| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Driver for STMicroelectronics STM32 I2C controller |
| * |
| * This I2C controller is described in the STM32F429/439 Soc reference manual. |
| * Please see below a link to the documentation: |
| * http://www.st.com/resource/en/reference_manual/DM00031020.pdf |
| * |
| * Copyright (C) M'boumba Cedric Madianga 2016 |
| * Copyright (C) STMicroelectronics 2017 |
| * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> |
| * |
| * This driver is based on i2c-st.c |
| * |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/i2c.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/reset.h> |
| |
| #include "i2c-stm32.h" |
| |
| /* STM32F4 I2C offset registers */ |
| #define STM32F4_I2C_CR1 0x00 |
| #define STM32F4_I2C_CR2 0x04 |
| #define STM32F4_I2C_DR 0x10 |
| #define STM32F4_I2C_SR1 0x14 |
| #define STM32F4_I2C_SR2 0x18 |
| #define STM32F4_I2C_CCR 0x1C |
| #define STM32F4_I2C_TRISE 0x20 |
| #define STM32F4_I2C_FLTR 0x24 |
| |
| /* STM32F4 I2C control 1*/ |
| #define STM32F4_I2C_CR1_POS BIT(11) |
| #define STM32F4_I2C_CR1_ACK BIT(10) |
| #define STM32F4_I2C_CR1_STOP BIT(9) |
| #define STM32F4_I2C_CR1_START BIT(8) |
| #define STM32F4_I2C_CR1_PE BIT(0) |
| |
| /* STM32F4 I2C control 2 */ |
| #define STM32F4_I2C_CR2_FREQ_MASK GENMASK(5, 0) |
| #define STM32F4_I2C_CR2_FREQ(n) ((n) & STM32F4_I2C_CR2_FREQ_MASK) |
| #define STM32F4_I2C_CR2_ITBUFEN BIT(10) |
| #define STM32F4_I2C_CR2_ITEVTEN BIT(9) |
| #define STM32F4_I2C_CR2_ITERREN BIT(8) |
| #define STM32F4_I2C_CR2_IRQ_MASK (STM32F4_I2C_CR2_ITBUFEN | \ |
| STM32F4_I2C_CR2_ITEVTEN | \ |
| STM32F4_I2C_CR2_ITERREN) |
| |
| /* STM32F4 I2C Status 1 */ |
| #define STM32F4_I2C_SR1_AF BIT(10) |
| #define STM32F4_I2C_SR1_ARLO BIT(9) |
| #define STM32F4_I2C_SR1_BERR BIT(8) |
| #define STM32F4_I2C_SR1_TXE BIT(7) |
| #define STM32F4_I2C_SR1_RXNE BIT(6) |
| #define STM32F4_I2C_SR1_BTF BIT(2) |
| #define STM32F4_I2C_SR1_ADDR BIT(1) |
| #define STM32F4_I2C_SR1_SB BIT(0) |
| #define STM32F4_I2C_SR1_ITEVTEN_MASK (STM32F4_I2C_SR1_BTF | \ |
| STM32F4_I2C_SR1_ADDR | \ |
| STM32F4_I2C_SR1_SB) |
| #define STM32F4_I2C_SR1_ITBUFEN_MASK (STM32F4_I2C_SR1_TXE | \ |
| STM32F4_I2C_SR1_RXNE) |
| #define STM32F4_I2C_SR1_ITERREN_MASK (STM32F4_I2C_SR1_AF | \ |
| STM32F4_I2C_SR1_ARLO | \ |
| STM32F4_I2C_SR1_BERR) |
| |
| /* STM32F4 I2C Status 2 */ |
| #define STM32F4_I2C_SR2_BUSY BIT(1) |
| |
| /* STM32F4 I2C Control Clock */ |
| #define STM32F4_I2C_CCR_CCR_MASK GENMASK(11, 0) |
| #define STM32F4_I2C_CCR_CCR(n) ((n) & STM32F4_I2C_CCR_CCR_MASK) |
| #define STM32F4_I2C_CCR_FS BIT(15) |
| #define STM32F4_I2C_CCR_DUTY BIT(14) |
| |
| /* STM32F4 I2C Trise */ |
| #define STM32F4_I2C_TRISE_VALUE_MASK GENMASK(5, 0) |
| #define STM32F4_I2C_TRISE_VALUE(n) ((n) & STM32F4_I2C_TRISE_VALUE_MASK) |
| |
| #define STM32F4_I2C_MIN_STANDARD_FREQ 2U |
| #define STM32F4_I2C_MIN_FAST_FREQ 6U |
| #define STM32F4_I2C_MAX_FREQ 46U |
| #define HZ_TO_MHZ 1000000 |
| |
| /** |
| * struct stm32f4_i2c_msg - client specific data |
| * @addr: 8-bit target addr, including r/w bit |
| * @count: number of bytes to be transferred |
| * @buf: data buffer |
| * @result: result of the transfer |
| * @stop: last I2C msg to be sent, i.e. STOP to be generated |
| */ |
| struct stm32f4_i2c_msg { |
| u8 addr; |
| u32 count; |
| u8 *buf; |
| int result; |
| bool stop; |
| }; |
| |
| /** |
| * struct stm32f4_i2c_dev - private data of the controller |
| * @adap: I2C adapter for this controller |
| * @dev: device for this controller |
| * @base: virtual memory area |
| * @complete: completion of I2C message |
| * @clk: hw i2c clock |
