blob: 5a5525054d71c89a66cbd1de95d941a7311bcb5c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Broadcom. All Rights Reserved. The term
* “Broadcom” refers to Broadcom Inc. and/or its subsidiaries.
*/
#include "efct_driver.h"
#include "efct_hw.h"
#include "efct_unsol.h"
struct efct_hw_link_stat_cb_arg {
void (*cb)(int status, u32 num_counters,
struct efct_hw_link_stat_counts *counters, void *arg);
void *arg;
};
struct efct_hw_host_stat_cb_arg {
void (*cb)(int status, u32 num_counters,
struct efct_hw_host_stat_counts *counters, void *arg);
void *arg;
};
struct efct_hw_fw_wr_cb_arg {
void (*cb)(int status, u32 bytes_written, u32 change_status, void *arg);
void *arg;
};
struct efct_mbox_rqst_ctx {
int (*callback)(struct efc *efc, int status, u8 *mqe, void *arg);
void *arg;
};
static int
efct_hw_link_event_init(struct efct_hw *hw)
{
hw->link.status = SLI4_LINK_STATUS_MAX;
hw->link.topology = SLI4_LINK_TOPO_NONE;
hw->link.medium = SLI4_LINK_MEDIUM_MAX;
hw->link.speed = 0;
hw->link.loop_map = NULL;
hw->link.fc_id = U32_MAX;
return 0;
}
static int
efct_hw_read_max_dump_size(struct efct_hw *hw)
{
u8 buf[SLI4_BMBX_SIZE];
struct efct *efct = hw->os;
int rc = 0;
struct sli4_rsp_cmn_set_dump_location *rsp;
/* attempt to detemine the dump size for function 0 only. */
if (PCI_FUNC(efct->pci->devfn) != 0)
return rc;
if (sli_cmd_common_set_dump_location(&hw->sli, buf, 1, 0, NULL, 0))
return -EIO;
rsp = (struct sli4_rsp_cmn_set_dump_location *)
(buf + offsetof(struct sli4_cmd_sli_config, payload.embed));
rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL);
if (rc != 0) {
efc_log_debug(hw->os, "set dump location cmd failed\n");
return rc;
}
hw->dump_size =
le32_to_cpu(rsp->buffer_length_dword) & SLI4_CMN_SET_DUMP_BUFFER_LEN;
efc_log_debug(hw->os, "Dump size %x\n", hw->dump_size);
return rc;
}
static int
__efct_read_topology_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg)
{
struct sli4_cmd_read_topology *read_topo =
(struct sli4_cmd_read_topology *)mqe;
u8 speed;
struct efc_domain_record drec = {0};
struct efct *efct = hw->os;
if (status || le16_to_cpu(read_topo->hdr.status)) {
efc_log_debug(hw->os, "bad status cqe=%#x mqe=%#x\n", status,
le16_to_cpu(read_topo->hdr.status));
return -EIO;
}
switch (le32_to_cpu(read_topo->dw2_attentype) &
SLI4_READTOPO_ATTEN_TYPE) {
case SLI4_READ_TOPOLOGY_LINK_UP:
hw->link.status = SLI4_LINK_STATUS_UP;
break;
case SLI4_READ_TOPOLOGY_LINK_DOWN:
hw->link.status = SLI4_LINK_STATUS_DOWN;
break;
case SLI4_READ_TOPOLOGY_LINK_NO_ALPA:
hw->link.status = SLI4_LINK_STATUS_NO_ALPA;
break;
default:
hw->link.status = SLI4_LINK_STATUS_MAX;
break;
}
switch (read_topo->topology) {
case SLI4_READ_TOPO_NON_FC_AL:
hw->link.topology = SLI4_LINK_TOPO_NON_FC_AL;
break;
case SLI4_READ_TOPO_FC_AL:
hw->link.topology = SLI4_LINK_TOPO_FC_AL;
if (hw->link.status == SLI4_LINK_STATUS_UP)
hw->link.loop_map = hw->loop_map.virt;
hw->link.fc_id = read_topo->acquired_al_pa;
break;
default:
hw->link.topology = SLI4_LINK_TOPO_MAX;
break;
}
hw->link.medium = SLI4_LINK_MEDIUM_FC;
speed = (le32_to_cpu(read_topo->currlink_state) &
SLI4_READTOPO_LINKSTATE_SPEED) >> 8;
switch (speed) {
case SLI4_READ_TOPOLOGY_SPEED_1G:
hw->link.speed = 1 * 1000;
break;
case SLI4_READ_TOPOLOGY_SPEED_2G:
hw->link.speed = 2 * 1000;
break;
case SLI4_READ_TOPOLOGY_SPEED_4G:
hw->link.speed = 4 * 1000;
break;
case SLI4_READ_TOPOLOGY_SPEED_8G:
hw->link.speed = 8 * 1000;
break;
case SLI4_READ_TOPOLOGY_SPEED_16G:
hw->link.speed = 16 * 1000;
break;
case SLI4_READ_TOPOLOGY_SPEED_32G:
hw->link.speed = 32 * 1000;
break;
case SLI4_READ_TOPOLOGY_SPEED_64G:
hw->link.speed = 64 * 1000;
break;
case SLI4_READ_TOPOLOGY_SPEED_128G:
hw->link.speed = 128 * 1000;
break;
}
drec.speed = hw->link.speed;
drec.fc_id = hw->link.fc_id;
drec.is_nport = true;
efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_FOUND, &drec);
return 0;
}
static int
efct_hw_cb_link(void *ctx, void *e)
{
struct efct_hw *hw = ctx;
struct sli4_link_event *event = e;
struct efc_domain *d = NULL;
int rc = 0;
struct efct *efct = hw->os;
efct_hw_link_event_init(hw);
switch (event->status) {
case SLI4_LINK_STATUS_UP:
hw->link = *event;
efct->efcport->link_status = EFC_LINK_STATUS_UP;
if (event->topology == SLI4_LINK_TOPO_NON_FC_AL) {
struct efc_domain_record drec = {0};
efc_log_info(hw->os, "Link Up, NPORT, speed is %d\n",
event->speed);
drec.speed = event->speed;
drec.fc_id = event->fc_id;
drec.is_nport = true;
efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_FOUND,
&drec);
} else if (event->topology == SLI4_LINK_TOPO_FC_AL) {
u8 buf[SLI4_BMBX_SIZE];
efc_log_info(hw->os, "Link Up, LOOP, speed is %d\n",
event->speed);
if (!sli_cmd_read_topology(&hw->sli, buf,
&hw->loop_map)) {
rc = efct_hw_command(hw, buf, EFCT_CMD_NOWAIT,
__efct_read_topology_cb, NULL);
}
if (rc)
efc_log_debug(hw->os, "READ_TOPOLOGY failed\n");
} else {
efc_log_info(hw->os, "%s(%#x), speed is %d\n",
"Link Up, unsupported topology ",
event->topology, event->speed);
}
break;
case SLI4_LINK_STATUS_DOWN:
efc_log_info(hw->os, "Link down\n");
hw->link.status = event->status;
efct->efcport->link_status = EFC_LINK_STATUS_DOWN;
d = efct->efcport->domain;
if (d)
efc_domain_cb(efct->efcport, EFC_HW_DOMAIN_LOST, d);
