| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) KEBA Industrial Automation Gmbh 2024 |
| * |
| * Driver for KEBA I2C controller FPGA IP core |
| */ |
| |
| #include <linux/i2c.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/misc/keba.h> |
| |
| #define KI2C "i2c-keba" |
| |
| #define KI2C_CAPABILITY_REG 0x02 |
| #define KI2C_CAPABILITY_CRYPTO 0x01 |
| #define KI2C_CAPABILITY_DC 0x02 |
| |
| #define KI2C_CONTROL_REG 0x04 |
| #define KI2C_CONTROL_MEN 0x01 |
| #define KI2C_CONTROL_MSTA 0x02 |
| #define KI2C_CONTROL_RSTA 0x04 |
| #define KI2C_CONTROL_MTX 0x08 |
| #define KI2C_CONTROL_TXAK 0x10 |
| #define KI2C_CONTROL_DISABLE 0x00 |
| |
| #define KI2C_CONTROL_DC_REG 0x05 |
| #define KI2C_CONTROL_DC_SDA 0x01 |
| #define KI2C_CONTROL_DC_SCL 0x02 |
| |
| #define KI2C_STATUS_REG 0x08 |
| #define KI2C_STATUS_IN_USE 0x01 |
| #define KI2C_STATUS_ACK_CYC 0x02 |
| #define KI2C_STATUS_RXAK 0x04 |
| #define KI2C_STATUS_MCF 0x08 |
| |
| #define KI2C_STATUS_DC_REG 0x09 |
| #define KI2C_STATUS_DC_SDA 0x01 |
| #define KI2C_STATUS_DC_SCL 0x02 |
| |
| #define KI2C_DATA_REG 0x0c |
| |
| #define KI2C_INUSE_SLEEP_US (2 * USEC_PER_MSEC) |
| #define KI2C_INUSE_TIMEOUT_US (10 * USEC_PER_SEC) |
| |
| #define KI2C_POLL_DELAY_US 5 |
| |
| struct ki2c { |
| struct keba_i2c_auxdev *auxdev; |
| void __iomem *base; |
| struct i2c_adapter adapter; |
| |
| struct i2c_client **client; |
| int client_size; |
| }; |
| |
| static int ki2c_inuse_lock(struct ki2c *ki2c) |
| { |
| u8 sts; |
| int ret; |
| |
| /* |
| * The I2C controller has an IN_USE bit for locking access to the |
| * controller. This enables the use of I2C controller by other none |
| * Linux processors. |
| * |
| * If the I2C controller is free, then the first read returns |
| * IN_USE == 0. After that the I2C controller is locked and further |
| * reads of IN_USE return 1. |
| * |
| * The I2C controller is unlocked by writing 1 into IN_USE. |
| * |
| * The IN_USE bit acts as a hardware semaphore for the I2C controller. |
| * Poll for semaphore, but sleep while polling to free the CPU. |
| */ |
| ret = readb_poll_timeout(ki2c->base + KI2C_STATUS_REG, |
| sts, (sts & KI2C_STATUS_IN_USE) == 0, |
| KI2C_INUSE_SLEEP_US, KI2C_INUSE_TIMEOUT_US); |
| if (ret) |
| dev_err(&ki2c->auxdev->auxdev.dev, "%s err!\n", __func__); |
| |
| return ret; |
| } |
| |
| static void ki2c_inuse_unlock(struct ki2c *ki2c) |
| { |
| /* unlock the controller by writing 1 into IN_USE */ |
| iowrite8(KI2C_STATUS_IN_USE, ki2c->base + KI2C_STATUS_REG); |
| } |
| |
| static int ki2c_wait_for_bit(void __iomem *addr, u8 mask, unsigned long timeout) |
| { |
| u8 val; |
| |
| return readb_poll_timeout(addr, val, (val & mask), KI2C_POLL_DELAY_US, |
| jiffies_to_usecs(timeout)); |
| } |
| |
| static int ki2c_wait_for_mcf(struct ki2c *ki2c) |
| { |
| return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG, KI2C_STATUS_MCF, |
| ki2c->adapter.timeout); |
| } |
| |
| static int ki2c_wait_for_data(struct ki2c *ki2c) |
| { |
| int ret; |
| |
| ret = ki2c_wait_for_mcf(ki2c); |
| if (ret < 0) |
| return ret; |
| |
| return ki2c_wait_for_bit(ki2c->base + KI2C_STATUS_REG, |
| KI2C_STATUS_ACK_CYC, |