| * @speed: I2C clock frequency of the controller. Standard or Fast are supported |
| * @parent_rate: I2C clock parent rate in MHz |
| * @msg: I2C transfer information |
| */ |
| struct stm32f4_i2c_dev { |
| struct i2c_adapter adap; |
| struct device *dev; |
| void __iomem *base; |
| struct completion complete; |
| struct clk *clk; |
| int speed; |
| int parent_rate; |
| struct stm32f4_i2c_msg msg; |
| }; |
| |
| static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask) |
| { |
| writel_relaxed(readl_relaxed(reg) | mask, reg); |
| } |
| |
| static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask) |
| { |
| writel_relaxed(readl_relaxed(reg) & ~mask, reg); |
| } |
| |
| static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2; |
| |
| stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK); |
| } |
| |
| static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| u32 freq; |
| u32 cr2 = 0; |
| |
| i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk); |
| freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ); |
| |
| if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) { |
| /* |
| * To reach 100 kHz, the parent clk frequency should be between |
| * a minimum value of 2 MHz and a maximum value of 46 MHz due |
| * to hardware limitation |
| */ |
| if (freq < STM32F4_I2C_MIN_STANDARD_FREQ || |
| freq > STM32F4_I2C_MAX_FREQ) { |
| dev_err(i2c_dev->dev, |
| "bad parent clk freq for standard mode\n"); |
| return -EINVAL; |
| } |
| } else { |
| /* |
| * To be as close as possible to 400 kHz, the parent clk |
| * frequency should be between a minimum value of 6 MHz and a |
| * maximum value of 46 MHz due to hardware limitation |
| */ |
| if (freq < STM32F4_I2C_MIN_FAST_FREQ || |
| freq > STM32F4_I2C_MAX_FREQ) { |
| dev_err(i2c_dev->dev, |
| "bad parent clk freq for fast mode\n"); |
| return -EINVAL; |
| } |
| } |
| |
| cr2 |= STM32F4_I2C_CR2_FREQ(freq); |
| writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2); |
| |
| return 0; |
| } |
| |
| static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ); |
| u32 trise; |
| |
| /* |
| * These bits must be programmed with the maximum SCL rise time given in |
| * the I2C bus specification, incremented by 1. |
| * |
| * In standard mode, the maximum allowed SCL rise time is 1000 ns. |
| * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to |
| * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be |
| * programmed with 0x9. (1000 ns / 125 ns + 1) |
| * So, for I2C standard mode TRISE = FREQ[5:0] + 1 |
| * |
| * In fast mode, the maximum allowed SCL rise time is 300 ns. |
| * If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to |
| * 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be |
| * programmed with 0x3. (300 ns / 125 ns + 1) |
| * So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1 |
| * |
| * Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate |
| * is not higher than 46 MHz . As a result trise is at most 4 bits wide |
| * and so fits into the TRISE bits [5:0]. |
| */ |
| if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) |
| trise = freq + 1; |
| else |
| trise = freq * 3 / 10 + 1; |
| |
| writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise), |
| i2c_dev->base + STM32F4_I2C_TRISE); |
| } |
| |
| static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| u32 val; |
| u32 ccr = 0; |
| |
| if (i2c_dev->speed == STM32_I2C_SPEED_STANDARD) { |
| /* |
| * In standard mode: |
| * t_scl_high = t_scl_low = CCR * I2C parent clk period |
| * So to reach 100 kHz, we have: |
| * CCR = I2C parent rate / (100 kHz * 2) |
| * |
| * For example with parent rate = 2 MHz: |
| * CCR = 2000000 / (100000 * 2) = 10 |
