk(KERN_ERR "%s: rx/tx disable timeout\n", |
| dev->name); |
| break; |
| } |
| } |
| |
| /* disable DMA */ |
| irda_write(aup, IR_CONFIG_1, |
| irda_read(aup, IR_CONFIG_1) & ~IR_DMA_ENABLE); |
| msleep(20); |
| |
| /* After we disable tx/rx. the index pointers go back to zero. */ |
| aup->tx_head = aup->tx_tail = aup->rx_head = 0; |
| for (i = 0; i < NUM_IR_DESC; i++) { |
| ptxd = aup->tx_ring[i]; |
| ptxd->flags = 0; |
| ptxd->count_0 = 0; |
| ptxd->count_1 = 0; |
| } |
| |
| for (i = 0; i < NUM_IR_DESC; i++) { |
| ptxd = aup->rx_ring[i]; |
| ptxd->count_0 = 0; |
| ptxd->count_1 = 0; |
| ptxd->flags = AU_OWN; |
| } |
| |
| if (speed == 4000000) |
| au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_FIR); |
| else |
| au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR); |
| |
| switch (speed) { |
| case 9600: |
| irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(11) | IR_PW(12)); |
| irda_write(aup, IR_CONFIG_1, IR_SIR_MODE); |
| break; |
| case 19200: |
| irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(5) | IR_PW(12)); |
| irda_write(aup, IR_CONFIG_1, IR_SIR_MODE); |
| break; |
| case 38400: |
| irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(2) | IR_PW(12)); |
| irda_write(aup, IR_CONFIG_1, IR_SIR_MODE); |
| break; |
| case 57600: |
| irda_write(aup, IR_WRITE_PHY_CONFIG, IR_BR(1) | IR_PW(12)); |
| irda_write(aup, IR_CONFIG_1, IR_SIR_MODE); |
| break; |
| case 115200: |
| irda_write(aup, IR_WRITE_PHY_CONFIG, IR_PW(12)); |
| irda_write(aup, IR_CONFIG_1, IR_SIR_MODE); |
| break; |
| case 4000000: |
| irda_write(aup, IR_WRITE_PHY_CONFIG, IR_P(15)); |
| irda_write(aup, IR_CONFIG_1, IR_FIR | IR_DMA_ENABLE | |
| IR_RX_ENABLE); |
| break; |
| default: |
| printk(KERN_ERR "%s unsupported speed %x\n", dev->name, speed); |
| ret = -EINVAL; |
| break; |
| } |
| |
| aup->speed = speed; |
| irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) | IR_PHYEN); |
| |
| control = irda_read(aup, IR_STATUS); |
| irda_write(aup, IR_RING_PROMPT, 0); |
| |
| if (control & (1 << 14)) { |
| printk(KERN_ERR "%s: configuration error\n", dev->name); |
| } else { |
| if (control & (1 << 11)) |
| printk(KERN_DEBUG "%s Valid SIR config\n", dev->name); |
| if (control & (1 << 12)) |
| printk(KERN_DEBUG "%s Valid MIR config\n", dev->name); |
| if (control & (1 << 13)) |
| printk(KERN_DEBUG "%s Valid FIR config\n", dev->name); |
| if (control & (1 << 10)) |
| printk(KERN_DEBUG "%s TX enabled\n", dev->name); |
| if (control & (1 << 9)) |
| printk(KERN_DEBUG "%s RX enabled\n", dev->name); |
| } |
| |
| return ret; |
| } |
| |
| static void update_rx_stats(struct net_device *dev, u32 status, u32 count) |
| { |
| struct net_device_stats *ps = &dev->stats; |
| |
| ps->rx_packets++; |
| |
| if (status & IR_RX_ERROR) { |
| ps->rx_errors++; |
| if (status & (IR_PHY_ERROR | IR_FIFO_OVER)) |
| ps->rx_missed_errors++; |
| if (status & IR_MAX_LEN) |
| ps->rx_length_errors++; |
| if (status & IR_CRC_ERROR) |
| ps->rx_crc_errors++; |
| } else |
| ps->rx_bytes += count; |
| } |