| ki2c->adapter.timeout); |
| } |
| |
| static int ki2c_wait_for_data_ack(struct ki2c *ki2c) |
| { |
| unsigned int reg; |
| int ret; |
| |
| ret = ki2c_wait_for_data(ki2c); |
| if (ret < 0) |
| return ret; |
| |
| /* RXAK == 0 means ACK reveived */ |
| reg = ioread8(ki2c->base + KI2C_STATUS_REG); |
| if (reg & KI2C_STATUS_RXAK) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int ki2c_has_capability(struct ki2c *ki2c, unsigned int cap) |
| { |
| unsigned int reg = ioread8(ki2c->base + KI2C_CAPABILITY_REG); |
| |
| return (reg & cap) != 0; |
| } |
| |
| static int ki2c_get_scl(struct ki2c *ki2c) |
| { |
| unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG); |
| |
| /* capability KI2C_CAPABILITY_DC required */ |
| return (reg & KI2C_STATUS_DC_SCL) != 0; |
| } |
| |
| static int ki2c_get_sda(struct ki2c *ki2c) |
| { |
| unsigned int reg = ioread8(ki2c->base + KI2C_STATUS_DC_REG); |
| |
| /* capability KI2C_CAPABILITY_DC required */ |
| return (reg & KI2C_STATUS_DC_SDA) != 0; |
| } |
| |
| static void ki2c_set_scl(struct ki2c *ki2c, int val) |
| { |
| u8 control_dc; |
| |
| /* capability KI2C_CAPABILITY_DC and KI2C_CONTROL_MEN = 0 reqired */ |
| control_dc = ioread8(ki2c->base + KI2C_CONTROL_DC_REG); |
| if (val) |
| control_dc |= KI2C_CONTROL_DC_SCL; |
| else |
| control_dc &= ~KI2C_CONTROL_DC_SCL; |
| iowrite8(control_dc, ki2c->base + KI2C_CONTROL_DC_REG); |
| } |
| |
| /* |
| * Resetting bus bitwise is done by checking SDA and applying clock cycles as |
| * long as SDA is low. 9 clock cycles are applied at most. |
| * |
| * Clock cycles are generated and udelay() determines the duration of clock |
| * cycles. Generated clock rate is 100 KHz and so duration of both clock levels |
| * is: delay in ns = (10^6 / 100) / 2 |
| */ |
| #define KI2C_RECOVERY_CLK_CNT (9 * 2) |
| #define KI2C_RECOVERY_UDELAY 5 |
| static int ki2c_reset_bus_bitwise(struct ki2c *ki2c) |
| { |
| int val = 1; |
| int ret = 0; |
| int i; |
| |
| /* disable I2C controller (MEN = 0) to get direct access to SCL/SDA */ |
| iowrite8(0, ki2c->base + KI2C_CONTROL_REG); |
| |
| /* generate clock cycles */ |
| ki2c_set_scl(ki2c, val); |
| udelay(KI2C_RECOVERY_UDELAY); |
| for (i = 0; i < KI2C_RECOVERY_CLK_CNT; i++) { |
| if (val) { |
| /* SCL shouldn't be low here */ |
| if (!ki2c_get_scl(ki2c)) { |
| dev_err(&ki2c->auxdev->auxdev.dev, |
| "SCL is stuck low!\n"); |
| ret = -EBUSY; |
| break; |
| } |
| |
| /* break if SDA is high */ |
| if (ki2c_get_sda(ki2c)) |
| break; |
| } |
| |
| val = !val; |
| ki2c_set_scl(ki2c, val); |
| udelay(KI2C_RECOVERY_UDELAY); |
| } |
| |
| if (!ki2c_get_sda(ki2c)) { |
| dev_err(&ki2c->auxdev->auxdev.dev, "SDA is still low!\n"); |
| ret = -EBUSY; |
| } |
| |
| /* reenable controller */ |
| iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG); |
| |
| return ret; |
| } |
| |
| /* |
| * Resetting bus bytewise is done by writing start bit, 9 data bits and stop |
| * bit. |
| * |
| * This is not 100% safe. If target is an EEPROM and a write access was |
| * interrupted during the ACK cycle, this approach might not be able to recover |
| * the bus. The reason is, that after the 9 clock cycles the EEPROM will be in |