| * t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns |
| * t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached |
| * |
| * Function stm32f4_i2c_set_periph_clk_freq made sure that |
| * parent rate is not higher than 46 MHz . As a result val |
| * is at most 8 bits wide and so fits into the CCR bits [11:0]. |
| */ |
| val = i2c_dev->parent_rate / (I2C_MAX_STANDARD_MODE_FREQ * 2); |
| } else { |
| /* |
| * In fast mode, we compute CCR with duty = 0 as with low |
| * frequencies we are not able to reach 400 kHz. |
| * In that case: |
| * t_scl_high = CCR * I2C parent clk period |
| * t_scl_low = 2 * CCR * I2C parent clk period |
| * So, CCR = I2C parent rate / (400 kHz * 3) |
| * |
| * For example with parent rate = 6 MHz: |
| * CCR = 6000000 / (400000 * 3) = 5 |
| * t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns |
| * t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns |
| * t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached |
| * |
| * Function stm32f4_i2c_set_periph_clk_freq made sure that |
| * parent rate is not higher than 46 MHz . As a result val |
| * is at most 6 bits wide and so fits into the CCR bits [11:0]. |
| */ |
| val = DIV_ROUND_UP(i2c_dev->parent_rate, I2C_MAX_FAST_MODE_FREQ * 3); |
| |
| /* Select Fast mode */ |
| ccr |= STM32F4_I2C_CCR_FS; |
| } |
| |
| ccr |= STM32F4_I2C_CCR_CCR(val); |
| writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR); |
| } |
| |
| /** |
| * stm32f4_i2c_hw_config() - Prepare I2C block |
| * @i2c_dev: Controller's private data |
| */ |
| static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| int ret; |
| |
| ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev); |
| if (ret) |
| return ret; |
| |
| stm32f4_i2c_set_rise_time(i2c_dev); |
| |
| stm32f4_i2c_set_speed_mode(i2c_dev); |
| |
| /* Enable I2C */ |
| writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1); |
| |
| return 0; |
| } |
| |
| static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| u32 status; |
| int ret; |
| |
| ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2, |
| status, |
| !(status & STM32F4_I2C_SR2_BUSY), |
| 10, 1000); |
| if (ret) { |
| dev_dbg(i2c_dev->dev, "bus not free\n"); |
| ret = -EBUSY; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * stm32f4_i2c_write_byte() - Write a byte in the data register |
| * @i2c_dev: Controller's private data |
| * @byte: Data to write in the register |
| */ |
| static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte) |
| { |
| writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR); |
| } |
| |
| /** |
| * stm32f4_i2c_write_msg() - Fill the data register in write mode |
| * @i2c_dev: Controller's private data |
| * |
| * This function fills the data register with I2C transfer buffer |
| */ |
| static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| |
| stm32f4_i2c_write_byte(i2c_dev, *msg->buf++); |
| msg->count--; |
| } |
| |
| static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| u32 rbuf; |
| |
| rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR); |
| *msg->buf++ = rbuf; |
| msg->count--; |
| } |
| |
| static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| void __iomem *reg; |
| |
| stm32f4_i2c_disable_irq(i2c_dev); |
| |
| reg = i2c_dev->base + STM32F4_I2C_CR1; |
| if (msg->stop) |
| stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP); |
| else |
| stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START); |
| |
| complete(&i2c_dev->complete); |
| } |
| |
| /** |
| * stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write |
| * @i2c_dev: Controller's private data |
| */ |