| |
| static void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len) |
| { |
| struct net_device_stats *ps = &dev->stats; |
| |
| ps->tx_packets++; |
| ps->tx_bytes += pkt_len; |
| |
| if (status & IR_TX_ERROR) { |
| ps->tx_errors++; |
| ps->tx_aborted_errors++; |
| } |
| } |
| |
| static void au1k_tx_ack(struct net_device *dev) |
| { |
| struct au1k_private *aup = netdev_priv(dev); |
| volatile struct ring_dest *ptxd; |
| |
| ptxd = aup->tx_ring[aup->tx_tail]; |
| while (!(ptxd->flags & AU_OWN) && (aup->tx_tail != aup->tx_head)) { |
| update_tx_stats(dev, ptxd->flags, |
| (ptxd->count_1 << 8) | ptxd->count_0); |
| ptxd->count_0 = 0; |
| ptxd->count_1 = 0; |
| wmb(); |
| aup->tx_tail = (aup->tx_tail + 1) & (NUM_IR_DESC - 1); |
| ptxd = aup->tx_ring[aup->tx_tail]; |
| |
| if (aup->tx_full) { |
| aup->tx_full = 0; |
| netif_wake_queue(dev); |
| } |
| } |
| |
| if (aup->tx_tail == aup->tx_head) { |
| if (aup->newspeed) { |
| au1k_irda_set_speed(dev, aup->newspeed); |
| aup->newspeed = 0; |
| } else { |
| irda_write(aup, IR_CONFIG_1, |
| irda_read(aup, IR_CONFIG_1) & ~IR_TX_ENABLE); |
| irda_write(aup, IR_CONFIG_1, |
| irda_read(aup, IR_CONFIG_1) | IR_RX_ENABLE); |
| irda_write(aup, IR_RING_PROMPT, 0); |
| } |
| } |
| } |
| |
| static int au1k_irda_rx(struct net_device *dev) |
| { |
| struct au1k_private *aup = netdev_priv(dev); |
| volatile struct ring_dest *prxd; |
| struct sk_buff *skb; |
| struct db_dest *pDB; |
| u32 flags, count; |
| |
| prxd = aup->rx_ring[aup->rx_head]; |
| flags = prxd->flags; |
| |
| while (!(flags & AU_OWN)) { |
| pDB = aup->rx_db_inuse[aup->rx_head]; |
| count = (prxd->count_1 << 8) | prxd->count_0; |
| if (!(flags & IR_RX_ERROR)) { |
| /* good frame */ |
| update_rx_stats(dev, flags, count); |
| skb = alloc_skb(count + 1, GFP_ATOMIC); |
| if (skb == NULL) { |
| dev->stats.rx_dropped++; |
| continue; |
| } |
| skb_reserve(skb, 1); |
| if (aup->speed == 4000000) |
| skb_put(skb, count); |
| else |
| skb_put(skb, count - 2); |
| skb_copy_to_linear_data(skb, (void *)pDB->vaddr, |
| count - 2); |
| skb->dev = dev; |
| skb_reset_mac_header(skb); |
| skb->protocol = htons(ETH_P_IRDA); |
| netif_rx(skb); |
| prxd->count_0 = 0; |
| prxd->count_1 = 0; |
| } |
| prxd->flags |= AU_OWN; |
| aup->rx_head = (aup->rx_head + 1) & (NUM_IR_DESC - 1); |
| irda_write(aup, IR_RING_PROMPT, 0); |
| |
| /* next descriptor */ |
| prxd = aup->rx_ring[aup->rx_head]; |
| flags = prxd->flags; |
| |
| } |
| return 0; |
| } |
| |
| static irqreturn_t au1k_irda_interrupt(int dummy, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct au1k_private *aup = netdev_priv(dev); |
| |
| irda_write(aup, IR_INT_CLEAR, 0); /* ack irda interrupts */ |
| |
| au1k_irda_rx(dev); |
| au1k_tx_ack(dev); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int au1k_init(struct net_device *dev) |
| { |
| struct au1k_private *aup = netdev_priv(dev); |
| u32 enable, ring_address, phyck; |
| struct clk *c; |
| int i; |
| |
| c = clk_get(NULL, "irda_clk"); |
| if (IS_ERR(c)) |