break;
default:
efc_log_debug(hw->os, "unhandled link status %#x\n",
event->status);
break;
}
return 0;
}
int
efct_hw_setup(struct efct_hw *hw, void *os, struct pci_dev *pdev)
{
u32 i, max_sgl, cpus;
if (hw->hw_setup_called)
return 0;
/*
* efct_hw_init() relies on NULL pointers indicating that a structure
* needs allocation. If a structure is non-NULL, efct_hw_init() won't
* free/realloc that memory
*/
memset(hw, 0, sizeof(struct efct_hw));
hw->hw_setup_called = true;
hw->os = os;
mutex_init(&hw->bmbx_lock);
spin_lock_init(&hw->cmd_lock);
INIT_LIST_HEAD(&hw->cmd_head);
INIT_LIST_HEAD(&hw->cmd_pending);
hw->cmd_head_count = 0;
/* Create mailbox command ctx pool */
hw->cmd_ctx_pool = mempool_create_kmalloc_pool(EFCT_CMD_CTX_POOL_SZ,
sizeof(struct efct_command_ctx));
if (!hw->cmd_ctx_pool) {
efc_log_err(hw->os, "failed to allocate mailbox buffer pool\n");
return -EIO;
}
/* Create mailbox request ctx pool for library callback */
hw->mbox_rqst_pool = mempool_create_kmalloc_pool(EFCT_CMD_CTX_POOL_SZ,
sizeof(struct efct_mbox_rqst_ctx));
if (!hw->mbox_rqst_pool) {
efc_log_err(hw->os, "failed to allocate mbox request pool\n");
return -EIO;
}
spin_lock_init(&hw->io_lock);
INIT_LIST_HEAD(&hw->io_inuse);
INIT_LIST_HEAD(&hw->io_free);
INIT_LIST_HEAD(&hw->io_wait_free);
atomic_set(&hw->io_alloc_failed_count, 0);
hw->config.speed = SLI4_LINK_SPEED_AUTO_16_8_4;
if (sli_setup(&hw->sli, hw->os, pdev, ((struct efct *)os)->reg)) {
efc_log_err(hw->os, "SLI setup failed\n");
return -EIO;
}
efct_hw_link_event_init(hw);
sli_callback(&hw->sli, SLI4_CB_LINK, efct_hw_cb_link, hw);
/*
* Set all the queue sizes to the maximum allowed.
*/
for (i = 0; i < ARRAY_SIZE(hw->num_qentries); i++)
hw->num_qentries[i] = hw->sli.qinfo.max_qentries[i];
/*
* Adjust the size of the WQs so that the CQ is twice as big as
* the WQ to allow for 2 completions per IO. This allows us to
* handle multi-phase as well as aborts.
*/
hw->num_qentries[SLI4_QTYPE_WQ] = hw->num_qentries[SLI4_QTYPE_CQ] / 2;
/*
* The RQ assignment for RQ pair mode.
*/
hw->config.rq_default_buffer_size = EFCT_HW_RQ_SIZE_PAYLOAD;
hw->config.n_io = hw->sli.ext[SLI4_RSRC_XRI].size;
cpus = num_possible_cpus();
hw->config.n_eq = cpus > EFCT_HW_MAX_NUM_EQ ? EFCT_HW_MAX_NUM_EQ : cpus;
max_sgl = sli_get_max_sgl(&hw->sli) - SLI4_SGE_MAX_RESERVED;
max_sgl = (max_sgl > EFCT_FC_MAX_SGL) ? EFCT_FC_MAX_SGL : max_sgl;
hw->config.n_sgl = max_sgl;
(void)efct_hw_read_max_dump_size(hw);
return 0;
}
static void
efct_logfcfi(struct efct_hw *hw, u32 j, u32 i, u32 id)
{
efc_log_info(hw->os,
"REG_FCFI: filter[%d] %08X -> RQ[%d] id=%d\n",
j, hw->config.filter_def[j], i, id);
}
static inline void
efct_hw_init_free_io(struct efct_hw_io *io)
{
/*
* Set io->done to NULL, to avoid any callbacks, should
* a completion be received for one of these IOs
*/
io->done = NULL;
io->abort_done = NULL;
io->status_saved = false;
io->abort_in_progress = false;
io->type = 0xFFFF;
io->wq = NULL;
}
static bool efct_hw_iotype_is_originator(u16 io_type)
{
switch (io_type) {
case EFCT_HW_FC_CT:
case EFCT_HW_ELS_REQ:
return true;
default:
return false;
}
}
static void
efct_hw_io_restore_sgl(struct efct_hw *hw, struct efct_hw_io *io)
{
/* Restore the default */
io->sgl = &io->def_sgl;
io->sgl_count = io->def_sgl_count;
}
static void
efct_hw_wq_process_io(void *arg, u8 *cqe, int status)
{
struct efct_hw_io *io = arg;
struct efct_hw *hw = io->hw;
struct sli4_fc_wcqe *wcqe = (void *)cqe;
u32 len = 0;
u32 ext = 0;
/* clear xbusy flag if WCQE[XB] is clear */
if (io->xbusy && (wcqe->flags & SLI4_WCQE_XB) == 0)
io->xbusy = false;
/* get extended CQE status */
switch (io->type) {
case EFCT_HW_BLS_ACC:
case EFCT_HW_BLS_RJT:
break;
case EFCT_HW_ELS_REQ:
sli_fc_els_did(&hw->sli, cqe, &ext);
len = sli_fc_response_length(&hw->sli, cqe);
break;
case EFCT_HW_ELS_RSP:
case EFCT_HW_FC_CT_RSP:
break;
case EFCT_HW_FC_CT:
len = sli_fc_response_length(&hw->sli, cqe);
break;
case EFCT_HW_IO_TARGET_WRITE:
len = sli_fc_io_length(&hw->sli, cqe);
break;
case EFCT_HW_IO_TARGET_READ:
len = sli_fc_io_length(&hw->sli, cqe);
break;
case EFCT_HW_IO_TARGET_RSP:
break;
case EFCT_HW_IO_DNRX_REQUEUE:
/* release the count for re-posting the buffer */
/* efct_hw_io_free(hw, io); */
break;
default:
efc_log_err(hw->os, "unhandled io type %#x for XRI 0x%x\n",
io->type, io->indicator);
break;
}
if (status) {
ext = sli_fc_ext_status(&hw->sli, cqe);
/*
* If we're not an originator IO, and XB is set, then issue
* abort for the IO from within the HW
*/
if (efct_hw_iotype_is_originator(io->type) &&
wcqe->flags & SLI4_WCQE_XB) {
int rc;
efc_log_debug(hw->os, "aborting xri=%#x tag=%#x\n",
io->indicator, io->reqtag);
/*
* Because targets may send a response when the IO
* completes using the same XRI, we must wait for the
* XRI_ABORTED CQE to issue the IO callback
*/
rc = efct_hw_io_abort(hw, io, false, NULL, NULL);
if (rc == 0) {
/*
* latch status to return after abort is
* complete
*/
io->status_saved = true;
io->saved_status = status;
io->saved_ext = ext;
io->saved_len = len;
goto exit_efct_hw_wq_process_io;
} else if (rc == -EINPROGRESS) {
/*
* Already being aborted by someone else (ABTS
* perhaps). Just return original
* error.