| * ACK cycle again and will hold SDA low like it did before the start of the |
| * routine. Furthermore the EEPROM might get written one additional byte with |
| * 0xff into it. Thus, use bitwise approach whenever possible, especially when |
| * EEPROMs are on the bus. |
| */ |
| static int ki2c_reset_bus_bytewise(struct ki2c *ki2c) |
| { |
| int ret; |
| |
| /* hold data line high for 9 clock cycles */ |
| iowrite8(0xFF, ki2c->base + KI2C_DATA_REG); |
| |
| /* create start condition */ |
| iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK, |
| ki2c->base + KI2C_CONTROL_REG); |
| ret = ki2c_wait_for_mcf(ki2c); |
| if (ret < 0) { |
| dev_err(&ki2c->auxdev->auxdev.dev, "Start condition failed\n"); |
| |
| return ret; |
| } |
| |
| /* create stop condition */ |
| iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_TXAK, |
| ki2c->base + KI2C_CONTROL_REG); |
| ret = ki2c_wait_for_mcf(ki2c); |
| if (ret < 0) |
| dev_err(&ki2c->auxdev->auxdev.dev, "Stop condition failed\n"); |
| |
| return ret; |
| } |
| |
| static int ki2c_reset_bus(struct ki2c *ki2c) |
| { |
| int ret; |
| |
| ret = ki2c_inuse_lock(ki2c); |
| if (ret < 0) |
| return ret; |
| |
| /* |
| * If the I2C controller is capable of direct control of SCL/SDA, then a |
| * bitwise reset is used. Otherwise fall back to bytewise reset. |
| */ |
| if (ki2c_has_capability(ki2c, KI2C_CAPABILITY_DC)) |
| ret = ki2c_reset_bus_bitwise(ki2c); |
| else |
| ret = ki2c_reset_bus_bytewise(ki2c); |
| |
| ki2c_inuse_unlock(ki2c); |
| |
| return ret; |
| } |
| |
| static void ki2c_write_target_addr(struct ki2c *ki2c, struct i2c_msg *m) |
| { |
| u8 addr; |
| |
| addr = m->addr << 1; |
| /* Bit 0 signals RD/WR */ |
| if (m->flags & I2C_M_RD) |
| addr |= 0x01; |
| |
| iowrite8(addr, ki2c->base + KI2C_DATA_REG); |
| } |
| |
| static int ki2c_start_addr(struct ki2c *ki2c, struct i2c_msg *m) |
| { |
| int ret; |
| |
| /* |
| * Store target address byte in the controller. This has to be done |
| * before sending START condition. |
| */ |
| ki2c_write_target_addr(ki2c, m); |
| |
| /* enable controller for TX */ |
| iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX, |
| ki2c->base + KI2C_CONTROL_REG); |
| |
| /* send START condition and target address byte */ |
| iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MTX | KI2C_CONTROL_MSTA, |
| ki2c->base + KI2C_CONTROL_REG); |
| |
| ret = ki2c_wait_for_data_ack(ki2c); |
| if (ret < 0) |
| /* |
| * For EEPROMs this is normal behavior during internal write |
| * operation. |
| */ |
| dev_dbg(&ki2c->auxdev->auxdev.dev, |
| "%s wait for ACK err at 0x%02x!\n", __func__, m->addr); |
| |
| return ret; |
| } |
| |
| static int ki2c_repstart_addr(struct ki2c *ki2c, struct i2c_msg *m) |
| { |
| int ret; |
| |
| /* repeated start and write is not supported */ |
| if ((m->flags & I2C_M_RD) == 0) { |
| dev_err(&ki2c->auxdev->auxdev.dev, |
| "Repeated start not supported for writes\n"); |
| return -EINVAL; |
| } |
| |
| /* send repeated start */ |
| iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_RSTA, |
| ki2c->base + KI2C_CONTROL_REG); |
| |
| ret = ki2c_wait_for_mcf(ki2c); |