| return PTR_ERR(c); |
| i = clk_prepare_enable(c); |
| if (i) { |
| clk_put(c); |
| return i; |
| } |
| |
| switch (clk_get_rate(c)) { |
| case 40000000: |
| phyck = IR_PHYCLK_40MHZ; |
| break; |
| case 48000000: |
| phyck = IR_PHYCLK_48MHZ; |
| break; |
| case 56000000: |
| phyck = IR_PHYCLK_56MHZ; |
| break; |
| case 64000000: |
| phyck = IR_PHYCLK_64MHZ; |
| break; |
| default: |
| clk_disable_unprepare(c); |
| clk_put(c); |
| return -EINVAL; |
| } |
| aup->irda_clk = c; |
| |
| enable = IR_HC | IR_CE | IR_C; |
| #ifndef CONFIG_CPU_LITTLE_ENDIAN |
| enable |= IR_BE; |
| #endif |
| aup->tx_head = 0; |
| aup->tx_tail = 0; |
| aup->rx_head = 0; |
| |
| for (i = 0; i < NUM_IR_DESC; i++) |
| aup->rx_ring[i]->flags = AU_OWN; |
| |
| irda_write(aup, IR_ENABLE, enable); |
| msleep(20); |
| |
| /* disable PHY */ |
| au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF); |
| irda_write(aup, IR_STATUS, irda_read(aup, IR_STATUS) & ~IR_PHYEN); |
| msleep(20); |
| |
| irda_write(aup, IR_MAX_PKT_LEN, MAX_BUF_SIZE); |
| |
| ring_address = (u32)virt_to_phys((void *)aup->rx_ring[0]); |
| irda_write(aup, IR_RING_BASE_ADDR_H, ring_address >> 26); |
| irda_write(aup, IR_RING_BASE_ADDR_L, (ring_address >> 10) & 0xffff); |
| |
| irda_write(aup, IR_RING_SIZE, |
| (RING_SIZE_64 << 8) | (RING_SIZE_64 << 12)); |
| |
| irda_write(aup, IR_CONFIG_2, phyck | IR_ONE_PIN); |
| irda_write(aup, IR_RING_ADDR_CMPR, 0); |
| |
| au1k_irda_set_speed(dev, 9600); |
| return 0; |
| } |
| |
| static int au1k_irda_start(struct net_device *dev) |
| { |
| struct au1k_private *aup = netdev_priv(dev); |
| char hwname[32]; |
| int retval; |
| |
| retval = au1k_init(dev); |
| if (retval) { |
| printk(KERN_ERR "%s: error in au1k_init\n", dev->name); |
| return retval; |
| } |
| |
| retval = request_irq(aup->irq_tx, &au1k_irda_interrupt, 0, |
| dev->name, dev); |
| if (retval) { |
| printk(KERN_ERR "%s: unable to get IRQ %d\n", |
| dev->name, dev->irq); |
| return retval; |
| } |
| retval = request_irq(aup->irq_rx, &au1k_irda_interrupt, 0, |
| dev->name, dev); |
| if (retval) { |
| free_irq(aup->irq_tx, dev); |
| printk(KERN_ERR "%s: unable to get IRQ %d\n", |
| dev->name, dev->irq); |
| return retval; |
| } |
| |
| /* Give self a hardware name */ |
| sprintf(hwname, "Au1000 SIR/FIR"); |
| aup->irlap = irlap_open(dev, &aup->qos, hwname); |
| netif_start_queue(dev); |
| |
| /* int enable */ |
| irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) | IR_IEN); |
| |
| /* power up */ |
| au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_SIR); |
| |
| return 0; |
| } |
| |
| static int au1k_irda_stop(struct net_device *dev) |
| { |
| struct au1k_private *aup = netdev_priv(dev); |
| |
| au1k_irda_plat_set_phy_mode(aup, AU1000_IRDA_PHY_MODE_OFF); |
| |
| /* disable interrupts */ |
| irda_write(aup, IR_CONFIG_2, irda_read(aup, IR_CONFIG_2) & ~IR_IEN); |
| irda_write(aup, IR_CONFIG_1, 0); |
| irda_write(aup, IR_ENABLE, 0); /* disable clock */ |
| |
| if (aup->irlap) { |
| irlap_close(aup->irlap); |
| aup->irlap = NULL; |