*/
efc_log_debug(hw->os, "%s%#x tag=%#x\n",
"abort in progress xri=",
io->indicator, io->reqtag);
} else {
/* Failed to abort for some other reason, log
* error
*/
efc_log_debug(hw->os, "%s%#x tag=%#x rc=%d\n",
"Failed to abort xri=",
io->indicator, io->reqtag, rc);
}
}
}
if (io->done) {
efct_hw_done_t done = io->done;
io->done = NULL;
if (io->status_saved) {
/* use latched status if exists */
status = io->saved_status;
len = io->saved_len;
ext = io->saved_ext;
io->status_saved = false;
}
/* Restore default SGL */
efct_hw_io_restore_sgl(hw, io);
done(io, len, status, ext, io->arg);
}
exit_efct_hw_wq_process_io:
return;
}
static int
efct_hw_setup_io(struct efct_hw *hw)
{
u32 i = 0;
struct efct_hw_io *io = NULL;
uintptr_t xfer_virt = 0;
uintptr_t xfer_phys = 0;
u32 index;
bool new_alloc = true;
struct efc_dma *dma;
struct efct *efct = hw->os;
if (!hw->io) {
hw->io = kmalloc_array(hw->config.n_io, sizeof(io), GFP_KERNEL);
if (!hw->io)
return -ENOMEM;
memset(hw->io, 0, hw->config.n_io * sizeof(io));
for (i = 0; i < hw->config.n_io; i++) {
hw->io[i] = kzalloc(sizeof(*io), GFP_KERNEL);
if (!hw->io[i])
goto error;
}
/* Create WQE buffs for IO */
hw->wqe_buffs = kzalloc((hw->config.n_io * hw->sli.wqe_size),
GFP_KERNEL);
if (!hw->wqe_buffs) {
kfree(hw->io);
return -ENOMEM;
}
} else {
/* re-use existing IOs, including SGLs */
new_alloc = false;
}
if (new_alloc) {
dma = &hw->xfer_rdy;
dma->size = sizeof(struct fcp_txrdy) * hw->config.n_io;
dma->virt = dma_alloc_coherent(&efct->pci->dev,
dma->size, &dma->phys, GFP_KERNEL);
if (!dma->virt)
return -ENOMEM;
}
xfer_virt = (uintptr_t)hw->xfer_rdy.virt;
xfer_phys = hw->xfer_rdy.phys;
/* Initialize the pool of HW IO objects */
for (i = 0; i < hw->config.n_io; i++) {
struct hw_wq_callback *wqcb;
io = hw->io[i];
/* initialize IO fields */
io->hw = hw;
/* Assign a WQE buff */
io->wqe.wqebuf = &hw->wqe_buffs[i * hw->sli.wqe_size];
/* Allocate the request tag for this IO */
wqcb = efct_hw_reqtag_alloc(hw, efct_hw_wq_process_io, io);
if (!wqcb) {
efc_log_err(hw->os, "can't allocate request tag\n");
return -ENOSPC;
}
io->reqtag = wqcb->instance_index;
/* Now for the fields that are initialized on each free */
efct_hw_init_free_io(io);
/* The XB flag isn't cleared on IO free, so init to zero */
io->xbusy = 0;
if (sli_resource_alloc(&hw->sli, SLI4_RSRC_XRI,
&io->indicator, &index)) {
efc_log_err(hw->os,
"sli_resource_alloc failed @ %d\n", i);
return -ENOMEM;
}
if (new_alloc) {
dma = &io->def_sgl;
dma->size = hw->config.n_sgl *
sizeof(struct sli4_sge);
dma->virt = dma_alloc_coherent(&efct->pci->dev,
dma->size, &dma->phys,
GFP_KERNEL);
if (!dma->virt) {
efc_log_err(hw->os, "dma_alloc fail %d\n", i);
memset(&io->def_sgl, 0,
sizeof(struct efc_dma));
return -ENOMEM;
}
}
io->def_sgl_count = hw->config.n_sgl;
io->sgl = &io->def_sgl;
io->sgl_count = io->def_sgl_count;
if (hw->xfer_rdy.size) {
io->xfer_rdy.virt = (void *)xfer_virt;
io->xfer_rdy.phys = xfer_phys;
io->xfer_rdy.size = sizeof(struct fcp_txrdy);
xfer_virt += sizeof(struct fcp_txrdy);
xfer_phys += sizeof(struct fcp_txrdy);
}
}
return 0;
error:
for (i = 0; i < hw->config.n_io && hw->io[i]; i++) {
kfree(hw->io[i]);
hw->io[i] = NULL;
}
kfree(hw->io);
hw->io = NULL;
return -ENOMEM;
}
static int
efct_hw_init_prereg_io(struct efct_hw *hw)
{
u32 i, idx = 0;
struct efct_hw_io *io = NULL;
u8 cmd[SLI4_BMBX_SIZE];
int rc = 0;
u32 n_rem;
u32 n = 0;
u32 sgls_per_request = 256;
struct efc_dma **sgls = NULL;
struct efc_dma req;
struct efct *efct = hw->os;
sgls = kmalloc_array(sgls_per_request, sizeof(*sgls), GFP_KERNEL);
if (!sgls)
return -ENOMEM;
memset(&req, 0, sizeof(struct efc_dma));
req.size = 32 + sgls_per_request * 16;
req.virt = dma_alloc_coherent(&efct->pci->dev, req.size, &req.phys,
GFP_KERNEL);
if (!req.virt) {
kfree(sgls);
return -ENOMEM;
}
for (n_rem = hw->config.n_io; n_rem; n_rem -= n) {
/* Copy address of SGL's into local sgls[] array, break
* out if the xri is not contiguous.
