| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Adaptec AAC series RAID controller driver |
| * (c) Copyright 2001 Red Hat Inc. |
| * |
| * based on the old aacraid driver that is.. |
| * Adaptec aacraid device driver for Linux. |
| * |
| * Copyright (c) 2000-2010 Adaptec, Inc. |
| * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) |
| * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) |
| * |
| * Module Name: |
| * commsup.c |
| * |
| * Abstract: Contain all routines that are required for FSA host/adapter |
| * communication. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/crash_dump.h> |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/pci.h> |
| #include <linux/spinlock.h> |
| #include <linux/slab.h> |
| #include <linux/completion.h> |
| #include <linux/blkdev.h> |
| #include <linux/delay.h> |
| #include <linux/kthread.h> |
| #include <linux/interrupt.h> |
| #include <linux/bcd.h> |
| #include <scsi/scsi.h> |
| #include <scsi/scsi_host.h> |
| #include <scsi/scsi_device.h> |
| #include <scsi/scsi_cmnd.h> |
| |
| #include "aacraid.h" |
| |
| /** |
| * fib_map_alloc - allocate the fib objects |
| * @dev: Adapter to allocate for |
| * |
| * Allocate and map the shared PCI space for the FIB blocks used to |
| * talk to the Adaptec firmware. |
| */ |
| |
| static int fib_map_alloc(struct aac_dev *dev) |
| { |
| if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) |
| dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; |
| else |
| dev->max_cmd_size = dev->max_fib_size; |
| if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { |
| dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; |
| } else { |
| dev->max_cmd_size = dev->max_fib_size; |
| } |
| |
| dprintk((KERN_INFO |
| "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", |
| &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, |
| AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); |
| dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, |
| (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) |
| * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), |
| &dev->hw_fib_pa, GFP_KERNEL); |
| if (dev->hw_fib_va == NULL) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| /** |
| * aac_fib_map_free - free the fib objects |
| * @dev: Adapter to free |
| * |
| * Free the PCI mappings and the memory allocated for FIB blocks |
| * on this adapter. |
| */ |
| |
| void aac_fib_map_free(struct aac_dev *dev) |
| { |
| size_t alloc_size; |
| size_t fib_size; |
| int num_fibs; |
| |
| if(!dev->hw_fib_va || !dev->max_cmd_size) |
| return; |
| |
| num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; |
| fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); |
| alloc_size = fib_size * num_fibs + ALIGN32 - 1; |
| |
| dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, |
| dev->hw_fib_pa); |
| |
| dev->hw_fib_va = NULL; |
| dev->hw_fib_pa = 0; |
| } |
| |
| void aac_fib_vector_assign(struct aac_dev *dev) |
| { |
| u32 i = 0; |
| u32 vector = 1; |
| struct fib *fibptr = NULL; |
| |
| for (i = 0, fibptr = &dev->fibs[i]; |
| i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); |
| i++, fibptr++) { |
| if ((dev->max_msix == 1) || |
| (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) |
| - dev->vector_cap))) { |
| fibptr->vector_no = 0; |
| } else { |
| fibptr->vector_no = vector; |
| vector++; |
| if (vector == dev->max_msix) |
| vector = 1; |
| } |
| } |
| } |
| |
| /** |
| * aac_fib_setup - setup the fibs |
| * @dev: Adapter to set up |
| * |
| * Allocate the PCI space for the fibs, map it and then initialise the |
| * fib area, the unmapped fib data and also the free list |
| */ |
| |
| int aac_fib_setup(struct aac_dev * dev) |
| { |
| struct fib *fibptr; |
| struct hw_fib *hw_fib; |
| dma_addr_t hw_fib_pa; |
| int i; |
| u32 max_cmds; |
| |
| while (((i = fib_map_alloc(dev)) == -ENOMEM) |
| && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { |
| max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; |
| dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; |
| if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) |
| dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); |
| } |
| if (i<0) |
| return -ENOMEM; |
| |
| memset(dev->hw_fib_va, 0, |
| (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * |
| (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); |
| |
| /* 32 byte alignment for PMC */ |
| hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); |
| hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + |
| (hw_fib_pa - dev->hw_fib_pa)); |
| |
| /* add Xport header */ |
| hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + |
| sizeof(struct aac_fib_xporthdr)); |
| hw_fib_pa += sizeof(struct aac_fib_xporthdr); |
| |
| /* |
| * Initialise the fibs |
| */ |
| for (i = 0, fibptr = &dev->fibs[i]; |
| i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); |
| i++, fibptr++) |
| { |
| fibptr->flags = 0; |
| fibptr->size = sizeof(struct fib); |
| fibptr->dev = dev; |
| fibptr->hw_fib_va = hw_fib; |
| fibptr->data = (void *) fibptr->hw_fib_va->data; |
| fibptr->next = fibptr+1; /* Forward chain the fibs */ |
| init_completion(&fibptr->event_wait); |
| spin_lock_init(&fibptr->event_lock); |
| hw_fib->header.XferState = cpu_to_le32(0xffffffff); |
| hw_fib->header.SenderSize = |
| cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ |
| fibptr->hw_fib_pa = hw_fib_pa; |
| fibptr->hw_sgl_pa = hw_fib_pa + |
| offsetof(struct aac_hba_cmd_req, sge[2]); |
| /* |
| * one element is for the ptr to the separate sg list, |
| * second element for 32 byte alignment |
| */ |
| fibptr->hw_error_pa = hw_fib_pa + |
| offsetof(struct aac_native_hba, resp.resp_bytes[0]); |
| |
| hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + |
| dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); |
| hw_fib_pa = hw_fib_pa + |
| dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); |
| } |
| |
| /* |
| *Assign vector numbers to fibs |
| */ |
| aac_fib_vector_assign(dev); |
| |
| /* |
| * Add the fib chain to the free list |
| */ |
| dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; |
| /* |
| * Set 8 fibs aside for management tools |
| */ |
| dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; |
| return 0; |
| } |
| |
| /** |
| * aac_fib_alloc_tag-allocate a fib using tags |
| * @dev: Adapter to allocate the fib for |
| * @scmd: SCSI command |
| * |
| * Allocate a fib from the adapter fib pool using tags |
| * from the blk layer. |
| */ |
| |
| struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) |
| { |
| struct fib *fibptr; |
| |
| fibptr = &dev->fibs[scsi_cmd_to_rq(scmd)->tag]; |
| /* |
| * Null out fields that depend on being zero at the start of |
| * each I/O |
| */ |
| fibptr->hw_fib_va->header.XferState = 0; |
| fibptr->type = FSAFS_NTC_FIB_CONTEXT; |
| fibptr->callback_data = NULL; |
| fibptr->callback = NULL; |
| fibptr->flags = 0; |
| |
| return fibptr; |
| } |
| |
| /** |
| * aac_fib_alloc - allocate a fib |
| * @dev: Adapter to allocate the fib for |
| * |
| * Allocate a fib from the adapter fib pool. If the pool is empty we |
| * return NULL. |
| */ |
| |
| struct fib *aac_fib_alloc(struct aac_dev *dev) |
| { |
| struct fib * fibptr; |
| unsigned long flags; |
| spin_lock_irqsave(&dev->fib_lock, flags); |
| fibptr = dev->free_fib; |
| if(!fibptr){ |
| spin_unlock_irqrestore(&dev->fib_lock, flags); |
| return fibptr; |
| } |
| dev->free_fib = fibptr->next; |
| spin_unlock_irqrestore(&dev->fib_lock, flags); |
| /* |
| * Set the proper node type code and node byte size |
| */ |
| fibptr->type = FSAFS_NTC_FIB_CONTEXT; |
| fibptr->size = sizeof(struct fib); |
| /* |
| * Null out fields that depend on being zero at the start of |
| * each I/O |
| */ |
| fibptr->hw_fib_va->header.XferState = 0; |
| fibptr->flags = 0; |
| fibptr->callback = NULL; |
| fibptr->callback_data = NULL; |
| |
| return fibptr; |
| } |
| |
| /** |
| * aac_fib_free - free a fib |
| * @fibptr: fib to free up |
| * |
| * Frees up a fib and places it on the appropriate queue |
| */ |
| |
| void aac_fib_free(struct fib *fibptr) |
| { |
| unsigned long flags; |
| |
| if (fibptr->done == 2) |
| return; |
| |
| spin_lock_irqsave(&fibptr->dev->fib_lock, flags); |
| if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) |
| aac_config.fib_timeouts++; |
| if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && |
| fibptr->hw_fib_va->header.XferState != 0) { |
| printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", |
| (void*)fibptr, |
| le32_to_cpu(fibptr->hw_fib_va->header.XferState)); |
| } |
| fibptr->next = fibptr->dev->free_fib; |
| fibptr->dev->free_fib = fibptr; |
| spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); |
| } |
| |
| /** |
| * aac_fib_init - initialise a fib |
| * @fibptr: The fib to initialize |
| * |
| * Set up the generic fib fields ready for use |
| */ |
| |
| void aac_fib_init(struct fib *fibptr) |
| { |
| struct hw_fib *hw_fib = fibptr->hw_fib_va; |
| |
| memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); |
| hw_fib->header.StructType = FIB_MAGIC; |
| hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); |
| hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); |
| hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); |
| hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); |
| } |
| |
| /** |
| * fib_dealloc - deallocate a fib |
| * @fibptr: fib to deallocate |
| * |
| * Will deallocate and return to the free pool the FIB pointed to by the |
| * caller. |
| */ |
| |
| static void fib_dealloc(struct fib * fibptr) |
| { |
| struct hw_fib *hw_fib = fibptr->hw_fib_va; |
| hw_fib->header.XferState = 0; |
| } |
| |
| /* |
| * Commuication primitives define and support the queuing method we use to |
| * support host to adapter commuication. All queue accesses happen through |
| * these routines and are the only routines which have a knowledge of the |
| * how these queues are implemented. |
| */ |
| |
| /** |
| * aac_get_entry - get a queue entry |
| * @dev: Adapter |
| * @qid: Queue Number |
| * @entry: Entry return |
| * @index: Index return |
| * @nonotify: notification control |
| * |
| * With a priority the routine returns a queue entry if the queue has free entries. If the queue |
| * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is |
| * returned. |
| */ |
| |
| static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) |
| { |
| struct aac_queue * q; |
| unsigned long idx; |
| |
| /* |
| * All of the queues wrap when they reach the end, so we check |
| * to see if they have reached the end and if they have we just |
| * set the index back to zero. This is a wrap. You could or off |
| * the high bits in all updates but this is a bit faster I think. |
| */ |
| |
| q = &dev->queues->queue[qid]; |
| |
| idx = *index = le32_to_cpu(*(q->headers.producer)); |
| /* Interrupt Moderation, only interrupt for first two entries */ |
| if (idx != le32_to_cpu(*(q->headers.consumer))) { |
| if (--idx == 0) { |
| if (qid == AdapNormCmdQueue) |
| idx = ADAP_NORM_CMD_ENTRIES; |
| else |
| idx = ADAP_NORM_RESP_ENTRIES; |
| } |
| if (idx != le32_to_cpu(*(q->headers.consumer))) |
| *nonotify = 1; |
| } |
| |
| if (qid == AdapNormCmdQueue) { |
| if (*index >= ADAP_NORM_CMD_ENTRIES) |
| *index = 0; /* Wrap to front of the Producer Queue. */ |
| } else { |
| if (*index >= ADAP_NORM_RESP_ENTRIES) |
| *index = 0; /* Wrap to front of the Producer Queue. */ |
| } |
| |
| /* Queue is full */ |
| if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { |
| printk(KERN_WARNING "Queue %d full, %u outstanding.\n", |
| qid, atomic_read(&q->numpending)); |
| return 0; |
| } else { |
| *entry = q->base + *index; |
| return 1; |
| } |
| } |
| |
| /** |
| * aac_queue_get - get the next free QE |
| * @dev: Adapter |
| * @index: Returned index |
| * @qid: Queue number |
| * @hw_fib: Fib to associate with the queue entry |
| * @wait: Wait if queue full |
| * @fibptr: Driver fib object to go with fib |
| * @nonotify: Don't notify the adapter |
| * |
| * Gets the next free QE off the requested priorty adapter command |
| * queue and associates the Fib with the QE. The QE represented by |
| * index is ready to insert on the queue when this routine returns |
| * success. |
| */ |
| |
| int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) |
| { |
| struct aac_entry * entry = NULL; |
| int map = 0; |
| |
| if (qid == AdapNormCmdQueue) { |
| /* if no entries wait for some if caller wants to */ |
| while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { |
| printk(KERN_ERR "GetEntries failed\n"); |
| } |
| /* |
| * Setup queue entry with a command, status and fib mapped |
| */ |
| entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); |
| map = 1; |
| } else { |
| while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { |
| /* if no entries wait for some if caller wants to */ |
| } |
| /* |
| * Setup queue entry with command, status and fib mapped |
| */ |
| entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); |
| entry->addr = hw_fib->header.SenderFibAddress; |
| /* Restore adapters pointer to the FIB */ |
| hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ |
| map = 0; |
| } |
| /* |
| * If MapFib is true than we need to map the Fib and put pointers |
| * in the queue entry. |
| */ |
| if (map) |
| entry->addr = cpu_to_le32(fibptr->hw_fib_pa); |
| return 0; |
| } |
| |
| /* |
| * Define the highest level of host to adapter communication routines. |
| * These routines will support host to adapter FS commuication. These |
| * routines have no knowledge of the commuication method used. This level |
| * sends and receives FIBs. This level has no knowledge of how these FIBs |
| * get passed back and forth. |
| */ |
| |
| /** |
| * aac_fib_send - send a fib to the adapter |
| * @command: Command to send |
| * @fibptr: The fib |
| * @size: Size of fib data area |
| * @priority: Priority of Fib |
| * @wait: Async/sync select |
| * @reply: True if a reply is wanted |
| * @callback: Called with reply |
| * @callback_data: Passed to callback |
| * |
| * Sends the requested FIB to the adapter and optionally will wait for a |
| * response FIB. If the caller does not wish to wait for a response than |
| * an event to wait on must be supplied. This event will be set when a |
| * response FIB is received from the adapter. |
| */ |
| |
| int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, |
| int priority, int wait, int reply, fib_callback callback, |
| void *callback_data) |
| { |
| struct aac_dev * dev = fibptr->dev; |
| struct hw_fib * hw_fib = fibptr->hw_fib_va; |
| unsigned long flags = 0; |
| unsigned long mflags = 0; |
| unsigned long sflags = 0; |
| |
| if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) |
| return -EBUSY; |
| |
| if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) |
| return -EINVAL; |
| |
| /* |
| * There are 5 cases with the wait and response requested flags. |
| * The only invalid cases are if the caller requests to wait and |
| * does not request a response and if the caller does not want a |
| * response and the Fib is not allocated from pool. If a response |
| * is not requested the Fib will just be deallocaed by the DPC |
| * routine when the response comes back from the adapter. No |
| * further processing will be done besides deleting the Fib. We |
| * will have a debug mode where the adapter can notify the host |
| * it had a problem and the host can log that fact. |
| */ |
| fibptr->flags = 0; |
| if (wait && !reply) { |
| return -EINVAL; |
| } else if (!wait && reply) { |
| hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.AsyncSent); |
| } else if (!wait && !reply) { |
| hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); |
| } else if (wait && reply) { |
| hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); |
| FIB_COUNTER_INCREMENT(aac_config.NormalSent); |
| } |
| /* |
| * Map the fib into 32bits by using the fib number |
| */ |
| |
| hw_fib->header.SenderFibAddress = |
| cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); |
| |
| /* use the same shifted value for handle to be compatible |
| * with the new native hba command handle |
| */ |
| hw_fib->header.Handle = |
| cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); |
| |
| /* |
| * Set FIB state to indicate where it came from and if we want a |
| * response from the adapter. Also load the command from the |
| * caller. |
| * |
| * Map the hw fib pointer as a 32bit value |
| */ |
| hw_fib->header.Command = cpu_to_le16(command); |
| hw_fib->header.XferState |= cpu_to_le32(SentFromHost); |
| /* |
| * Set the size of the Fib we want to send to the adapter |
| */ |
| hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); |
| if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { |
| return -EMSGSIZE; |
| } |
| /* |
| * Get a queue entry connect the FIB to it and send an notify |
| * the adapter a command is ready. |
| */ |
| hw_fib->header.XferState |= cpu_to_le32(NormalPriority); |
| |
| /* |
| * Fill in the Callback and CallbackContext if we are not |
| * going to wait. |
| */ |
| if (!wait) { |
| fibptr->callback = callback; |
| fibptr->callback_data = callback_data; |
| fibptr->flags = FIB_CONTEXT_FLAG; |
| } |
| |
| fibptr->done = 0; |
| |
| FIB_COUNTER_INCREMENT(aac_config.FibsSent); |
| |
| dprintk((KERN_DEBUG "Fib contents:.\n")); |
| dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); |
| dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); |
| dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); |
| dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); |
| dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); |
| dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); |
| |
| if (!dev->queues) |
| return -EBUSY; |
| |
| if (wait) { |
| |
| spin_lock_irqsave(&dev->manage_lock, mflags); |
| if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { |
| printk(KERN_INFO "No management Fibs Available:%d\n", |
| dev->management_fib_count); |
| spin_unlock_irqrestore(&dev->manage_lock, mflags); |
| return -EBUSY; |
| } |
| dev->management_fib_count++; |
| spin_unlock_irqrestore(&dev->manage_lock, mflags); |