| static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2; |
| |
| if (msg->count) { |
| stm32f4_i2c_write_msg(i2c_dev); |
| if (!msg->count) { |
| /* |
| * Disable buffer interrupts for RX not empty and TX |
| * empty events |
| */ |
| stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN); |
| } |
| } else { |
| stm32f4_i2c_terminate_xfer(i2c_dev); |
| } |
| } |
| |
| /** |
| * stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read |
| * @i2c_dev: Controller's private data |
| * |
| * This function is called when a new data is received in data register |
| */ |
| static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2; |
| |
| switch (msg->count) { |
| case 1: |
| stm32f4_i2c_disable_irq(i2c_dev); |
| stm32f4_i2c_read_msg(i2c_dev); |
| complete(&i2c_dev->complete); |
| break; |
| /* |
| * For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N |
| * for N-byte reception with N > 3, we do not have to read the data |
| * register when RX not empty event occurs as we have to wait for byte |
| * transferred finished event before reading data. |
| * So, here we just disable buffer interrupt in order to avoid another |
| * system preemption due to RX not empty event. |
| */ |
| case 2: |
| case 3: |
| stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN); |
| break; |
| /* |
| * For N byte reception with N > 3 we directly read data register |
| * until N-2 data. |
| */ |
| default: |
| stm32f4_i2c_read_msg(i2c_dev); |
| } |
| } |
| |
| /** |
| * stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt |
| * in case of read |
| * @i2c_dev: Controller's private data |
| * |
| * This function is called when a new data is received in the shift register |
| * but data register has not been read yet. |
| */ |
| static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| void __iomem *reg; |
| u32 mask; |
| int i; |
| |
| switch (msg->count) { |
| case 2: |
| /* |
| * In order to correctly send the Stop or Repeated Start |
| * condition on the I2C bus, the STOP/START bit has to be set |
| * before reading the last two bytes (data N-1 and N). |
| * After that, we could read the last two bytes, disable |
| * remaining interrupts and notify the end of xfer to the |
| * client |
| */ |
| reg = i2c_dev->base + STM32F4_I2C_CR1; |
| if (msg->stop) |
| stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP); |
| else |
| stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START); |
| |
| for (i = 2; i > 0; i--) |
| stm32f4_i2c_read_msg(i2c_dev); |
| |
| reg = i2c_dev->base + STM32F4_I2C_CR2; |
| mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN; |
| stm32f4_i2c_clr_bits(reg, mask); |
| |
| complete(&i2c_dev->complete); |
| break; |
| case 3: |
| /* |
| * In order to correctly generate the NACK pulse after the last |
| * received data byte, we have to enable NACK before reading N-2 |
| * data |
| */ |
| reg = i2c_dev->base + STM32F4_I2C_CR1; |
| stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK); |
| stm32f4_i2c_read_msg(i2c_dev); |
| break; |
| default: |
| stm32f4_i2c_read_msg(i2c_dev); |
| } |
| } |
| |
| /** |
| * stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of |
| * controller receiver |
| * @i2c_dev: Controller's private data |
| */ |
| static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev) |
| { |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| u32 cr1; |
| |
| switch (msg->count) { |
| case 0: |
| stm32f4_i2c_terminate_xfer(i2c_dev); |
| |
| /* Clear ADDR flag */ |
| readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2); |
| break; |
| case 1: |
| /* |
| * Single byte reception: |
| * Enable NACK and reset POS (Acknowledge position). |