*/
u32 min = (sgls_per_request < n_rem) ? sgls_per_request : n_rem;
for (n = 0; n < min; n++) {
/* Check that we have contiguous xri values */
if (n > 0) {
if (hw->io[idx + n]->indicator !=
hw->io[idx + n - 1]->indicator + 1)
break;
}
sgls[n] = hw->io[idx + n]->sgl;
}
if (sli_cmd_post_sgl_pages(&hw->sli, cmd,
hw->io[idx]->indicator, n, sgls, NULL, &req)) {
rc = -EIO;
break;
}
rc = efct_hw_command(hw, cmd, EFCT_CMD_POLL, NULL, NULL);
if (rc) {
efc_log_err(hw->os, "SGL post failed, rc=%d\n", rc);
break;
}
/* Add to tail if successful */
for (i = 0; i < n; i++, idx++) {
io = hw->io[idx];
io->state = EFCT_HW_IO_STATE_FREE;
INIT_LIST_HEAD(&io->list_entry);
list_add_tail(&io->list_entry, &hw->io_free);
}
}
dma_free_coherent(&efct->pci->dev, req.size, req.virt, req.phys);
memset(&req, 0, sizeof(struct efc_dma));
kfree(sgls);
return rc;
}
static int
efct_hw_init_io(struct efct_hw *hw)
{
u32 i, idx = 0;
bool prereg = false;
struct efct_hw_io *io = NULL;
int rc = 0;
prereg = hw->sli.params.sgl_pre_registered;
if (prereg)
return efct_hw_init_prereg_io(hw);
for (i = 0; i < hw->config.n_io; i++, idx++) {
io = hw->io[idx];
io->state = EFCT_HW_IO_STATE_FREE;
INIT_LIST_HEAD(&io->list_entry);
list_add_tail(&io->list_entry, &hw->io_free);
}
return rc;
}
static int
efct_hw_config_set_fdt_xfer_hint(struct efct_hw *hw, u32 fdt_xfer_hint)
{
int rc = 0;
u8 buf[SLI4_BMBX_SIZE];
struct sli4_rqst_cmn_set_features_set_fdt_xfer_hint param;
memset(&param, 0, sizeof(param));
param.fdt_xfer_hint = cpu_to_le32(fdt_xfer_hint);
/* build the set_features command */
sli_cmd_common_set_features(&hw->sli, buf,
SLI4_SET_FEATURES_SET_FTD_XFER_HINT, sizeof(param), &param);
rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL);
if (rc)
efc_log_warn(hw->os, "set FDT hint %d failed: %d\n",
fdt_xfer_hint, rc);
else
efc_log_info(hw->os, "Set FTD transfer hint to %d\n",
le32_to_cpu(param.fdt_xfer_hint));
return rc;
}
static int
efct_hw_config_rq(struct efct_hw *hw)
{
u32 min_rq_count, i, rc;
struct sli4_cmd_rq_cfg rq_cfg[SLI4_CMD_REG_FCFI_NUM_RQ_CFG];
u8 buf[SLI4_BMBX_SIZE];
efc_log_info(hw->os, "using REG_FCFI standard\n");
/*
* Set the filter match/mask values from hw's
* filter_def values
*/
for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) {
rq_cfg[i].rq_id = cpu_to_le16(0xffff);
rq_cfg[i].r_ctl_mask = (u8)hw->config.filter_def[i];
rq_cfg[i].r_ctl_match = (u8)(hw->config.filter_def[i] >> 8);
rq_cfg[i].type_mask = (u8)(hw->config.filter_def[i] >> 16);
rq_cfg[i].type_match = (u8)(hw->config.filter_def[i] >> 24);
}
/*
* Update the rq_id's of the FCF configuration
* (don't update more than the number of rq_cfg
* elements)
*/
min_rq_count = (hw->hw_rq_count < SLI4_CMD_REG_FCFI_NUM_RQ_CFG) ?
hw->hw_rq_count : SLI4_CMD_REG_FCFI_NUM_RQ_CFG;
for (i = 0; i < min_rq_count; i++) {
struct hw_rq *rq = hw->hw_rq[i];
u32 j;
for (j = 0; j < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; j++) {
u32 mask = (rq->filter_mask != 0) ?