| if (ret < 0) { |
| dev_err(&ki2c->auxdev->auxdev.dev, |
| "%s wait for MCF err at 0x%02x!\n", __func__, m->addr); |
| return ret; |
| } |
| |
| /* write target-address byte */ |
| ki2c_write_target_addr(ki2c, m); |
| |
| ret = ki2c_wait_for_data_ack(ki2c); |
| if (ret < 0) |
| dev_err(&ki2c->auxdev->auxdev.dev, |
| "%s wait for ACK err at 0x%02x!\n", __func__, m->addr); |
| |
| return ret; |
| } |
| |
| static void ki2c_stop(struct ki2c *ki2c) |
| { |
| iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG); |
| ki2c_wait_for_mcf(ki2c); |
| } |
| |
| static int ki2c_write(struct ki2c *ki2c, const u8 *data, int len) |
| { |
| int ret; |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| /* write data byte */ |
| iowrite8(data[i], ki2c->base + KI2C_DATA_REG); |
| |
| ret = ki2c_wait_for_data_ack(ki2c); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int ki2c_read(struct ki2c *ki2c, u8 *data, int len) |
| { |
| u8 control; |
| int ret; |
| int i; |
| |
| if (len == 0) |
| return 0; /* nothing to do */ |
| |
| control = KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA; |
| |
| /* if just one byte => send tx-nack after transfer */ |
| if (len == 1) |
| control |= KI2C_CONTROL_TXAK; |
| |
| iowrite8(control, ki2c->base + KI2C_CONTROL_REG); |
| |
| /* dummy read to start transfer on bus */ |
| ioread8(ki2c->base + KI2C_DATA_REG); |
| |
| for (i = 0; i < len; i++) { |
| ret = ki2c_wait_for_data(ki2c); |
| if (ret < 0) |
| return ret; |
| |
| if (i == len - 2) |
| /* send tx-nack after transfer of last byte */ |
| iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_TXAK, |
| ki2c->base + KI2C_CONTROL_REG); |
| else if (i == len - 1) |
| /* |
| * switch to TX on last byte, so that reading DATA |
| * register does not trigger another read transfer |
| */ |
| iowrite8(KI2C_CONTROL_MEN | KI2C_CONTROL_MSTA | KI2C_CONTROL_MTX, |
| ki2c->base + KI2C_CONTROL_REG); |
| |
| /* read byte and start next transfer (if not last byte) */ |
| data[i] = ioread8(ki2c->base + KI2C_DATA_REG); |
| } |
| |
| return len; |
| } |
| |
| static int ki2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) |
| { |
| struct ki2c *ki2c = i2c_get_adapdata(adap); |
| int ret; |
| int i; |
| |
| ret = ki2c_inuse_lock(ki2c); |
| if (ret < 0) |
| return ret; |
| |
| for (i = 0; i < num; i++) { |
| struct i2c_msg *m = &msgs[i]; |
| |
| if (i == 0) |
| ret = ki2c_start_addr(ki2c, m); |
| else |
| ret = ki2c_repstart_addr(ki2c, m); |
| if (ret < 0) |
| break; |
| |
| if (m->flags & I2C_M_RD) |
| ret = ki2c_read(ki2c, m->buf, m->len); |
| else |
| ret = ki2c_write(ki2c, m->buf, m->len); |
| if (ret < 0) |
| break; |
| } |
| |
| ki2c_stop(ki2c); |
| |
| ki2c_inuse_unlock(ki2c); |
| |
| return ret < 0 ? ret : num; |
| } |
| |
| static void ki2c_unregister_devices(struct ki2c *ki2c) |
| { |
| int i; |
| |
| for (i = 0; i < ki2c->client_size; i++) { |
| struct i2c_client *client = ki2c->client[i]; |
| |
| if (client) |
| i2c_unregister_device(client); |
| } |
| } |
| |
| static int ki2c_register_devices(struct ki2c *ki2c) |
| { |
| struct i2c_board_info *info = ki2c->auxdev->info; |
| int i; |
| |
| /* register all known I2C devices */ |