| spin_lock_irqsave(&fibptr->event_lock, flags); |
| } |
| |
| if (dev->sync_mode) { |
| if (wait) |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| spin_lock_irqsave(&dev->sync_lock, sflags); |
| if (dev->sync_fib) { |
| list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); |
| spin_unlock_irqrestore(&dev->sync_lock, sflags); |
| } else { |
| dev->sync_fib = fibptr; |
| spin_unlock_irqrestore(&dev->sync_lock, sflags); |
| aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, |
| (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, |
| NULL, NULL, NULL, NULL, NULL); |
| } |
| if (wait) { |
| fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; |
| if (wait_for_completion_interruptible(&fibptr->event_wait)) { |
| fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; |
| return -EFAULT; |
| } |
| return 0; |
| } |
| return -EINPROGRESS; |
| } |
| |
| if (aac_adapter_deliver(fibptr) != 0) { |
| printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); |
| if (wait) { |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| spin_lock_irqsave(&dev->manage_lock, mflags); |
| dev->management_fib_count--; |
| spin_unlock_irqrestore(&dev->manage_lock, mflags); |
| } |
| return -EBUSY; |
| } |
| |
| |
| /* |
| * If the caller wanted us to wait for response wait now. |
| */ |
| |
| if (wait) { |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| /* Only set for first known interruptable command */ |
| if (wait < 0) { |
| /* |
| * *VERY* Dangerous to time out a command, the |
| * assumption is made that we have no hope of |
| * functioning because an interrupt routing or other |
| * hardware failure has occurred. |
| */ |
| unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ |
| while (!try_wait_for_completion(&fibptr->event_wait)) { |
| int blink; |
| if (time_is_before_eq_jiffies(timeout)) { |
| struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; |
| atomic_dec(&q->numpending); |
| if (wait == -1) { |
| printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" |
| "Usually a result of a PCI interrupt routing problem;\n" |
| "update mother board BIOS or consider utilizing one of\n" |
| "the SAFE mode kernel options (acpi, apic etc)\n"); |
| } |
| return -ETIMEDOUT; |
| } |
| |
| if (unlikely(aac_pci_offline(dev))) |
| return -EFAULT; |
| |
| if ((blink = aac_adapter_check_health(dev)) > 0) { |
| if (wait == -1) { |
| printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" |
| "Usually a result of a serious unrecoverable hardware problem\n", |
| blink); |
| } |
| return -EFAULT; |
| } |
| /* |
| * Allow other processes / CPUS to use core |
| */ |
| schedule(); |
| } |
| } else if (wait_for_completion_interruptible(&fibptr->event_wait)) { |
| /* Do nothing ... satisfy |
| * wait_for_completion_interruptible must_check */ |
| } |
| |
| spin_lock_irqsave(&fibptr->event_lock, flags); |
| if (fibptr->done == 0) { |
| fibptr->done = 2; /* Tell interrupt we aborted */ |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| return -ERESTARTSYS; |
| } |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| BUG_ON(fibptr->done == 0); |
| |
| if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) |
| return -ETIMEDOUT; |
| return 0; |
| } |
| /* |
| * If the user does not want a response than return success otherwise |
| * return pending |
| */ |
| if (reply) |
| return -EINPROGRESS; |
| else |
| return 0; |
| } |
| |
| int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, |
| void *callback_data) |
| { |
| struct aac_dev *dev = fibptr->dev; |
| int wait; |
| unsigned long flags = 0; |
| unsigned long mflags = 0; |
| struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *) |
| fibptr->hw_fib_va; |
| |
| fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); |
| if (callback) { |
| wait = 0; |
| fibptr->callback = callback; |
| fibptr->callback_data = callback_data; |
| } else |
| wait = 1; |
| |
| |
| hbacmd->iu_type = command; |
| |
| if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { |
| /* bit1 of request_id must be 0 */ |
| hbacmd->request_id = |
| cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); |
| fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; |
| } else |
| return -EINVAL; |
| |
| |
| if (wait) { |
| spin_lock_irqsave(&dev->manage_lock, mflags); |
| if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { |
| spin_unlock_irqrestore(&dev->manage_lock, mflags); |
| return -EBUSY; |
| } |
| dev->management_fib_count++; |
| spin_unlock_irqrestore(&dev->manage_lock, mflags); |
| spin_lock_irqsave(&fibptr->event_lock, flags); |
| } |
| |
| if (aac_adapter_deliver(fibptr) != 0) { |
| if (wait) { |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| spin_lock_irqsave(&dev->manage_lock, mflags); |
| dev->management_fib_count--; |
| spin_unlock_irqrestore(&dev->manage_lock, mflags); |
| } |
| return -EBUSY; |
| } |
| FIB_COUNTER_INCREMENT(aac_config.NativeSent); |
| |
| if (wait) { |
| |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| |
| if (unlikely(aac_pci_offline(dev))) |
| return -EFAULT; |
| |
| fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; |
| if (wait_for_completion_interruptible(&fibptr->event_wait)) |
| fibptr->done = 2; |
| fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); |
| |
| spin_lock_irqsave(&fibptr->event_lock, flags); |
| if ((fibptr->done == 0) || (fibptr->done == 2)) { |
| fibptr->done = 2; /* Tell interrupt we aborted */ |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| return -ERESTARTSYS; |
| } |
| spin_unlock_irqrestore(&fibptr->event_lock, flags); |
| WARN_ON(fibptr->done == 0); |
| |
| if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) |
| return -ETIMEDOUT; |
| |
| return 0; |
| } |
| |
| return -EINPROGRESS; |
| } |
| |
| /** |
| * aac_consumer_get - get the top of the queue |
| * @dev: Adapter |
| * @q: Queue |
| * @entry: Return entry |
| * |
| * Will return a pointer to the entry on the top of the queue requested that |
| * we are a consumer of, and return the address of the queue entry. It does |
| * not change the state of the queue. |
| */ |
| |
| int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) |
| { |
| u32 index; |
| int status; |
| if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { |
| status = 0; |
| } else { |
| /* |
| * The consumer index must be wrapped if we have reached |
| * the end of the queue, else we just use the entry |
| * pointed to by the header index |
| */ |
| if (le32_to_cpu(*q->headers.consumer) >= q->entries) |
| index = 0; |
| else |
| index = le32_to_cpu(*q->headers.consumer); |
| *entry = q->base + index; |
| status = 1; |
| } |
| return(status); |
| } |
| |
| /** |
| * aac_consumer_free - free consumer entry |
| * @dev: Adapter |
| * @q: Queue |
| * @qid: Queue ident |
| * |
| * Frees up the current top of the queue we are a consumer of. If the |
| * queue was full notify the producer that the queue is no longer full. |
| */ |
| |
| void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) |
| { |
| int wasfull = 0; |
| u32 notify; |
| |
| if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) |
| wasfull = 1; |
| |
| if (le32_to_cpu(*q->headers.consumer) >= q->entries) |
| *q->headers.consumer = cpu_to_le32(1); |
| else |
| le32_add_cpu(q->headers.consumer, 1); |
| |
| if (wasfull) { |
| switch (qid) { |
| |
| case HostNormCmdQueue: |
| notify = HostNormCmdNotFull; |
| break; |
| case HostNormRespQueue: |
| notify = HostNormRespNotFull; |
| break; |
| default: |
| BUG(); |
| return; |
| } |
| aac_adapter_notify(dev, notify); |
| } |
| } |
| |
| /** |
| * aac_fib_adapter_complete - complete adapter issued fib |
| * @fibptr: fib to complete |
| * @size: size of fib |
| * |
| * Will do all necessary work to complete a FIB that was sent from |
| * the adapter. |
| */ |
| |
| int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib_va; |
| struct aac_dev * dev = fibptr->dev; |
| struct aac_queue * q; |
| unsigned long nointr = 0; |
| unsigned long qflags; |
| |
| if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || |
| dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || |
| dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { |
| kfree(hw_fib); |
| return 0; |
| } |
| |
| if (hw_fib->header.XferState == 0) { |
| if (dev->comm_interface == AAC_COMM_MESSAGE) |
| kfree(hw_fib); |
| return 0; |
| } |
| /* |
| * If we plan to do anything check the structure type first. |
| */ |
| if (hw_fib->header.StructType != FIB_MAGIC && |
| hw_fib->header.StructType != FIB_MAGIC2 && |
| hw_fib->header.StructType != FIB_MAGIC2_64) { |
| if (dev->comm_interface == AAC_COMM_MESSAGE) |
| kfree(hw_fib); |
| return -EINVAL; |
| } |
| /* |
| * This block handles the case where the adapter had sent us a |
| * command and we have finished processing the command. We |
| * call completeFib when we are done processing the command |
| * and want to send a response back to the adapter. This will |
| * send the completed cdb to the adapter. |
| */ |
| if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { |
| if (dev->comm_interface == AAC_COMM_MESSAGE) { |
| kfree (hw_fib); |
| } else { |