rq->filter_mask : 1;
if (!(mask & (1U << j)))
continue;
rq_cfg[i].rq_id = cpu_to_le16(rq->hdr->id);
efct_logfcfi(hw, j, i, rq->hdr->id);
}
}
rc = -EIO;
if (!sli_cmd_reg_fcfi(&hw->sli, buf, 0, rq_cfg))
rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL);
if (rc != 0) {
efc_log_err(hw->os, "FCFI registration failed\n");
return rc;
}
hw->fcf_indicator =
le16_to_cpu(((struct sli4_cmd_reg_fcfi *)buf)->fcfi);
return rc;
}
static int
efct_hw_config_mrq(struct efct_hw *hw, u8 mode, u16 fcf_index)
{
u8 buf[SLI4_BMBX_SIZE], mrq_bitmask = 0;
struct hw_rq *rq;
struct sli4_cmd_reg_fcfi_mrq *rsp = NULL;
struct sli4_cmd_rq_cfg rq_filter[SLI4_CMD_REG_FCFI_MRQ_NUM_RQ_CFG];
u32 rc, i;
if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE)
goto issue_cmd;
/* Set the filter match/mask values from hw's filter_def values */
for (i = 0; i < SLI4_CMD_REG_FCFI_NUM_RQ_CFG; i++) {
rq_filter[i].rq_id = cpu_to_le16(0xffff);
rq_filter[i].type_mask = (u8)hw->config.filter_def[i];
rq_filter[i].type_match = (u8)(hw->config.filter_def[i] >> 8);
rq_filter[i].r_ctl_mask = (u8)(hw->config.filter_def[i] >> 16);
rq_filter[i].r_ctl_match = (u8)(hw->config.filter_def[i] >> 24);
}
rq = hw->hw_rq[0];
rq_filter[0].rq_id = cpu_to_le16(rq->hdr->id);
rq_filter[1].rq_id = cpu_to_le16(rq->hdr->id);
mrq_bitmask = 0x2;
issue_cmd:
efc_log_debug(hw->os, "Issue reg_fcfi_mrq count:%d policy:%d mode:%d\n",
hw->hw_rq_count, hw->config.rq_selection_policy, mode);
/* Invoke REG_FCFI_MRQ */
rc = sli_cmd_reg_fcfi_mrq(&hw->sli, buf, mode, fcf_index,
hw->config.rq_selection_policy, mrq_bitmask,
hw->hw_mrq_count, rq_filter);
if (rc) {
efc_log_err(hw->os, "sli_cmd_reg_fcfi_mrq() failed\n");
return -EIO;
}
rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL);
rsp = (struct sli4_cmd_reg_fcfi_mrq *)buf;
if ((rc) || (le16_to_cpu(rsp->hdr.status))) {
efc_log_err(hw->os, "FCFI MRQ reg failed. cmd=%x status=%x\n",
rsp->hdr.command, le16_to_cpu(rsp->hdr.status));
return -EIO;
}
if (mode == SLI4_CMD_REG_FCFI_SET_FCFI_MODE)
hw->fcf_indicator = le16_to_cpu(rsp->fcfi);
return 0;
}
static void
efct_hw_queue_hash_add(struct efct_queue_hash *hash,
u16 id, u16 index)
{
u32 hash_index = id & (EFCT_HW_Q_HASH_SIZE - 1);
/*
* Since the hash is always bigger than the number of queues, then we
* never have to worry about an infinite loop.
*/
while (hash[hash_index].in_use)
hash_index = (hash_index + 1) & (EFCT_HW_Q_HASH_SIZE - 1);
/* not used, claim the entry */
hash[hash_index].id = id;
hash[hash_index].in_use = true;
hash[hash_index].index = index;
}
static int
efct_hw_config_sli_port_health_check(struct efct_hw *hw, u8 query, u8 enable)
{
int rc = 0;
u8 buf[SLI4_BMBX_SIZE];
struct sli4_rqst_cmn_set_features_health_check param;
u32 health_check_flag = 0;
memset(&param, 0, sizeof(param));
if (enable)
health_check_flag |= SLI4_RQ_HEALTH_CHECK_ENABLE;
if (query)
health_check_flag |= SLI4_RQ_HEALTH_CHECK_QUERY;
param.health_check_dword = cpu_to_le32(health_check_flag);
/* build the set_features command */
sli_cmd_common_set_features(&hw->sli, buf,
SLI4_SET_FEATURES_SLI_PORT_HEALTH_CHECK, sizeof(param), &param);
rc = efct_hw_command(hw, buf, EFCT_CMD_POLL, NULL, NULL);
if (rc)
efc_log_err(hw->os, "efct_hw_command returns %d\n", rc);
else
efc_log_debug(hw->os, "SLI Port Health Check is enabled\n");
return rc;
}
int
efct_hw_init(struct efct_hw *hw)
{
int rc;
u32 i = 0;
int rem_count;
unsigned long flags = 0;
struct efct_hw_io *temp;
struct efc_dma *dma;
/*
* Make sure the command lists are empty. If this is start-of-day,
* they'll be empty since they were just initialized in efct_hw_setup.
* If we've just gone through a reset, the command and command pending
* lists should have been cleaned up as part of the reset
* (efct_hw_reset()).
*/
spin_lock_irqsave(&hw->cmd_lock, flags);
if (!list_empty(&hw->cmd_head)) {
spin_unlock_irqrestore(&hw->cmd_lock, flags);
efc_log_err(hw->os, "command found on cmd list\n");
return -EIO;
}
if (!list_empty(&hw->cmd_pending)) {
spin_unlock_irqrestore(&hw->cmd_lock, flags);
efc_log_err(hw->os, "command found on pending list\n");
return -EIO;
}
spin_unlock_irqrestore(&hw->cmd_lock, flags);
/* Free RQ buffers if prevously allocated */
efct_hw_rx_free(hw);
/*
* The IO queues must be initialized here for the reset case. The
* efct_hw_init_io() function will re-add the IOs to the free list.
* The cmd_head list should be OK since we free all entries in
* efct_hw_command_cancel() that is called in the efct_hw_reset().
*/
/* If we are in this function due to a reset, there may be stale items
* on lists that need to be removed. Clean them up.
*/
rem_count = 0;
while ((!list_empty(&hw->io_wait_free))) {
rem_count++;
temp = list_first_entry(&hw->io_wait_free, struct efct_hw_io,
list_entry);
list_del_init(&temp->list_entry);
}
if (rem_count > 0)
efc_log_debug(hw->os, "rmvd %d items from io_wait_free list\n",
rem_count);
rem_count = 0;
while ((!list_empty(&hw->io_inuse))) {
rem_count++;
temp = list_first_entry(&hw->io_inuse, struct efct_hw_io,
list_entry);
list_del_init(&temp->list_entry);
}
if (rem_count > 0)
efc_log_debug(hw->os, "rmvd %d items from io_inuse list\n",
rem_count);
rem_count = 0;
while ((!list_empty(&hw->io_free))) {
rem_count++;
temp = list_first_entry(&hw->io_free, struct efct_hw_io,
list_entry);
list_del_init(&temp->list_entry);
}
if (rem_count > 0)
efc_log_debug(hw->os, "rmvd %d items from io_free list\n",
rem_count);
/* If MRQ not required, Make sure we dont request feature. */
if (hw->config.n_rq == 1)
hw->sli.features &= (~SLI4_REQFEAT_MRQP);
if (sli_init(&hw->sli)) {
efc_log_err(hw->os, "SLI failed to initialize\n");
return -EIO;
}
if (hw->sliport_healthcheck) {
rc = efct_hw_config_sli_port_health_check(hw, 0, 1);
if (rc != 0) {
efc_log_err(hw->os, "Enable port Health check fail\n");
return rc;
}
}
/*
* Set FDT transfer hint, only works on Lancer
*/
if (hw->sli.if_type == SLI4_INTF_IF_TYPE_2) {
/*
* Non-fatal error. In particular, we can disregard failure to
* set EFCT_HW_FDT_XFER_HINT on devices with legacy firmware
* that do not support EFCT_HW_FDT_XFER_HINT feature.