| } |
| |
| netif_stop_queue(dev); |
| |
| /* disable the interrupt */ |
| free_irq(aup->irq_tx, dev); |
| free_irq(aup->irq_rx, dev); |
| |
| clk_disable_unprepare(aup->irda_clk); |
| clk_put(aup->irda_clk); |
| |
| return 0; |
| } |
| |
| /* |
| * Au1000 transmit routine. |
| */ |
| static int au1k_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct au1k_private *aup = netdev_priv(dev); |
| int speed = irda_get_next_speed(skb); |
| volatile struct ring_dest *ptxd; |
| struct db_dest *pDB; |
| u32 len, flags; |
| |
| if (speed != aup->speed && speed != -1) |
| aup->newspeed = speed; |
| |
| if ((skb->len == 0) && (aup->newspeed)) { |
| if (aup->tx_tail == aup->tx_head) { |
| au1k_irda_set_speed(dev, speed); |
| aup->newspeed = 0; |
| } |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| ptxd = aup->tx_ring[aup->tx_head]; |
| flags = ptxd->flags; |
| |
| if (flags & AU_OWN) { |
| printk(KERN_DEBUG "%s: tx_full\n", dev->name); |
| netif_stop_queue(dev); |
| aup->tx_full = 1; |
| return 1; |
| } else if (((aup->tx_head + 1) & (NUM_IR_DESC - 1)) == aup->tx_tail) { |
| printk(KERN_DEBUG "%s: tx_full\n", dev->name); |
| netif_stop_queue(dev); |
| aup->tx_full = 1; |
| return 1; |
| } |
| |
| pDB = aup->tx_db_inuse[aup->tx_head]; |
| |
| #if 0 |
| if (irda_read(aup, IR_RX_BYTE_CNT) != 0) { |
| printk(KERN_DEBUG "tx warning: rx byte cnt %x\n", |
| irda_read(aup, IR_RX_BYTE_CNT)); |
| } |
| #endif |
| |
| if (aup->speed == 4000000) { |
| /* FIR */ |
| skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len); |
| ptxd->count_0 = skb->len & 0xff; |
| ptxd->count_1 = (skb->len >> 8) & 0xff; |
| } else { |
| /* SIR */ |
| len = async_wrap_skb(skb, (u8 *)pDB->vaddr, MAX_BUF_SIZE); |
| ptxd->count_0 = len & 0xff; |
| ptxd->count_1 = (len >> 8) & 0xff; |
| ptxd->flags |= IR_DIS_CRC; |
| } |
| ptxd->flags |= AU_OWN; |
| wmb(); |
| |
| irda_write(aup, IR_CONFIG_1, |
| irda_read(aup, IR_CONFIG_1) | IR_TX_ENABLE); |
| irda_write(aup, IR_RING_PROMPT, 0); |
| |
| dev_kfree_skb(skb); |
| aup->tx_head = (aup->tx_head + 1) & (NUM_IR_DESC - 1); |
| return NETDEV_TX_OK; |
| } |
| |
| /* |
| * The Tx ring has been full longer than the watchdog timeout |
| * value. The transmitter must be hung? |
| */ |
| static void au1k_tx_timeout(struct net_device *dev) |
| { |
| u32 speed; |
| struct au1k_private *aup = netdev_priv(dev); |
| |
| printk(KERN_ERR "%s: tx timeout\n", dev->name); |
| speed = aup->speed; |
| aup->speed = 0; |
| au1k_irda_set_speed(dev, speed); |
| aup->tx_full = 0; |
| netif_wake_queue(dev); |
| } |
| |
| static int au1k_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd) |
| { |
| struct if_irda_req *rq = (struct if_irda_req *)ifreq; |
| struct au1k_private *aup = netdev_priv(dev); |
| int ret = -EOPNOTSUPP; |
| |
| switch (cmd) { |
| case SIOCSBANDWIDTH: |
| if (capable(CAP_NET_ADMIN)) { |
| /* |
| * We are unable to set the speed if the |
| * device is not running. |
| */ |
| if (aup->open) |
| ret = au1k_irda_set_speed(dev, |
| rq->ifr_baudrate); |