| u32 index; |
| hw_fib->header.XferState |= cpu_to_le32(HostProcessed); |
| if (size) { |
| size += sizeof(struct aac_fibhdr); |
| if (size > le16_to_cpu(hw_fib->header.SenderSize)) |
| return -EMSGSIZE; |
| hw_fib->header.Size = cpu_to_le16(size); |
| } |
| q = &dev->queues->queue[AdapNormRespQueue]; |
| spin_lock_irqsave(q->lock, qflags); |
| aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); |
| *(q->headers.producer) = cpu_to_le32(index + 1); |
| spin_unlock_irqrestore(q->lock, qflags); |
| if (!(nointr & (int)aac_config.irq_mod)) |
| aac_adapter_notify(dev, AdapNormRespQueue); |
| } |
| } else { |
| printk(KERN_WARNING "aac_fib_adapter_complete: " |
| "Unknown xferstate detected.\n"); |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * aac_fib_complete - fib completion handler |
| * @fibptr: FIB to complete |
| * |
| * Will do all necessary work to complete a FIB. |
| */ |
| |
| int aac_fib_complete(struct fib *fibptr) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib_va; |
| |
| if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { |
| fib_dealloc(fibptr); |
| return 0; |
| } |
| |
| /* |
| * Check for a fib which has already been completed or with a |
| * status wait timeout |
| */ |
| |
| if (hw_fib->header.XferState == 0 || fibptr->done == 2) |
| return 0; |
| /* |
| * If we plan to do anything check the structure type first. |
| */ |
| |
| if (hw_fib->header.StructType != FIB_MAGIC && |
| hw_fib->header.StructType != FIB_MAGIC2 && |
| hw_fib->header.StructType != FIB_MAGIC2_64) |
| return -EINVAL; |
| /* |
| * This block completes a cdb which orginated on the host and we |
| * just need to deallocate the cdb or reinit it. At this point the |
| * command is complete that we had sent to the adapter and this |
| * cdb could be reused. |
| */ |
| |
| if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && |
| (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) |
| { |
| fib_dealloc(fibptr); |
| } |
| else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) |
| { |
| /* |
| * This handles the case when the host has aborted the I/O |
| * to the adapter because the adapter is not responding |
| */ |
| fib_dealloc(fibptr); |
| } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { |
| fib_dealloc(fibptr); |
| } else { |
| BUG(); |
| } |
| return 0; |
| } |
| |
| /** |
| * aac_printf - handle printf from firmware |
| * @dev: Adapter |
| * @val: Message info |
| * |
| * Print a message passed to us by the controller firmware on the |
| * Adaptec board |
| */ |
| |
| void aac_printf(struct aac_dev *dev, u32 val) |
| { |
| char *cp = dev->printfbuf; |
| if (dev->printf_enabled) |
| { |
| int length = val & 0xffff; |
| int level = (val >> 16) & 0xffff; |
| |
| /* |
| * The size of the printfbuf is set in port.c |
| * There is no variable or define for it |
| */ |
| if (length > 255) |
| length = 255; |
| if (cp[length] != 0) |
| cp[length] = 0; |
| if (level == LOG_AAC_HIGH_ERROR) |
| printk(KERN_WARNING "%s:%s", dev->name, cp); |
| else |
| printk(KERN_INFO "%s:%s", dev->name, cp); |
| } |
| memset(cp, 0, 256); |
| } |
| |
| static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) |
| { |
| return le32_to_cpu(((__le32 *)aifcmd->data)[index]); |
| } |
| |
| |
| static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) |
| { |
| switch (aac_aif_data(aifcmd, 1)) { |
| case AifBuCacheDataLoss: |
| if (aac_aif_data(aifcmd, 2)) |
| dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", |
| aac_aif_data(aifcmd, 2)); |
| else |
| dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); |
| break; |
| case AifBuCacheDataRecover: |
| if (aac_aif_data(aifcmd, 2)) |
| dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", |
| aac_aif_data(aifcmd, 2)); |
| else |
| dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); |
| break; |
| } |
| } |
| |
| #define AIF_SNIFF_TIMEOUT (500*HZ) |
| /** |
| * aac_handle_aif - Handle a message from the firmware |
| * @dev: Which adapter this fib is from |
| * @fibptr: Pointer to fibptr from adapter |
| * |
| * This routine handles a driver notify fib from the adapter and |
| * dispatches it to the appropriate routine for handling. |
| */ |
| static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) |
| { |
| struct hw_fib * hw_fib = fibptr->hw_fib_va; |
| struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; |
| u32 channel, id, lun, container; |
| struct scsi_device *device; |
| enum { |
| NOTHING, |
| DELETE, |
| ADD, |
| CHANGE |
| } device_config_needed = NOTHING; |
| |
| /* Sniff for container changes */ |
| |
| if (!dev || !dev->fsa_dev) |
| return; |
| container = channel = id = lun = (u32)-1; |
| |
| /* |
| * We have set this up to try and minimize the number of |
| * re-configures that take place. As a result of this when |
| * certain AIF's come in we will set a flag waiting for another |
| * type of AIF before setting the re-config flag. |
| */ |
| switch (le32_to_cpu(aifcmd->command)) { |
| case AifCmdDriverNotify: |
| switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { |
| case AifRawDeviceRemove: |
| container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); |
| if ((container >> 28)) { |
| container = (u32)-1; |
| break; |
| } |
| channel = (container >> 24) & 0xF; |
| if (channel >= dev->maximum_num_channels) { |
| container = (u32)-1; |
| break; |
| } |
| id = container & 0xFFFF; |
| if (id >= dev->maximum_num_physicals) { |
| container = (u32)-1; |
| break; |
| } |
| lun = (container >> 16) & 0xFF; |
| container = (u32)-1; |
| channel = aac_phys_to_logical(channel); |
| device_config_needed = DELETE; |
| break; |
| |
| /* |
| * Morph or Expand complete |
| */ |
| case AifDenMorphComplete: |
| case AifDenVolumeExtendComplete: |
| container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| |
| /* |
| * Find the scsi_device associated with the SCSI |
| * address. Make sure we have the right array, and if |
| * so set the flag to initiate a new re-config once we |
| * see an AifEnConfigChange AIF come through. |
| */ |
| |
| if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { |
| device = scsi_device_lookup(dev->scsi_host_ptr, |
| CONTAINER_TO_CHANNEL(container), |
| CONTAINER_TO_ID(container), |
| CONTAINER_TO_LUN(container)); |
| if (device) { |
| dev->fsa_dev[container].config_needed = CHANGE; |
| dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; |
| dev->fsa_dev[container].config_waiting_stamp = jiffies; |
| scsi_device_put(device); |
| } |
| } |
| } |
| |
| /* |
| * If we are waiting on something and this happens to be |
| * that thing then set the re-configure flag. |
| */ |
| if (container != (u32)-1) { |
| if (container >= dev->maximum_num_containers) |
| break; |
| if ((dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(__le32 *)aifcmd->data)) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } else for (container = 0; |
| container < dev->maximum_num_containers; ++container) { |
| if ((dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(__le32 *)aifcmd->data)) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } |
| break; |
| |
| case AifCmdEventNotify: |
| switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { |
| case AifEnBatteryEvent: |
| dev->cache_protected = |
| (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); |
| break; |
| /* |
| * Add an Array. |
| */ |
| case AifEnAddContainer: |
| container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| dev->fsa_dev[container].config_needed = ADD; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| dev->fsa_dev[container].config_waiting_stamp = jiffies; |
| break; |
| |
| /* |
| * Delete an Array. |
| */ |
| case AifEnDeleteContainer: |
| container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| dev->fsa_dev[container].config_needed = DELETE; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| dev->fsa_dev[container].config_waiting_stamp = jiffies; |
| break; |
| |
| /* |
| * Container change detected. If we currently are not |
| * waiting on something else, setup to wait on a Config Change. |
| */ |
| case AifEnContainerChange: |
| container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); |
| if (container >= dev->maximum_num_containers) |
| break; |
| if (dev->fsa_dev[container].config_waiting_on && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| break; |
| dev->fsa_dev[container].config_needed = CHANGE; |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnConfigChange; |
| dev->fsa_dev[container].config_waiting_stamp = jiffies; |
| break; |
| |
| case AifEnConfigChange: |
| break; |
| |
| case AifEnAddJBOD: |
| case AifEnDeleteJBOD: |
| container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); |
| if ((container >> 28)) { |
| container = (u32)-1; |
| break; |
| } |
| channel = (container >> 24) & 0xF; |
| if (channel >= dev->maximum_num_channels) { |
| container = (u32)-1; |
| break; |
| } |
| id = container & 0xFFFF; |
| if (id >= dev->maximum_num_physicals) { |
| container = (u32)-1; |
| break; |
| } |
| lun = (container >> 16) & 0xFF; |
| container = (u32)-1; |
| channel = aac_phys_to_logical(channel); |