*/
efct_hw_config_set_fdt_xfer_hint(hw, EFCT_HW_FDT_XFER_HINT);
}
/* zero the hashes */
memset(hw->cq_hash, 0, sizeof(hw->cq_hash));
efc_log_debug(hw->os, "Max CQs %d, hash size = %d\n",
EFCT_HW_MAX_NUM_CQ, EFCT_HW_Q_HASH_SIZE);
memset(hw->rq_hash, 0, sizeof(hw->rq_hash));
efc_log_debug(hw->os, "Max RQs %d, hash size = %d\n",
EFCT_HW_MAX_NUM_RQ, EFCT_HW_Q_HASH_SIZE);
memset(hw->wq_hash, 0, sizeof(hw->wq_hash));
efc_log_debug(hw->os, "Max WQs %d, hash size = %d\n",
EFCT_HW_MAX_NUM_WQ, EFCT_HW_Q_HASH_SIZE);
rc = efct_hw_init_queues(hw);
if (rc)
return rc;
rc = efct_hw_map_wq_cpu(hw);
if (rc)
return rc;
/* Allocate and p_st RQ buffers */
rc = efct_hw_rx_allocate(hw);
if (rc) {
efc_log_err(hw->os, "rx_allocate failed\n");
return rc;
}
rc = efct_hw_rx_post(hw);
if (rc) {
efc_log_err(hw->os, "WARNING - error posting RQ buffers\n");
return rc;
}
if (hw->config.n_eq == 1) {
rc = efct_hw_config_rq(hw);
if (rc) {
efc_log_err(hw->os, "config rq failed %d\n", rc);
return rc;
}
} else {
rc = efct_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_FCFI_MODE, 0);
if (rc != 0) {
efc_log_err(hw->os, "REG_FCFI_MRQ FCFI reg failed\n");
return rc;
}
rc = efct_hw_config_mrq(hw, SLI4_CMD_REG_FCFI_SET_MRQ_MODE, 0);
if (rc != 0) {
efc_log_err(hw->os, "REG_FCFI_MRQ MRQ reg failed\n");
return rc;
}
}
/*
* Allocate the WQ request tag pool, if not previously allocated
* (the request tag value is 16 bits, thus the pool allocation size
* of 64k)
*/
hw->wq_reqtag_pool = efct_hw_reqtag_pool_alloc(hw);
if (!hw->wq_reqtag_pool) {
efc_log_err(hw->os, "efct_hw_reqtag_pool_alloc failed\n");
return -ENOMEM;
}
rc = efct_hw_setup_io(hw);
if (rc) {
efc_log_err(hw->os, "IO allocation failure\n");
return rc;
}
rc = efct_hw_init_io(hw);
if (rc) {
efc_log_err(hw->os, "IO initialization failure\n");
return rc;
}
dma = &hw->loop_map;
dma->size = SLI4_MIN_LOOP_MAP_BYTES;
dma->virt = dma_alloc_coherent(&hw->os->pci->dev, dma->size, &dma->phys,
GFP_KERNEL);
if (!dma->virt)
return -EIO;
/*
* Arming the EQ allows (e.g.) interrupts when CQ completions write EQ
* entries
*/
for (i = 0; i < hw->eq_count; i++)
sli_queue_arm(&hw->sli, &hw->eq[i], true);
/*
* Initialize RQ hash
*/
for (i = 0; i < hw->rq_count; i++)
efct_hw_queue_hash_add(hw->rq_hash, hw->rq[i].id, i);
/*
* Initialize WQ hash
*/
for (i = 0; i < hw->wq_count; i++)
efct_hw_queue_hash_add(hw->wq_hash, hw->wq[i].id, i);
/*
* Arming the CQ allows (e.g.) MQ completions to write CQ entries
*/
for (i = 0; i < hw->cq_count; i++) {
efct_hw_queue_hash_add(hw->cq_hash, hw->cq[i].id, i);
sli_queue_arm(&hw->sli, &hw->cq[i], true);
}
/* Set RQ process limit*/
for (i = 0; i < hw->hw_rq_count; i++) {
struct hw_rq *rq = hw->hw_rq[i];
hw->cq[rq->cq->instance].proc_limit = hw->config.n_io / 2;
}
/* record the fact that the queues are functional */
hw->state = EFCT_HW_STATE_ACTIVE;
/*
* Allocate a HW IOs for send frame.