| else { |
| printk(KERN_ERR "%s ioctl: !netif_running\n", |
| dev->name); |
| ret = 0; |
| } |
| } |
| break; |
| |
| case SIOCSMEDIABUSY: |
| ret = -EPERM; |
| if (capable(CAP_NET_ADMIN)) { |
| irda_device_set_media_busy(dev, TRUE); |
| ret = 0; |
| } |
| break; |
| |
| case SIOCGRECEIVING: |
| rq->ifr_receiving = 0; |
| break; |
| default: |
| break; |
| } |
| return ret; |
| } |
| |
| static const struct net_device_ops au1k_irda_netdev_ops = { |
| .ndo_open = au1k_irda_start, |
| .ndo_stop = au1k_irda_stop, |
| .ndo_start_xmit = au1k_irda_hard_xmit, |
| .ndo_tx_timeout = au1k_tx_timeout, |
| .ndo_do_ioctl = au1k_irda_ioctl, |
| }; |
| |
| static int au1k_irda_net_init(struct net_device *dev) |
| { |
| struct au1k_private *aup = netdev_priv(dev); |
| struct db_dest *pDB, *pDBfree; |
| int i, err, retval = 0; |
| dma_addr_t temp; |
| |
| err = au1k_irda_init_iobuf(&aup->rx_buff, 14384); |
| if (err) |
| goto out1; |
| |
| dev->netdev_ops = &au1k_irda_netdev_ops; |
| |
| irda_init_max_qos_capabilies(&aup->qos); |
| |
| /* The only value we must override it the baudrate */ |
| aup->qos.baud_rate.bits = IR_9600 | IR_19200 | IR_38400 | |
| IR_57600 | IR_115200 | IR_576000 | (IR_4000000 << 8); |
| |
| aup->qos.min_turn_time.bits = qos_mtt_bits; |
| irda_qos_bits_to_value(&aup->qos); |
| |
| retval = -ENOMEM; |
| |
| /* Tx ring follows rx ring + 512 bytes */ |
| /* we need a 1k aligned buffer */ |
| aup->rx_ring[0] = (struct ring_dest *) |
| dma_alloc(2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest)), |
| &temp); |
| if (!aup->rx_ring[0]) |
| goto out2; |
| |
| /* allocate the data buffers */ |
| aup->db[0].vaddr = |
| dma_alloc(MAX_BUF_SIZE * 2 * NUM_IR_DESC, &temp); |
| if (!aup->db[0].vaddr) |
| goto out3; |
| |
| setup_hw_rings(aup, (u32)aup->rx_ring[0], (u32)aup->rx_ring[0] + 512); |
| |
| pDBfree = NULL; |
| pDB = aup->db; |
| for (i = 0; i < (2 * NUM_IR_DESC); i++) { |
| pDB->pnext = pDBfree; |
| pDBfree = pDB; |
| pDB->vaddr = |
| (u32 *)((unsigned)aup->db[0].vaddr + (MAX_BUF_SIZE * i)); |
| pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); |
| pDB++; |
| } |
| aup->pDBfree = pDBfree; |
| |
| /* attach a data buffer to each descriptor */ |
| for (i = 0; i < NUM_IR_DESC; i++) { |
| pDB = GetFreeDB(aup); |
| if (!pDB) |
| goto out3; |
| aup->rx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff); |
| aup->rx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff); |
| aup->rx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff); |
| aup->rx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff); |
| aup->rx_db_inuse[i] = pDB; |
| } |
| for (i = 0; i < NUM_IR_DESC; i++) { |
| pDB = GetFreeDB(aup); |
| if (!pDB) |
| goto out3; |
| aup->tx_ring[i]->addr_0 = (u8)(pDB->dma_addr & 0xff); |
| aup->tx_ring[i]->addr_1 = (u8)((pDB->dma_addr >> 8) & 0xff); |
| aup->tx_ring[i]->addr_2 = (u8)((pDB->dma_addr >> 16) & 0xff); |
| aup->tx_ring[i]->addr_3 = (u8)((pDB->dma_addr >> 24) & 0xff); |
| aup->tx_ring[i]->count_0 = 0; |
| aup->tx_ring[i]->count_1 = 0; |