| device_config_needed = |
| (((__le32 *)aifcmd->data)[0] == |
| cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; |
| if (device_config_needed == ADD) { |
| device = scsi_device_lookup(dev->scsi_host_ptr, |
| channel, |
| id, |
| lun); |
| if (device) { |
| scsi_remove_device(device); |
| scsi_device_put(device); |
| } |
| } |
| break; |
| |
| case AifEnEnclosureManagement: |
| /* |
| * If in JBOD mode, automatic exposure of new |
| * physical target to be suppressed until configured. |
| */ |
| if (dev->jbod) |
| break; |
| switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { |
| case EM_DRIVE_INSERTION: |
| case EM_DRIVE_REMOVAL: |
| case EM_SES_DRIVE_INSERTION: |
| case EM_SES_DRIVE_REMOVAL: |
| container = le32_to_cpu( |
| ((__le32 *)aifcmd->data)[2]); |
| if ((container >> 28)) { |
| container = (u32)-1; |
| break; |
| } |
| channel = (container >> 24) & 0xF; |
| if (channel >= dev->maximum_num_channels) { |
| container = (u32)-1; |
| break; |
| } |
| id = container & 0xFFFF; |
| lun = (container >> 16) & 0xFF; |
| container = (u32)-1; |
| if (id >= dev->maximum_num_physicals) { |
| /* legacy dev_t ? */ |
| if ((0x2000 <= id) || lun || channel || |
| ((channel = (id >> 7) & 0x3F) >= |
| dev->maximum_num_channels)) |
| break; |
| lun = (id >> 4) & 7; |
| id &= 0xF; |
| } |
| channel = aac_phys_to_logical(channel); |
| device_config_needed = |
| ((((__le32 *)aifcmd->data)[3] |
| == cpu_to_le32(EM_DRIVE_INSERTION)) || |
| (((__le32 *)aifcmd->data)[3] |
| == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? |
| ADD : DELETE; |
| break; |
| } |
| break; |
| case AifBuManagerEvent: |
| aac_handle_aif_bu(dev, aifcmd); |
| break; |
| } |
| |
| /* |
| * If we are waiting on something and this happens to be |
| * that thing then set the re-configure flag. |
| */ |
| if (container != (u32)-1) { |
| if (container >= dev->maximum_num_containers) |
| break; |
| if ((dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(__le32 *)aifcmd->data)) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } else for (container = 0; |
| container < dev->maximum_num_containers; ++container) { |
| if ((dev->fsa_dev[container].config_waiting_on == |
| le32_to_cpu(*(__le32 *)aifcmd->data)) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) |
| dev->fsa_dev[container].config_waiting_on = 0; |
| } |
| break; |
| |
| case AifCmdJobProgress: |
| /* |
| * These are job progress AIF's. When a Clear is being |
| * done on a container it is initially created then hidden from |
| * the OS. When the clear completes we don't get a config |
| * change so we monitor the job status complete on a clear then |
| * wait for a container change. |
| */ |
| |
| if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && |
| (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || |
| ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { |
| for (container = 0; |
| container < dev->maximum_num_containers; |
| ++container) { |
| /* |
| * Stomp on all config sequencing for all |
| * containers? |
| */ |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnContainerChange; |
| dev->fsa_dev[container].config_needed = ADD; |
| dev->fsa_dev[container].config_waiting_stamp = |
| jiffies; |
| } |
| } |
| if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && |
| ((__le32 *)aifcmd->data)[6] == 0 && |
| ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { |
| for (container = 0; |
| container < dev->maximum_num_containers; |
| ++container) { |
| /* |
| * Stomp on all config sequencing for all |
| * containers? |
| */ |
| dev->fsa_dev[container].config_waiting_on = |
| AifEnContainerChange; |
| dev->fsa_dev[container].config_needed = DELETE; |
| dev->fsa_dev[container].config_waiting_stamp = |
| jiffies; |
| } |
| } |
| break; |
| } |
| |
| container = 0; |
| retry_next: |
| if (device_config_needed == NOTHING) { |
| for (; container < dev->maximum_num_containers; ++container) { |
| if ((dev->fsa_dev[container].config_waiting_on == 0) && |
| (dev->fsa_dev[container].config_needed != NOTHING) && |
| time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { |
| device_config_needed = |
| dev->fsa_dev[container].config_needed; |
| dev->fsa_dev[container].config_needed = NOTHING; |
| channel = CONTAINER_TO_CHANNEL(container); |
| id = CONTAINER_TO_ID(container); |
| lun = CONTAINER_TO_LUN(container); |
| break; |
| } |
| } |
| } |
| if (device_config_needed == NOTHING) |
| return; |
| |
| /* |
| * If we decided that a re-configuration needs to be done, |
| * schedule it here on the way out the door, please close the door |
| * behind you. |
| */ |
| |
| /* |
| * Find the scsi_device associated with the SCSI address, |
| * and mark it as changed, invalidating the cache. This deals |
| * with changes to existing device IDs. |
| */ |
| |
| if (!dev || !dev->scsi_host_ptr) |
| return; |
| /* |
| * force reload of disk info via aac_probe_container |
| */ |
| if ((channel == CONTAINER_CHANNEL) && |
| (device_config_needed != NOTHING)) { |
| if (dev->fsa_dev[container].valid == 1) |
| dev->fsa_dev[container].valid = 2; |
| aac_probe_container(dev, container); |
| } |
| device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); |
| if (device) { |
| switch (device_config_needed) { |
| case DELETE: |
| #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) |
| scsi_remove_device(device); |
| #else |
| if (scsi_device_online(device)) { |
| scsi_device_set_state(device, SDEV_OFFLINE); |
| sdev_printk(KERN_INFO, device, |
| "Device offlined - %s\n", |
| (channel == CONTAINER_CHANNEL) ? |
| "array deleted" : |
| "enclosure services event"); |
| } |
| #endif |
| break; |
| case ADD: |
| if (!scsi_device_online(device)) { |
| sdev_printk(KERN_INFO, device, |
| "Device online - %s\n", |
| (channel == CONTAINER_CHANNEL) ? |
| "array created" : |
| "enclosure services event"); |
| scsi_device_set_state(device, SDEV_RUNNING); |
| } |
| fallthrough; |
| case CHANGE: |
| if ((channel == CONTAINER_CHANNEL) |
| && (!dev->fsa_dev[container].valid)) { |
| #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) |
| scsi_remove_device(device); |
| #else |
| if (!scsi_device_online(device)) |
| break; |
| scsi_device_set_state(device, SDEV_OFFLINE); |
| sdev_printk(KERN_INFO, device, |
| "Device offlined - %s\n", |
| "array failed"); |
| #endif |
| break; |
| } |
| scsi_rescan_device(device); |
| break; |
| |
| default: |
| break; |
| } |
| scsi_device_put(device); |
| device_config_needed = NOTHING; |
| } |
| if (device_config_needed == ADD) |
| scsi_add_device(dev->scsi_host_ptr, channel, id, lun); |
| if (channel == CONTAINER_CHANNEL) { |
| container++; |
| device_config_needed = NOTHING; |
| goto retry_next; |
| } |
| } |
| |
| static void aac_schedule_bus_scan(struct aac_dev *aac) |
| { |
| if (aac->sa_firmware) |
| aac_schedule_safw_scan_worker(aac); |
| else |
| aac_schedule_src_reinit_aif_worker(aac); |
| } |
| |
| static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) |
| { |
| int index, quirks; |
| int retval; |
| struct Scsi_Host *host = aac->scsi_host_ptr; |
| int jafo = 0; |
| int bled; |
| u64 dmamask; |
| int num_of_fibs = 0; |
| |
| /* |
| * Assumptions: |
| * - host is locked, unless called by the aacraid thread. |
| * (a matter of convenience, due to legacy issues surrounding |
| * eh_host_adapter_reset). |
| * - in_reset is asserted, so no new i/o is getting to the |
| * card. |
| * - The card is dead, or will be very shortly ;-/ so no new |
| * commands are completing in the interrupt service. |
| */ |
| aac_adapter_disable_int(aac); |
| if (aac->thread && aac->thread->pid != current->pid) { |
| spin_unlock_irq(host->host_lock); |
| kthread_stop(aac->thread); |
| aac->thread = NULL; |
| jafo = 1; |
| } |
| |
| /* |
| * If a positive health, means in a known DEAD PANIC |
| * state and the adapter could be reset to `try again'. |
| */ |
| bled = forced ? 0 : aac_adapter_check_health(aac); |
| retval = aac_adapter_restart(aac, bled, reset_type); |
| |
| if (retval) |
| goto out; |
| |
| /* |
| * Loop through the fibs, close the synchronous FIBS |
| */ |
| retval = 1; |
| num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; |
| for (index = 0; index < num_of_fibs; index++) { |
| |
| struct fib *fib = &aac->fibs[index]; |
| __le32 XferState = fib->hw_fib_va->header.XferState; |
| bool is_response_expected = false; |
| |
| if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && |
| (XferState & cpu_to_le32(ResponseExpected))) |
| is_response_expected = true; |
| |
| if (is_response_expected |
| || fib->flags & FIB_CONTEXT_FLAG_WAIT) { |
| unsigned long flagv; |
| spin_lock_irqsave(&fib->event_lock, flagv); |
| complete(&fib->event_wait); |
| spin_unlock_irqrestore(&fib->event_lock, flagv); |
| schedule(); |
| retval = 0; |
| } |
| } |
| /* Give some extra time for ioctls to complete. */ |
| if (retval == 0) |
| ssleep(2); |
| index = aac->cardtype; |
| |
| /* |
| * Re-initialize the adapter, first free resources, then carefully |
| * apply the initialization sequence to come back again. Only risk |
| * is a change in Firmware dropping cache, it is assumed the caller |