*/
hw->hw_wq[0]->send_frame_io = efct_hw_io_alloc(hw);
if (!hw->hw_wq[0]->send_frame_io)
efc_log_err(hw->os, "alloc for send_frame_io failed\n");
/* Initialize send frame sequence id */
atomic_set(&hw->send_frame_seq_id, 0);
return 0;
}
int
efct_hw_parse_filter(struct efct_hw *hw, void *value)
{
int rc = 0;
char *p = NULL;
char *token;
u32 idx = 0;
for (idx = 0; idx < ARRAY_SIZE(hw->config.filter_def); idx++)
hw->config.filter_def[idx] = 0;
p = kstrdup(value, GFP_KERNEL);
if (!p || !*p) {
efc_log_err(hw->os, "p is NULL\n");
return -ENOMEM;
}
idx = 0;
while ((token = strsep(&p, ",")) && *token) {
if (kstrtou32(token, 0, &hw->config.filter_def[idx++]))
efc_log_err(hw->os, "kstrtoint failed\n");
if (!p || !*p)
break;
if (idx == ARRAY_SIZE(hw->config.filter_def))
break;
}
kfree(p);
return rc;
}
u64
efct_get_wwnn(struct efct_hw *hw)
{
struct sli4 *sli = &hw->sli;
u8 p[8];
memcpy(p, sli->wwnn, sizeof(p));
return get_unaligned_be64(p);
}
u64
efct_get_wwpn(struct efct_hw *hw)
{
struct sli4 *sli = &hw->sli;
u8 p[8];
memcpy(p, sli->wwpn, sizeof(p));
return get_unaligned_be64(p);
}
static struct efc_hw_rq_buffer *
efct_hw_rx_buffer_alloc(struct efct_hw *hw, u32 rqindex, u32 count,
u32 size)
{
struct efct *efct = hw->os;
struct efc_hw_rq_buffer *rq_buf = NULL;
struct efc_hw_rq_buffer *prq;
u32 i;
if (!count)
return NULL;
rq_buf = kmalloc_array(count, sizeof(*rq_buf), GFP_KERNEL);
if (!rq_buf)
return NULL;
memset(rq_buf, 0, sizeof(*rq_buf) * count);
for (i = 0, prq = rq_buf; i < count; i ++, prq++) {
prq->rqindex = rqindex;
prq->dma.size = size;
prq->dma.virt = dma_alloc_coherent(&efct->pci->dev,
prq->dma.size,
&prq->dma.phys,
GFP_KERNEL);
if (!prq->dma.virt) {
efc_log_err(hw->os, "DMA allocation failed\n");
kfree(rq_buf);
return NULL;
}
}
return rq_buf;
}
static void
efct_hw_rx_buffer_free(struct efct_hw *hw,
struct efc_hw_rq_buffer *rq_buf,
u32 count)
{
struct efct *efct = hw->os;
u32 i;
struct efc_hw_rq_buffer *prq;
if (rq_buf) {
for (i = 0, prq = rq_buf; i < count; i++, prq++) {
dma_free_coherent(&efct->pci->dev,
prq->dma.size, prq->dma.virt,
prq->dma.phys);
memset(&prq->dma, 0, sizeof(struct efc_dma));
}
kfree(rq_buf);
}
}
int
efct_hw_rx_allocate(struct efct_hw *hw)
{
struct efct *efct = hw->os;
u32 i;
int rc = 0;
u32 rqindex = 0;
u32 hdr_size = EFCT_HW_RQ_SIZE_HDR;
u32 payload_size = hw->config.rq_default_buffer_size;
rqindex = 0;
for (i = 0; i < hw->hw_rq_count; i++) {
struct hw_rq *rq = hw->hw_rq[i];
/* Allocate header buffers */
rq->hdr_buf = efct_hw_rx_buffer_alloc(hw, rqindex,
rq->entry_count,
hdr_size);
if (!rq->hdr_buf) {
efc_log_err(efct, "rx_buffer_alloc hdr_buf failed\n");
rc = -EIO;
break;
}
efc_log_debug(hw->os,
"rq[%2d] rq_id %02d header %4d by %4d bytes\n",
i, rq->hdr->id, rq->entry_count, hdr_size);
rqindex++;
/* Allocate payload buffers */
rq->payload_buf = efct_hw_rx_buffer_alloc(hw, rqindex,
rq->entry_count,
payload_size);
if (!rq->payload_buf) {
efc_log_err(efct, "rx_buffer_alloc fb_buf failed\n");
rc = -EIO;
break;
}
efc_log_debug(hw->os,
"rq[%2d] rq_id %02d default %4d by %4d bytes\n",
i, rq->data->id, rq->entry_count, payload_size);
rqindex++;
}
return rc ? -EIO : 0;
}
int
efct_hw_rx_post(struct efct_hw *hw)
{
u32 i;
u32 idx;
u32 rq_idx;
int rc = 0;
if (!hw->seq_pool) {
u32 count = 0;
for (i = 0; i < hw->hw_rq_count; i++)
count += hw->hw_rq[i]->entry_count;
hw->seq_pool = kmalloc_array(count,
sizeof(struct efc_hw_sequence), GFP_KERNEL);
if (!hw->seq_pool)
return -ENOMEM;
}
/*
* In RQ pair mode, we MUST post the header and payload buffer at the
* same time.
*/
for (rq_idx = 0, idx = 0; rq_idx < hw->hw_rq_count; rq_idx++) {
struct hw_rq *rq = hw->hw_rq[rq_idx];
for (i = 0; i < rq->entry_count - 1; i++) {
struct efc_hw_sequence *seq;
seq = hw->seq_pool + idx;
idx++;
seq->header = &rq->hdr_buf[i];
seq->payload = &rq->payload_buf[i];
rc = efct_hw_sequence_free(hw, seq);
if (rc)
break;
}
if (rc)
break;
}
if (rc && hw->seq_pool)
kfree(hw->seq_pool);
return rc;
}
void
efct_hw_rx_free(struct efct_hw *hw)
{
u32 i;
/* Free hw_rq buffers */
for (i = 0; i < hw->hw_rq_count; i++) {
struct hw_rq *rq = hw->hw_rq[i];
if (rq) {
efct_hw_rx_buffer_free(hw, rq->hdr_buf,
rq->entry_count);
rq->hdr_buf = NULL;
efct_hw_rx_buffer_free(hw, rq->payload_buf,
rq->entry_count);
rq->payload_buf = NULL;
}
}
}
static int
efct_hw_cmd_submit_pending(struct efct_hw *hw)
{
int rc = 0;
/* Assumes lock held */
/* Only submit MQE if there's room */
while (hw->cmd_head_count < (EFCT_HW_MQ_DEPTH - 1) &&
!list_empty(&hw->cmd_pending)) {
struct efct_command_ctx *ctx;
ctx = list_first_entry(&hw->cmd_pending,
struct efct_command_ctx, list_entry);
if (!ctx)
break;
list_del_init(&ctx->list_entry);
list_add_tail(&ctx->list_entry, &hw->cmd_head);
hw->cmd_head_count++;
if (sli_mq_write(&hw->sli, hw->mq, ctx->buf) < 0) {
efc_log_debug(hw->os,
"sli_queue_write failed: %d\n", rc);
rc = -EIO;
break;
}
}
return rc;
}
int
efct_hw_command(struct efct_hw *hw, u8 *cmd, u32 opts, void *cb, void *arg)
{
int rc = -EIO;
unsigned long flags = 0;
void *bmbx = NULL;
/*
* If the chip is in an error state (UE'd) then reject this mailbox
* command.