| * Then, clear ADDR flag and set STOP or RepSTART. |
| * In that way, the NACK and STOP or RepStart pulses will be |
| * sent as soon as the byte will be received in shift register |
| */ |
| cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1); |
| cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS); |
| writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1); |
| |
| readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2); |
| |
| if (msg->stop) |
| cr1 |= STM32F4_I2C_CR1_STOP; |
| else |
| cr1 |= STM32F4_I2C_CR1_START; |
| writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1); |
| break; |
| case 2: |
| /* |
| * 2-byte reception: |
| * Enable NACK, set POS (NACK position) and clear ADDR flag. |
| * In that way, NACK will be sent for the next byte which will |
| * be received in the shift register instead of the current |
| * one. |
| */ |
| cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1); |
| cr1 &= ~STM32F4_I2C_CR1_ACK; |
| cr1 |= STM32F4_I2C_CR1_POS; |
| writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1); |
| |
| readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2); |
| break; |
| |
| default: |
| /* |
| * N-byte reception: |
| * Enable ACK, reset POS (ACK position) and clear ADDR flag. |
| * In that way, ACK will be sent as soon as the current byte |
| * will be received in the shift register |
| */ |
| cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1); |
| cr1 |= STM32F4_I2C_CR1_ACK; |
| cr1 &= ~STM32F4_I2C_CR1_POS; |
| writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1); |
| |
| readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2); |
| break; |
| } |
| } |
| |
| /** |
| * stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event |
| * @irq: interrupt number |
| * @data: Controller's private data |
| */ |
| static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data) |
| { |
| struct stm32f4_i2c_dev *i2c_dev = data; |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK; |
| u32 status, ien, event, cr2; |
| |
| cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2); |
| ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK; |
| |
| /* Update possible_status if buffer interrupt is enabled */ |
| if (ien & STM32F4_I2C_CR2_ITBUFEN) |
| possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK; |
| |
| status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1); |
| event = status & possible_status; |
| if (!event) { |
| dev_dbg(i2c_dev->dev, |
| "spurious evt irq (status=0x%08x, ien=0x%08x)\n", |
| status, ien); |
| return IRQ_NONE; |
| } |
| |
| /* Start condition generated */ |
| if (event & STM32F4_I2C_SR1_SB) |
| stm32f4_i2c_write_byte(i2c_dev, msg->addr); |
| |
| /* I2C Address sent */ |
| if (event & STM32F4_I2C_SR1_ADDR) { |
| if (msg->addr & I2C_M_RD) |
| stm32f4_i2c_handle_rx_addr(i2c_dev); |
| else |
| readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2); |
| |
| /* |
| * Enable buffer interrupts for RX not empty and TX empty |
| * events |
| */ |
| cr2 |= STM32F4_I2C_CR2_ITBUFEN; |
| writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2); |
| } |
| |
| /* TX empty */ |
| if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD)) |
| stm32f4_i2c_handle_write(i2c_dev); |
| |
| /* RX not empty */ |
| if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD)) |
| stm32f4_i2c_handle_read(i2c_dev); |
| |
| /* |
| * The BTF (Byte Transfer finished) event occurs when: |
| * - in reception : a new byte is received in the shift register |
| * but the previous byte has not been read yet from data register |
| * - in transmission: a new byte should be sent but the data register |