| * will ensure that i/o is queisced and the card is flushed in that |
| * case. |
| */ |
| aac_free_irq(aac); |
| aac_fib_map_free(aac); |
| dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, |
| aac->comm_phys); |
| aac_adapter_ioremap(aac, 0); |
| aac->comm_addr = NULL; |
| aac->comm_phys = 0; |
| kfree(aac->queues); |
| aac->queues = NULL; |
| kfree(aac->fsa_dev); |
| aac->fsa_dev = NULL; |
| |
| dmamask = DMA_BIT_MASK(32); |
| quirks = aac_get_driver_ident(index)->quirks; |
| if (quirks & AAC_QUIRK_31BIT) |
| retval = dma_set_mask(&aac->pdev->dev, dmamask); |
| else if (!(quirks & AAC_QUIRK_SRC)) |
| retval = dma_set_mask(&aac->pdev->dev, dmamask); |
| else |
| retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask); |
| |
| if (quirks & AAC_QUIRK_31BIT && !retval) { |
| dmamask = DMA_BIT_MASK(31); |
| retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask); |
| } |
| |
| if (retval) |
| goto out; |
| |
| if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) |
| goto out; |
| |
| if (jafo) { |
| aac->thread = kthread_run(aac_command_thread, aac, "%s", |
| aac->name); |
| if (IS_ERR(aac->thread)) { |
| retval = PTR_ERR(aac->thread); |
| aac->thread = NULL; |
| goto out; |
| } |
| } |
| (void)aac_get_adapter_info(aac); |
| if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { |
| host->sg_tablesize = 34; |
| host->max_sectors = (host->sg_tablesize * 8) + 112; |
| } |
| if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { |
| host->sg_tablesize = 17; |
| host->max_sectors = (host->sg_tablesize * 8) + 112; |
| } |
| aac_get_config_status(aac, 1); |
| aac_get_containers(aac); |
| /* |
| * This is where the assumption that the Adapter is quiesced |
| * is important. |
| */ |
| scsi_host_complete_all_commands(host, DID_RESET); |
| |
| retval = 0; |
| out: |
| aac->in_reset = 0; |
| |
| /* |
| * Issue bus rescan to catch any configuration that might have |
| * occurred |
| */ |
| if (!retval && !is_kdump_kernel()) { |
| dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); |
| aac_schedule_bus_scan(aac); |
| } |
| |
| if (jafo) { |
| spin_lock_irq(host->host_lock); |
| } |
| return retval; |
| } |
| |
| int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) |
| { |
| unsigned long flagv = 0; |
| int retval, unblock_retval; |
| struct Scsi_Host *host = aac->scsi_host_ptr; |
| int bled; |
| |
| if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) |
| return -EBUSY; |
| |
| if (aac->in_reset) { |
| spin_unlock_irqrestore(&aac->fib_lock, flagv); |
| return -EBUSY; |
| } |
| aac->in_reset = 1; |
| spin_unlock_irqrestore(&aac->fib_lock, flagv); |
| |
| /* |
| * Wait for all commands to complete to this specific |
| * target (block maximum 60 seconds). Although not necessary, |
| * it does make us a good storage citizen. |
| */ |
| scsi_host_block(host); |
| |
| /* Quiesce build, flush cache, write through mode */ |
| if (forced < 2) |
| aac_send_shutdown(aac); |
| spin_lock_irqsave(host->host_lock, flagv); |
| bled = forced ? forced : |
| (aac_check_reset != 0 && aac_check_reset != 1); |
| retval = _aac_reset_adapter(aac, bled, reset_type); |
| spin_unlock_irqrestore(host->host_lock, flagv); |
| |
| unblock_retval = scsi_host_unblock(host, SDEV_RUNNING); |
| if (!retval) |
| retval = unblock_retval; |
| if ((forced < 2) && (retval == -ENODEV)) { |
| /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ |
| struct fib * fibctx = aac_fib_alloc(aac); |
| if (fibctx) { |
| struct aac_pause *cmd; |
| int status; |
| |
| aac_fib_init(fibctx); |
| |
| cmd = (struct aac_pause *) fib_data(fibctx); |
| |
| cmd->command = cpu_to_le32(VM_ContainerConfig); |
| cmd->type = cpu_to_le32(CT_PAUSE_IO); |
| cmd->timeout = cpu_to_le32(1); |
| cmd->min = cpu_to_le32(1); |
| cmd->noRescan = cpu_to_le32(1); |
| cmd->count = cpu_to_le32(0); |
| |
| status = aac_fib_send(ContainerCommand, |
| fibctx, |
| sizeof(struct aac_pause), |
| FsaNormal, |
| -2 /* Timeout silently */, 1, |
| NULL, NULL); |
| |
| if (status >= 0) |
| aac_fib_complete(fibctx); |
| /* FIB should be freed only after getting |
| * the response from the F/W */ |
| if (status != -ERESTARTSYS) |
| aac_fib_free(fibctx); |
| } |
| } |
| |
| return retval; |
| } |
| |
| int aac_check_health(struct aac_dev * aac) |
| { |
| int BlinkLED; |
| unsigned long time_now, flagv = 0; |
| struct list_head * entry; |
| |
| /* Extending the scope of fib_lock slightly to protect aac->in_reset */ |
| if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) |
| return 0; |
| |
| if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { |
| spin_unlock_irqrestore(&aac->fib_lock, flagv); |
| return 0; /* OK */ |
| } |
| |
| aac->in_reset = 1; |
| |
| /* Fake up an AIF: |
| * aac_aifcmd.command = AifCmdEventNotify = 1 |
| * aac_aifcmd.seqnum = 0xFFFFFFFF |
| * aac_aifcmd.data[0] = AifEnExpEvent = 23 |
| * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 |
| * aac.aifcmd.data[2] = AifHighPriority = 3 |
| * aac.aifcmd.data[3] = BlinkLED |
| */ |
| |
| time_now = jiffies/HZ; |
| entry = aac->fib_list.next; |
| |
| /* |
| * For each Context that is on the |
| * fibctxList, make a copy of the |
| * fib, and then set the event to wake up the |
| * thread that is waiting for it. |
| */ |
| while (entry != &aac->fib_list) { |
| /* |
| * Extract the fibctx |
| */ |
| struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); |
| struct hw_fib * hw_fib; |
| struct fib * fib; |
| /* |
| * Check if the queue is getting |
| * backlogged |
| */ |
| if (fibctx->count > 20) { |
| /* |
| * It's *not* jiffies folks, |
| * but jiffies / HZ, so do not |
| * panic ... |
| */ |
| u32 time_last = fibctx->jiffies; |
| /* |
| * Has it been > 2 minutes |
| * since the last read off |
| * the queue? |
| */ |
| if ((time_now - time_last) > aif_timeout) { |
| entry = entry->next; |
| aac_close_fib_context(aac, fibctx); |
| continue; |
| } |
| } |
| /* |
| * Warning: no sleep allowed while |
| * holding spinlock |
| */ |
| hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); |
| fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); |
| if (fib && hw_fib) { |
| struct aac_aifcmd * aif; |
| |
| fib->hw_fib_va = hw_fib; |
| fib->dev = aac; |
| aac_fib_init(fib); |
| fib->type = FSAFS_NTC_FIB_CONTEXT; |
| fib->size = sizeof (struct fib); |
| fib->data = hw_fib->data; |
| aif = (struct aac_aifcmd *)hw_fib->data; |
| aif->command = cpu_to_le32(AifCmdEventNotify); |
| aif->seqnum = cpu_to_le32(0xFFFFFFFF); |
| ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); |
| ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); |
| ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); |
| ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); |
| |
| /* |
| * Put the FIB onto the |
| * fibctx's fibs |
| */ |
| list_add_tail(&fib->fiblink, &fibctx->fib_list); |
| fibctx->count++; |
| /* |
| * Set the event to wake up the |
| * thread that will waiting. |
| */ |
| complete(&fibctx->completion); |
| } else { |
| printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); |
| kfree(fib); |
| kfree(hw_fib); |
| } |
| entry = entry->next; |
| } |
| |
| spin_unlock_irqrestore(&aac->fib_lock, flagv); |
| |
| if (BlinkLED < 0) { |
| printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", |
| aac->name, BlinkLED); |
| goto out; |
| } |
| |
| printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); |
| |
| out: |
| aac->in_reset = 0; |
| return BlinkLED; |
| } |
| |
| static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) |
| { |
| return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; |
| } |
| |
| static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, |
| int bus, |
| int target) |
| { |
| if (bus != CONTAINER_CHANNEL) |
| bus = aac_phys_to_logical(bus); |
| |
| return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); |
| } |
| |
| static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) |
| { |
| if (bus != CONTAINER_CHANNEL) |
| bus = aac_phys_to_logical(bus); |
| |
| return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); |
| } |
| |
| static void aac_put_safw_scsi_device(struct scsi_device *sdev) |
| { |
| if (sdev) |
| scsi_device_put(sdev); |
| } |
| |
| static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) |
| { |
| struct scsi_device *sdev; |
| |
| sdev = aac_lookup_safw_scsi_device(dev, bus, target); |
| scsi_remove_device(sdev); |
| aac_put_safw_scsi_device(sdev); |
| } |
| |
| static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, |
| int bus, int target) |
| { |
| return dev->hba_map[bus][target].scan_counter == dev->scan_counter; |
| } |
| |
| static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) |
| { |
| if (is_safw_raid_volume(dev, bus, target)) |
| return dev->fsa_dev[target].valid; |
| else |
| return aac_is_safw_scan_count_equal(dev, bus, target); |
| } |
| |
| static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) |
| { |
| int is_exposed = 0; |
| struct scsi_device *sdev; |
| |
| sdev = aac_lookup_safw_scsi_device(dev, bus, target); |
| if (sdev) |
| is_exposed = 1; |