| aup->tx_ring[i]->flags = 0; |
| aup->tx_db_inuse[i] = pDB; |
| } |
| |
| return 0; |
| |
| out3: |
| dma_free((void *)aup->rx_ring[0], |
| 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest))); |
| out2: |
| kfree(aup->rx_buff.head); |
| out1: |
| printk(KERN_ERR "au1k_irda_net_init() failed. Returns %d\n", retval); |
| return retval; |
| } |
| |
| static int au1k_irda_probe(struct platform_device *pdev) |
| { |
| struct au1k_private *aup; |
| struct net_device *dev; |
| struct resource *r; |
| struct clk *c; |
| int err; |
| |
| dev = alloc_irdadev(sizeof(struct au1k_private)); |
| if (!dev) |
| return -ENOMEM; |
| |
| aup = netdev_priv(dev); |
| |
| aup->platdata = pdev->dev.platform_data; |
| |
| err = -EINVAL; |
| r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); |
| if (!r) |
| goto out; |
| |
| aup->irq_tx = r->start; |
| |
| r = platform_get_resource(pdev, IORESOURCE_IRQ, 1); |
| if (!r) |
| goto out; |
| |
| aup->irq_rx = r->start; |
| |
| r = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!r) |
| goto out; |
| |
| err = -EBUSY; |
| aup->ioarea = request_mem_region(r->start, resource_size(r), |
| pdev->name); |
| if (!aup->ioarea) |
| goto out; |
| |
| /* bail out early if clock doesn't exist */ |
| c = clk_get(NULL, "irda_clk"); |
| if (IS_ERR(c)) { |
| err = PTR_ERR(c); |
| goto out; |
| } |
| clk_put(c); |
| |
| aup->iobase = ioremap_nocache(r->start, resource_size(r)); |
| if (!aup->iobase) |
| goto out2; |
| |
| dev->irq = aup->irq_rx; |
| |
| err = au1k_irda_net_init(dev); |
| if (err) |
| goto out3; |
| err = register_netdev(dev); |
| if (err) |
| goto out4; |
| |
| platform_set_drvdata(pdev, dev); |
| |
| printk(KERN_INFO "IrDA: Registered device %s\n", dev->name); |
| return 0; |
| |
| out4: |
| dma_free((void *)aup->db[0].vaddr, |
| MAX_BUF_SIZE * 2 * NUM_IR_DESC); |
| dma_free((void *)aup->rx_ring[0], |
| 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest))); |
| kfree(aup->rx_buff.head); |
| out3: |
| iounmap(aup->iobase); |
| out2: |
| release_resource(aup->ioarea); |
| kfree(aup->ioarea); |
| out: |
| free_netdev(dev); |
| return err; |
| } |
| |
| static int au1k_irda_remove(struct platform_device *pdev) |
| { |
| struct net_device *dev = platform_get_drvdata(pdev); |
| struct au1k_private *aup = netdev_priv(dev); |
| |
| unregister_netdev(dev); |
| |
| dma_free((void *)aup->db[0].vaddr, |
| MAX_BUF_SIZE * 2 * NUM_IR_DESC); |
| dma_free((void *)aup->rx_ring[0], |
| 2 * MAX_NUM_IR_DESC * (sizeof(struct ring_dest))); |
| kfree(aup->rx_buff.head); |
| |
| iounmap(aup->iobase); |
| release_resource(aup->ioarea); |
| kfree(aup->ioarea); |
| |
| free_netdev(dev); |
| |
| return 0; |
| } |
| |
| static struct platform_driver au1k_irda_driver = { |
| .driver = { |
| .name = "au1000-irda", |
| }, |
| .probe = au1k_irda_probe, |
| .remove = au1k_irda_remove, |
| }; |
| |
| module_platform_driver(au1k_irda_driver); |
| |
| MODULE_AUTHOR("Pete Popov <ppopov@mvista.com>"); |
| MODULE_DESCRIPTION("Au1000 IrDA Device Driver"); |