| * has not been written yet |
| */ |
| if (event & STM32F4_I2C_SR1_BTF) { |
| if (msg->addr & I2C_M_RD) |
| stm32f4_i2c_handle_rx_done(i2c_dev); |
| else |
| stm32f4_i2c_handle_write(i2c_dev); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error |
| * @irq: interrupt number |
| * @data: Controller's private data |
| */ |
| static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data) |
| { |
| struct stm32f4_i2c_dev *i2c_dev = data; |
| struct stm32f4_i2c_msg *msg = &i2c_dev->msg; |
| void __iomem *reg; |
| u32 status; |
| |
| status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1); |
| |
| /* Arbitration lost */ |
| if (status & STM32F4_I2C_SR1_ARLO) { |
| status &= ~STM32F4_I2C_SR1_ARLO; |
| writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1); |
| msg->result = -EAGAIN; |
| } |
| |
| /* |
| * Acknowledge failure: |
| * In controller transmitter mode a Stop must be generated by software |
| */ |
| if (status & STM32F4_I2C_SR1_AF) { |
| if (!(msg->addr & I2C_M_RD)) { |
| reg = i2c_dev->base + STM32F4_I2C_CR1; |
| stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP); |
| } |
| status &= ~STM32F4_I2C_SR1_AF; |
| writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1); |
| msg->result = -EIO; |
| } |
| |
| /* Bus error */ |
| if (status & STM32F4_I2C_SR1_BERR) { |
| status &= ~STM32F4_I2C_SR1_BERR; |
| writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1); |
| msg->result = -EIO; |
| } |
| |
| stm32f4_i2c_disable_irq(i2c_dev); |
| complete(&i2c_dev->complete); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * stm32f4_i2c_xfer_msg() - Transfer a single I2C message |
| * @i2c_dev: Controller's private data |
| * @msg: I2C message to transfer |
| * @is_first: first message of the sequence |
| * @is_last: last message of the sequence |
| */ |
| static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev, |
| struct i2c_msg *msg, bool is_first, |
| bool is_last) |
| { |
| struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg; |
| void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1; |
| unsigned long time_left; |
| u32 mask; |
| int ret; |
| |
| f4_msg->addr = i2c_8bit_addr_from_msg(msg); |
| f4_msg->buf = msg->buf; |
| f4_msg->count = msg->len; |
| f4_msg->result = 0; |
| f4_msg->stop = is_last; |
| |
| reinit_completion(&i2c_dev->complete); |
| |
| /* Enable events and errors interrupts */ |
| mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN; |
| stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask); |
| |
| if (is_first) { |
| ret = stm32f4_i2c_wait_free_bus(i2c_dev); |
| if (ret) |
| return ret; |
| |
| /* START generation */ |
| stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START); |
| } |
| |
| time_left = wait_for_completion_timeout(&i2c_dev->complete, |
| i2c_dev->adap.timeout); |
| ret = f4_msg->result; |
| |
| if (!time_left) |
| ret = -ETIMEDOUT; |
| |
| return ret; |
| } |
| |
| /** |
| * stm32f4_i2c_xfer() - Transfer combined I2C message |
| * @i2c_adap: Adapter pointer to the controller |
| * @msgs: Pointer to data to be written. |
| * @num: Number of messages to be executed |
| */ |
| static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[], |
| int num) |
| { |
| struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap); |
| int ret, i; |
| |
| ret = clk_enable(i2c_dev->clk); |
| if (ret) { |
| dev_err(i2c_dev->dev, "Failed to enable clock\n"); |
| return ret; |
| } |
| |
| for (i = 0; i < num && !ret; i++) |
| ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0, |
| i == num - 1); |
| |
| clk_disable(i2c_dev->clk); |
| |
| return (ret < 0) ? ret : num; |
| } |
| |
| static u32 stm32f4_i2c_func(struct i2c_adapter *adap) |