| aac_put_safw_scsi_device(sdev); |
| |
| return is_exposed; |
| } |
| |
| static int aac_update_safw_host_devices(struct aac_dev *dev) |
| { |
| int i; |
| int bus; |
| int target; |
| int is_exposed = 0; |
| int rcode = 0; |
| |
| rcode = aac_setup_safw_adapter(dev); |
| if (unlikely(rcode < 0)) { |
| goto out; |
| } |
| |
| for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { |
| |
| bus = get_bus_number(i); |
| target = get_target_number(i); |
| |
| is_exposed = aac_is_safw_device_exposed(dev, bus, target); |
| |
| if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) |
| aac_add_safw_device(dev, bus, target); |
| else if (!aac_is_safw_target_valid(dev, bus, target) && |
| is_exposed) |
| aac_remove_safw_device(dev, bus, target); |
| } |
| out: |
| return rcode; |
| } |
| |
| static int aac_scan_safw_host(struct aac_dev *dev) |
| { |
| int rcode = 0; |
| |
| rcode = aac_update_safw_host_devices(dev); |
| if (rcode) |
| aac_schedule_safw_scan_worker(dev); |
| |
| return rcode; |
| } |
| |
| int aac_scan_host(struct aac_dev *dev) |
| { |
| int rcode = 0; |
| |
| mutex_lock(&dev->scan_mutex); |
| if (dev->sa_firmware) |
| rcode = aac_scan_safw_host(dev); |
| else |
| scsi_scan_host(dev->scsi_host_ptr); |
| mutex_unlock(&dev->scan_mutex); |
| |
| return rcode; |
| } |
| |
| void aac_src_reinit_aif_worker(struct work_struct *work) |
| { |
| struct aac_dev *dev = container_of(to_delayed_work(work), |
| struct aac_dev, src_reinit_aif_worker); |
| |
| wait_event(dev->scsi_host_ptr->host_wait, |
| !scsi_host_in_recovery(dev->scsi_host_ptr)); |
| aac_reinit_aif(dev, dev->cardtype); |
| } |
| |
| /** |
| * aac_handle_sa_aif - Handle a message from the firmware |
| * @dev: Which adapter this fib is from |
| * @fibptr: Pointer to fibptr from adapter |
| * |
| * This routine handles a driver notify fib from the adapter and |
| * dispatches it to the appropriate routine for handling. |
| */ |
| static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) |
| { |
| int i; |
| u32 events = 0; |
| |
| if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) |
| events = SA_AIF_HOTPLUG; |
| else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) |
| events = SA_AIF_HARDWARE; |
| else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) |
| events = SA_AIF_PDEV_CHANGE; |
| else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) |
| events = SA_AIF_LDEV_CHANGE; |
| else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) |
| events = SA_AIF_BPSTAT_CHANGE; |
| else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) |
| events = SA_AIF_BPCFG_CHANGE; |
| |
| switch (events) { |
| case SA_AIF_HOTPLUG: |
| case SA_AIF_HARDWARE: |
| case SA_AIF_PDEV_CHANGE: |
| case SA_AIF_LDEV_CHANGE: |
| case SA_AIF_BPCFG_CHANGE: |
| |
| aac_scan_host(dev); |
| |
| break; |
| |
| case SA_AIF_BPSTAT_CHANGE: |
| /* currently do nothing */ |
| break; |
| } |
| |
| for (i = 1; i <= 10; ++i) { |
| events = src_readl(dev, MUnit.IDR); |
| if (events & (1<<23)) { |
| pr_warn(" AIF not cleared by firmware - %d/%d)\n", |
| i, 10); |
| ssleep(1); |
| } |
| } |
| } |
| |
| static int get_fib_count(struct aac_dev *dev) |
| { |
| unsigned int num = 0; |
| struct list_head *entry; |
| unsigned long flagv; |
| |
| /* |
| * Warning: no sleep allowed while |
| * holding spinlock. We take the estimate |
| * and pre-allocate a set of fibs outside the |
| * lock. |
| */ |
| num = le32_to_cpu(dev->init->r7.adapter_fibs_size) |
| / sizeof(struct hw_fib); /* some extra */ |
| spin_lock_irqsave(&dev->fib_lock, flagv); |
| entry = dev->fib_list.next; |
| while (entry != &dev->fib_list) { |
| entry = entry->next; |
| ++num; |
| } |
| spin_unlock_irqrestore(&dev->fib_lock, flagv); |
| |
| return num; |
| } |
| |
| static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, |
| struct fib **fib_pool, |
| unsigned int num) |
| { |
| struct hw_fib **hw_fib_p; |
| struct fib **fib_p; |
| |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (hw_fib_p < &hw_fib_pool[num]) { |
| *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); |
| if (!(*(hw_fib_p++))) { |
| --hw_fib_p; |
| break; |
| } |
| |
| *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); |
| if (!(*(fib_p++))) { |
| kfree(*(--hw_fib_p)); |
| break; |
| } |
| } |
| |
| /* |
| * Get the actual number of allocated fibs |
| */ |
| num = hw_fib_p - hw_fib_pool; |
| return num; |
| } |
| |
| static void wakeup_fibctx_threads(struct aac_dev *dev, |
| struct hw_fib **hw_fib_pool, |
| struct fib **fib_pool, |
| struct fib *fib, |
| struct hw_fib *hw_fib, |
| unsigned int num) |
| { |
| unsigned long flagv; |
| struct list_head *entry; |
| struct hw_fib **hw_fib_p; |
| struct fib **fib_p; |
| u32 time_now, time_last; |
| struct hw_fib *hw_newfib; |
| struct fib *newfib; |
| struct aac_fib_context *fibctx; |
| |
| time_now = jiffies/HZ; |
| spin_lock_irqsave(&dev->fib_lock, flagv); |
| entry = dev->fib_list.next; |
| /* |
| * For each Context that is on the |
| * fibctxList, make a copy of the |
| * fib, and then set the event to wake up the |
| * thread that is waiting for it. |
| */ |
| |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (entry != &dev->fib_list) { |
| /* |
| * Extract the fibctx |
| */ |
| fibctx = list_entry(entry, struct aac_fib_context, |
| next); |
| /* |
| * Check if the queue is getting |
| * backlogged |
| */ |
| if (fibctx->count > 20) { |
| /* |
| * It's *not* jiffies folks, |
| * but jiffies / HZ so do not |
| * panic ... |
| */ |
| time_last = fibctx->jiffies; |
| /* |
| * Has it been > 2 minutes |
| * since the last read off |
| * the queue? |
| */ |
| if ((time_now - time_last) > aif_timeout) { |
| entry = entry->next; |
| aac_close_fib_context(dev, fibctx); |
| continue; |
| } |
| } |
| /* |
| * Warning: no sleep allowed while |
| * holding spinlock |
| */ |
| if (hw_fib_p >= &hw_fib_pool[num]) { |
| pr_warn("aifd: didn't allocate NewFib\n"); |
| entry = entry->next; |
| continue; |
| } |
| |
| hw_newfib = *hw_fib_p; |
| *(hw_fib_p++) = NULL; |
| newfib = *fib_p; |
| *(fib_p++) = NULL; |
| /* |
| * Make the copy of the FIB |
| */ |
| memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); |
| memcpy(newfib, fib, sizeof(struct fib)); |
| newfib->hw_fib_va = hw_newfib; |
| /* |
| * Put the FIB onto the |
| * fibctx's fibs |
| */ |
| list_add_tail(&newfib->fiblink, &fibctx->fib_list); |
| fibctx->count++; |
| /* |
| * Set the event to wake up the |
| * thread that is waiting. |
| */ |
| complete(&fibctx->completion); |
| |
| entry = entry->next; |
| } |
| /* |
| * Set the status of this FIB |
| */ |
| *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
| aac_fib_adapter_complete(fib, sizeof(u32)); |
| spin_unlock_irqrestore(&dev->fib_lock, flagv); |
| |
| } |
| |
| static void aac_process_events(struct aac_dev *dev) |
| { |
| struct hw_fib *hw_fib; |
| struct fib *fib; |
| unsigned long flags; |
| spinlock_t *t_lock; |
| |
| t_lock = dev->queues->queue[HostNormCmdQueue].lock; |
| spin_lock_irqsave(t_lock, flags); |
| |
| while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { |
| struct list_head *entry; |
| struct aac_aifcmd *aifcmd; |
| unsigned int num; |
| struct hw_fib **hw_fib_pool, **hw_fib_p; |
| struct fib **fib_pool, **fib_p; |
| |
| set_current_state(TASK_RUNNING); |
| |
| entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; |
| list_del(entry); |
| |
| t_lock = dev->queues->queue[HostNormCmdQueue].lock; |
| spin_unlock_irqrestore(t_lock, flags); |
| |
| fib = list_entry(entry, struct fib, fiblink); |
| hw_fib = fib->hw_fib_va; |
| if (dev->sa_firmware) { |
| /* Thor AIF */ |
| aac_handle_sa_aif(dev, fib); |
| aac_fib_adapter_complete(fib, (u16)sizeof(u32)); |
| goto free_fib; |
| } |
| /* |
| * We will process the FIB here or pass it to a |
| * worker thread that is TBD. We Really can't |
| * do anything at this point since we don't have |
| * anything defined for this thread to do. |
| */ |
| memset(fib, 0, sizeof(struct fib)); |
| fib->type = FSAFS_NTC_FIB_CONTEXT; |
| fib->size = sizeof(struct fib); |
| fib->hw_fib_va = hw_fib; |
| fib->data = hw_fib->data; |
| fib->dev = dev; |
| /* |
| * We only handle AifRequest fibs from the adapter. |
| */ |
| |
| aifcmd = (struct aac_aifcmd *) hw_fib->data; |
| if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { |
| /* Handle Driver Notify Events */ |
| aac_handle_aif(dev, fib); |
| *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); |
| aac_fib_adapter_complete(fib, (u16)sizeof(u32)); |
| goto free_fib; |
| } |
| /* |
| * The u32 here is important and intended. We are using |
| * 32bit wrapping time to fit the adapter field |
| */ |
| |
| /* Sniff events */ |
| if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) |
| || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { |
| aac_handle_aif(dev, fib); |
| } |
| |
| /* |
| * get number of fibs to process |
| */ |
| num = get_fib_count(dev); |
| if (!num) |
| goto free_fib; |
| |
| hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), |
| GFP_KERNEL); |
| if (!hw_fib_pool) |
| goto free_fib; |
| |
| fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); |