| for (i = 0; i < ki2c->client_size; i++) { |
| struct i2c_client *client; |
| unsigned short const addr_list[2] = { info[i].addr, |
| I2C_CLIENT_END }; |
| |
| client = i2c_new_scanned_device(&ki2c->adapter, &info[i], |
| addr_list, NULL); |
| if (!IS_ERR(client)) { |
| ki2c->client[i] = client; |
| } else if (PTR_ERR(client) != -ENODEV) { |
| ki2c->client_size = i; |
| ki2c_unregister_devices(ki2c); |
| |
| return PTR_ERR(client); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static u32 ki2c_func(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| } |
| |
| static const struct i2c_algorithm ki2c_algo = { |
| .master_xfer = ki2c_xfer, |
| .functionality = ki2c_func, |
| }; |
| |
| static int ki2c_probe(struct auxiliary_device *auxdev, |
| const struct auxiliary_device_id *id) |
| { |
| struct device *dev = &auxdev->dev; |
| struct i2c_adapter *adap; |
| struct ki2c *ki2c; |
| int ret; |
| |
| ki2c = devm_kzalloc(dev, sizeof(*ki2c), GFP_KERNEL); |
| if (!ki2c) |
| return -ENOMEM; |
| ki2c->auxdev = container_of(auxdev, struct keba_i2c_auxdev, auxdev); |
| ki2c->client = devm_kcalloc(dev, ki2c->auxdev->info_size, |
| sizeof(*ki2c->client), GFP_KERNEL); |
| if (!ki2c->client) |
| return -ENOMEM; |
| ki2c->client_size = ki2c->auxdev->info_size; |
| auxiliary_set_drvdata(auxdev, ki2c); |
| |
| ki2c->base = devm_ioremap_resource(dev, &ki2c->auxdev->io); |
| if (IS_ERR(ki2c->base)) |
| return PTR_ERR(ki2c->base); |
| |
| adap = &ki2c->adapter; |
| strscpy(adap->name, "KEBA I2C adapter", sizeof(adap->name)); |
| adap->owner = THIS_MODULE; |
| adap->class = I2C_CLASS_HWMON; |
| adap->algo = &ki2c_algo; |
| adap->dev.parent = dev; |
| |
| i2c_set_adapdata(adap, ki2c); |
| |
| /* enable controller */ |
| iowrite8(KI2C_CONTROL_MEN, ki2c->base + KI2C_CONTROL_REG); |
| |
| /* reset bus before probing I2C devices */ |
| ret = ki2c_reset_bus(ki2c); |
| if (ret) |
| goto out; |
| |
| ret = devm_i2c_add_adapter(dev, adap); |
| if (ret) { |
| dev_err(dev, "Failed to add adapter (%d)!\n", ret); |
| goto out; |
| } |
| |
| ret = ki2c_register_devices(ki2c); |
| if (ret) { |
| dev_err(dev, "Failed to register devices (%d)!\n", ret); |
| goto out; |
| } |
| |
| return 0; |
| |
| out: |
| iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG); |
| return ret; |
| } |
| |
| static void ki2c_remove(struct auxiliary_device *auxdev) |
| { |
| struct ki2c *ki2c = auxiliary_get_drvdata(auxdev); |
| |
| ki2c_unregister_devices(ki2c); |
| |
| /* disable controller */ |
| iowrite8(KI2C_CONTROL_DISABLE, ki2c->base + KI2C_CONTROL_REG); |
| |
| auxiliary_set_drvdata(auxdev, NULL); |
| } |
| |
| static const struct auxiliary_device_id ki2c_devtype_aux[] = { |
| { .name = "keba.i2c" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(auxiliary, ki2c_devtype_aux); |
| |
| static struct auxiliary_driver ki2c_driver_aux = { |
| .name = KI2C, |
| .id_table = ki2c_devtype_aux, |
| .probe = ki2c_probe, |
| .remove = ki2c_remove, |
| }; |
| module_auxiliary_driver(ki2c_driver_aux); |
| |
| MODULE_AUTHOR("Gerhard Engleder <eg@keba.com>"); |
| MODULE_DESCRIPTION("KEBA I2C bus controller driver"); |
| MODULE_LICENSE("GPL"); |