| { |
| return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; |
| } |
| |
| static const struct i2c_algorithm stm32f4_i2c_algo = { |
| .xfer = stm32f4_i2c_xfer, |
| .functionality = stm32f4_i2c_func, |
| }; |
| |
| static int stm32f4_i2c_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct stm32f4_i2c_dev *i2c_dev; |
| struct resource *res; |
| u32 irq_event, irq_error, clk_rate; |
| struct i2c_adapter *adap; |
| struct reset_control *rst; |
| int ret; |
| |
| i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL); |
| if (!i2c_dev) |
| return -ENOMEM; |
| |
| i2c_dev->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); |
| if (IS_ERR(i2c_dev->base)) |
| return PTR_ERR(i2c_dev->base); |
| |
| irq_event = irq_of_parse_and_map(np, 0); |
| if (!irq_event) { |
| dev_err(&pdev->dev, "IRQ event missing or invalid\n"); |
| return -EINVAL; |
| } |
| |
| irq_error = irq_of_parse_and_map(np, 1); |
| if (!irq_error) { |
| dev_err(&pdev->dev, "IRQ error missing or invalid\n"); |
| return -EINVAL; |
| } |
| |
| i2c_dev->clk = devm_clk_get_enabled(&pdev->dev, NULL); |
| if (IS_ERR(i2c_dev->clk)) { |
| dev_err(&pdev->dev, "Failed to enable clock\n"); |
| return PTR_ERR(i2c_dev->clk); |
| } |
| |
| rst = devm_reset_control_get_exclusive(&pdev->dev, NULL); |
| if (IS_ERR(rst)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(rst), |
| "Error: Missing reset ctrl\n"); |
| |
| reset_control_assert(rst); |
| udelay(2); |
| reset_control_deassert(rst); |
| |
| i2c_dev->speed = STM32_I2C_SPEED_STANDARD; |
| ret = of_property_read_u32(np, "clock-frequency", &clk_rate); |
| if (!ret && clk_rate >= I2C_MAX_FAST_MODE_FREQ) |
| i2c_dev->speed = STM32_I2C_SPEED_FAST; |
| |
| i2c_dev->dev = &pdev->dev; |
| |
| ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0, |
| pdev->name, i2c_dev); |
| if (ret) { |
| dev_err(&pdev->dev, "Failed to request irq event %i\n", |
| irq_event); |
| return ret; |
| } |
| |
| ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0, |
| pdev->name, i2c_dev); |
| if (ret) { |
| dev_err(&pdev->dev, "Failed to request irq error %i\n", |
| irq_error); |
| return ret; |
| } |
| |
| ret = stm32f4_i2c_hw_config(i2c_dev); |
| if (ret) |
| return ret; |
| |
| adap = &i2c_dev->adap; |
| i2c_set_adapdata(adap, i2c_dev); |
| snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start); |
| adap->owner = THIS_MODULE; |
| adap->timeout = 2 * HZ; |
| adap->retries = 0; |
| adap->algo = &stm32f4_i2c_algo; |
| adap->dev.parent = &pdev->dev; |
| adap->dev.of_node = pdev->dev.of_node; |
| |
| init_completion(&i2c_dev->complete); |
| |
| ret = i2c_add_adapter(adap); |
| if (ret) |
| return ret; |
| |
| platform_set_drvdata(pdev, i2c_dev); |
| |
| clk_disable(i2c_dev->clk); |
| |
| dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n"); |
| |
| return 0; |
| } |
| |
| static void stm32f4_i2c_remove(struct platform_device *pdev) |
| { |
| struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev); |
| |
| i2c_del_adapter(&i2c_dev->adap); |
| } |
| |
| static const struct of_device_id stm32f4_i2c_match[] = { |
| { .compatible = "st,stm32f4-i2c", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32f4_i2c_match); |
| |
| static struct platform_driver stm32f4_i2c_driver = { |
| .driver = { |
| .name = "stm32f4-i2c", |
| .of_match_table = stm32f4_i2c_match, |
| }, |
| .probe = stm32f4_i2c_probe, |
| .remove_new = stm32f4_i2c_remove, |
| }; |
| |
| module_platform_driver(stm32f4_i2c_driver); |
| |
| MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>"); |
| MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver"); |
| MODULE_LICENSE("GPL v2"); |