| if (!fib_pool) |
| goto free_hw_fib_pool; |
| |
| /* |
| * Fill up fib pointer pools with actual fibs |
| * and hw_fibs |
| */ |
| num = fillup_pools(dev, hw_fib_pool, fib_pool, num); |
| if (!num) |
| goto free_mem; |
| |
| /* |
| * wakeup the thread that is waiting for |
| * the response from fw (ioctl) |
| */ |
| wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, |
| fib, hw_fib, num); |
| |
| free_mem: |
| /* Free up the remaining resources */ |
| hw_fib_p = hw_fib_pool; |
| fib_p = fib_pool; |
| while (hw_fib_p < &hw_fib_pool[num]) { |
| kfree(*hw_fib_p); |
| kfree(*fib_p); |
| ++fib_p; |
| ++hw_fib_p; |
| } |
| kfree(fib_pool); |
| free_hw_fib_pool: |
| kfree(hw_fib_pool); |
| free_fib: |
| kfree(fib); |
| t_lock = dev->queues->queue[HostNormCmdQueue].lock; |
| spin_lock_irqsave(t_lock, flags); |
| } |
| /* |
| * There are no more AIF's |
| */ |
| t_lock = dev->queues->queue[HostNormCmdQueue].lock; |
| spin_unlock_irqrestore(t_lock, flags); |
| } |
| |
| static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, |
| u32 datasize) |
| { |
| struct aac_srb *srbcmd; |
| struct sgmap64 *sg64; |
| dma_addr_t addr; |
| char *dma_buf; |
| struct fib *fibptr; |
| int ret = -ENOMEM; |
| u32 vbus, vid; |
| |
| fibptr = aac_fib_alloc(dev); |
| if (!fibptr) |
| goto out; |
| |
| dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, |
| GFP_KERNEL); |
| if (!dma_buf) |
| goto fib_free_out; |
| |
| aac_fib_init(fibptr); |
| |
| vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); |
| vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); |
| |
| srbcmd = (struct aac_srb *)fib_data(fibptr); |
| |
| srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); |
| srbcmd->channel = cpu_to_le32(vbus); |
| srbcmd->id = cpu_to_le32(vid); |
| srbcmd->lun = 0; |
| srbcmd->flags = cpu_to_le32(SRB_DataOut); |
| srbcmd->timeout = cpu_to_le32(10); |
| srbcmd->retry_limit = 0; |
| srbcmd->cdb_size = cpu_to_le32(12); |
| srbcmd->count = cpu_to_le32(datasize); |
| |
| memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); |
| srbcmd->cdb[0] = BMIC_OUT; |
| srbcmd->cdb[6] = WRITE_HOST_WELLNESS; |
| memcpy(dma_buf, (char *)wellness_str, datasize); |
| |
| sg64 = (struct sgmap64 *)&srbcmd->sg; |
| sg64->count = cpu_to_le32(1); |
| sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); |
| sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); |
| sg64->sg[0].count = cpu_to_le32(datasize); |
| |
| ret = aac_fib_send(ScsiPortCommand64, fibptr, |
| sizeof(struct aac_srb) + sizeof(struct sgentry), |
| FsaNormal, 1, 1, NULL, NULL); |
| |
| dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); |
| |
| /* |
| * Do not set XferState to zero unless |
| * receives a response from F/W |
| */ |
| if (ret >= 0) |
| aac_fib_complete(fibptr); |
| |
| /* |
| * FIB should be freed only after |
| * getting the response from the F/W |
| */ |
| if (ret != -ERESTARTSYS) |
| goto fib_free_out; |
| |
| out: |
| return ret; |
| fib_free_out: |
| aac_fib_free(fibptr); |
| goto out; |
| } |
| |
| static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) |
| { |
| struct tm cur_tm; |
| char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; |
| u32 datasize = sizeof(wellness_str); |
| time64_t local_time; |
| int ret = -ENODEV; |
| |
| if (!dev->sa_firmware) |
| goto out; |
| |
| local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); |
| time64_to_tm(local_time, 0, &cur_tm); |
| cur_tm.tm_mon += 1; |
| cur_tm.tm_year += 1900; |
| wellness_str[8] = bin2bcd(cur_tm.tm_hour); |
| wellness_str[9] = bin2bcd(cur_tm.tm_min); |
| wellness_str[10] = bin2bcd(cur_tm.tm_sec); |
| wellness_str[12] = bin2bcd(cur_tm.tm_mon); |
| wellness_str[13] = bin2bcd(cur_tm.tm_mday); |
| wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); |
| wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); |
| |
| ret = aac_send_wellness_command(dev, wellness_str, datasize); |
| |
| out: |
| return ret; |
| } |
| |
| static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) |
| { |
| int ret = -ENOMEM; |
| struct fib *fibptr; |
| __le32 *info; |
| |
| fibptr = aac_fib_alloc(dev); |
| if (!fibptr) |
| goto out; |
| |
| aac_fib_init(fibptr); |
| info = (__le32 *)fib_data(fibptr); |
| *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ |
| ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, |
| 1, 1, NULL, NULL); |
| |
| /* |
| * Do not set XferState to zero unless |
| * receives a response from F/W |
| */ |
| if (ret >= 0) |
| aac_fib_complete(fibptr); |
| |
| /* |
| * FIB should be freed only after |
| * getting the response from the F/W |
| */ |
| if (ret != -ERESTARTSYS) |
| aac_fib_free(fibptr); |
| |
| out: |
| return ret; |
| } |
| |
| /** |
| * aac_command_thread - command processing thread |
| * @data: Adapter to monitor |
| * |
| * Waits on the commandready event in it's queue. When the event gets set |
| * it will pull FIBs off it's queue. It will continue to pull FIBs off |
| * until the queue is empty. When the queue is empty it will wait for |
| * more FIBs. |
| */ |
| |
| int aac_command_thread(void *data) |
| { |
| struct aac_dev *dev = data; |
| DECLARE_WAITQUEUE(wait, current); |
| unsigned long next_jiffies = jiffies + HZ; |
| unsigned long next_check_jiffies = next_jiffies; |
| long difference = HZ; |
| |
| /* |
| * We can only have one thread per adapter for AIF's. |
| */ |
| if (dev->aif_thread) |
| return -EINVAL; |
| |
| /* |
| * Let the DPC know it has a place to send the AIF's to. |
| */ |
| dev->aif_thread = 1; |
| add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); |
| set_current_state(TASK_INTERRUPTIBLE); |
| dprintk ((KERN_INFO "aac_command_thread start\n")); |
| while (1) { |
| |
| aac_process_events(dev); |
| |
| /* |
| * Background activity |
| */ |
| if ((time_before(next_check_jiffies,next_jiffies)) |
| && ((difference = next_check_jiffies - jiffies) <= 0)) { |
| next_check_jiffies = next_jiffies; |
| if (aac_adapter_check_health(dev) == 0) { |
| difference = ((long)(unsigned)check_interval) |
| * HZ; |
| next_check_jiffies = jiffies + difference; |
| } else if (!dev->queues) |
| break; |
| } |
| if (!time_before(next_check_jiffies,next_jiffies) |
| && ((difference = next_jiffies - jiffies) <= 0)) { |
| struct timespec64 now; |
| int ret; |
| |
| /* Don't even try to talk to adapter if its sick */ |
| ret = aac_adapter_check_health(dev); |
| if (ret || !dev->queues) |
| break; |
| next_check_jiffies = jiffies |
| + ((long)(unsigned)check_interval) |
| * HZ; |
| ktime_get_real_ts64(&now); |
| |
| /* Synchronize our watches */ |
| if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) |
| && (now.tv_nsec > (NSEC_PER_SEC / HZ))) |
| difference = HZ + HZ / 2 - |
| now.tv_nsec / (NSEC_PER_SEC / HZ); |
| else { |
| if (now.tv_nsec > NSEC_PER_SEC / 2) |
| ++now.tv_sec; |
| |
| if (dev->sa_firmware) |
| ret = |
| aac_send_safw_hostttime(dev, &now); |
| else |
| ret = aac_send_hosttime(dev, &now); |
| |
| difference = (long)(unsigned)update_interval*HZ; |
| } |
| next_jiffies = jiffies + difference; |
| if (time_before(next_check_jiffies,next_jiffies)) |
| difference = next_check_jiffies - jiffies; |
| } |
| if (difference <= 0) |
| difference = 1; |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| if (kthread_should_stop()) |
| break; |
| |
| /* |
| * we probably want usleep_range() here instead of the |
| * jiffies computation |
| */ |
| schedule_timeout(difference); |
| |
| if (kthread_should_stop()) |
| break; |
| } |
| if (dev->queues) |
| remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); |
| dev->aif_thread = 0; |
| return 0; |
| } |
| |
| int aac_acquire_irq(struct aac_dev *dev) |
| { |
| int i; |
| int j; |
| int ret = 0; |
| |
| if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { |
| for (i = 0; i < dev->max_msix; i++) { |
| dev->aac_msix[i].vector_no = i; |
| dev->aac_msix[i].dev = dev; |
| if (request_irq(pci_irq_vector(dev->pdev, i), |
| dev->a_ops.adapter_intr, |
| 0, "aacraid", &(dev->aac_msix[i]))) { |
| printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", |
| dev->name, dev->id, i); |
| for (j = 0 ; j < i ; j++) |
| free_irq(pci_irq_vector(dev->pdev, j), |
| &(dev->aac_msix[j])); |
| pci_disable_msix(dev->pdev); |
| ret = -1; |
| } |
| } |
| } else { |
| dev->aac_msix[0].vector_no = 0; |
| dev->aac_msix[0].dev = dev; |
| |
| if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, |
| IRQF_SHARED, "aacraid", |
| &(dev->aac_msix[0])) < 0) { |
| if (dev->msi) |
| pci_disable_msi(dev->pdev); |
| printk(KERN_ERR "%s%d: Interrupt unavailable.\n", |
| dev->name, dev->id); |
| ret = -1; |
| } |
| } |
| return ret; |
| } |
| |
| void aac_free_irq(struct aac_dev *dev) |
| { |
| int i; |
| |
| if (aac_is_src(dev)) { |
| if (dev->max_msix > 1) { |
| for (i = 0; i < dev->max_msix; i++) |
| free_irq(pci_irq_vector(dev->pdev, i), |
| &(dev->aac_msix[i])); |
| } else { |
| free_irq(dev->pdev->irq, &(dev->aac_msix[0])); |
| } |
| } else { |
| free_irq(dev->pdev->irq, dev); |
| } |
| if (dev->msi) |
| pci_disable_msi(dev->pdev); |
| else if (dev->max_msix > 1) |
| pci_disable_msix(dev->pdev); |
| } |