*/
if (sli_fw_error_status(&hw->sli) > 0) {
efc_log_crit(hw->os, "Chip in an error state - reset needed\n");
efc_log_crit(hw->os, "status=%#x error1=%#x error2=%#x\n",
sli_reg_read_status(&hw->sli),
sli_reg_read_err1(&hw->sli),
sli_reg_read_err2(&hw->sli));
return -EIO;
}
/*
* Send a mailbox command to the hardware, and either wait for
* a completion (EFCT_CMD_POLL) or get an optional asynchronous
* completion (EFCT_CMD_NOWAIT).
*/
if (opts == EFCT_CMD_POLL) {
mutex_lock(&hw->bmbx_lock);
bmbx = hw->sli.bmbx.virt;
memcpy(bmbx, cmd, SLI4_BMBX_SIZE);
if (sli_bmbx_command(&hw->sli) == 0) {
rc = 0;
memcpy(cmd, bmbx, SLI4_BMBX_SIZE);
}
mutex_unlock(&hw->bmbx_lock);
} else if (opts == EFCT_CMD_NOWAIT) {
struct efct_command_ctx *ctx = NULL;
if (hw->state != EFCT_HW_STATE_ACTIVE) {
efc_log_err(hw->os, "Can't send command, HW state=%d\n",
hw->state);
return -EIO;
}
ctx = mempool_alloc(hw->cmd_ctx_pool, GFP_ATOMIC);
if (!ctx)
return -ENOSPC;
memset(ctx, 0, sizeof(struct efct_command_ctx));
if (cb) {
ctx->cb = cb;
ctx->arg = arg;
}
memcpy(ctx->buf, cmd, SLI4_BMBX_SIZE);
ctx->ctx = hw;
spin_lock_irqsave(&hw->cmd_lock, flags);
/* Add to pending list */
INIT_LIST_HEAD(&ctx->list_entry);
list_add_tail(&ctx->list_entry, &hw->cmd_pending);
/* Submit as much of the pending list as we can */
rc = efct_hw_cmd_submit_pending(hw);
spin_unlock_irqrestore(&hw->cmd_lock, flags);
}
return rc;
}
static int
efct_hw_command_process(struct efct_hw *hw, int status, u8 *mqe,
size_t size)
{
struct efct_command_ctx *ctx = NULL;
unsigned long flags = 0;
spin_lock_irqsave(&hw->cmd_lock, flags);
if (!list_empty(&hw->cmd_head)) {
ctx = list_first_entry(&hw->cmd_head,
struct efct_command_ctx, list_entry);
list_del_init(&ctx->list_entry);
}
if (!ctx) {
efc_log_err(hw->os, "no command context\n");
spin_unlock_irqrestore(&hw->cmd_lock, flags);
return -EIO;
}
hw->cmd_head_count--;
/* Post any pending requests */
efct_hw_cmd_submit_pending(hw);
spin_unlock_irqrestore(&hw->cmd_lock, flags);
if (ctx->cb) {
memcpy(ctx->buf, mqe, size);
ctx->cb(hw, status, ctx->buf, ctx->arg);
}
mempool_free(ctx, hw->cmd_ctx_pool);
return 0;
}
static int
efct_hw_mq_process(struct efct_hw *hw,
int status, struct sli4_queue *mq)
{
u8 mqe[SLI4_BMBX_SIZE];
int rc;
rc = sli_mq_read(&hw->sli, mq, mqe);
if (!rc)
rc = efct_hw_command_process(hw, status, mqe, mq->size);
return rc;
}
static int
efct_hw_command_cancel(struct efct_hw *hw)
{
unsigned long flags = 0;
int rc = 0;
spin_lock_irqsave(&hw->cmd_lock, flags);
/*
* Manually clean up remaining commands. Note: since this calls
* efct_hw_command_process(), we'll also process the cmd_pending
* list, so no need to manually clean that out.
*/
while (!list_empty(&hw->cmd_head)) {
u8 mqe[SLI4_BMBX_SIZE] = { 0 };
struct efct_command_ctx *ctx;
ctx = list_first_entry(&hw->cmd_head,
struct efct_command_ctx, list_entry);
efc_log_debug(hw->os, "hung command %08x\n",
!ctx ? U32_MAX : *((u32 *)ctx->buf));
spin_unlock_irqrestore(&hw->cmd_lock, flags);
rc = efct_hw_command_process(hw, -1, mqe, SLI4_BMBX_SIZE);
spin_lock_irqsave(&hw->cmd_lock, flags);
}
spin_unlock_irqrestore(&hw->cmd_lock, flags);
return rc;
}
static void
efct_mbox_rsp_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg)
{
struct efct_mbox_rqst_ctx *ctx = arg;
if (ctx) {
if (ctx->callback)
(*ctx->callback)(hw->os->efcport, status, mqe,
ctx->arg);
mempool_free(ctx, hw->mbox_rqst_pool);
}
}
int
efct_issue_mbox_rqst(void *base, void *cmd, void *cb, void *arg)
{
struct efct_mbox_rqst_ctx *ctx;
struct efct *efct = base;
struct efct_hw *hw = &efct->hw;
int rc;
/*
* Allocate a callback context (which includes the mbox cmd buffer),
* we need this to be persistent as the mbox cmd submission may be
* queued and executed later execution.
*/
ctx = mempool_alloc(hw->mbox_rqst_pool, GFP_ATOMIC);
if (!ctx)
return -EIO;
ctx->callback = cb;
ctx->arg = arg;
rc = efct_hw_command(hw, cmd, EFCT_CMD_NOWAIT, efct_mbox_rsp_cb, ctx);
if (rc) {
efc_log_err(efct, "issue mbox rqst failure rc:%d\n", rc);
mempool_free(ctx, hw->mbox_rqst_pool);
return -EIO;
}
return 0;
}
static inline struct efct_hw_io *
_efct_hw_io_alloc(struct efct_hw *hw)
{
struct efct_hw_io *io = NULL;
if (!list_empty(&hw->io_free)) {
io = list_first_entry(&hw->io_free, struct efct_hw_io,
list_entry);
list_del(&io->list_entry);
}
if (io) {
INIT_LIST_HEAD(&io->list_entry);
list_add_tail(&io->list_entry, &hw->io_inuse);
io->state = EFCT_HW_IO_STATE_INUSE;
io->abort_reqtag = U32_MAX;
io->wq = hw->wq_cpu_array[raw_smp_processor_id()];
if (!io->wq) {
efc_log_err(hw->os, "WQ not assigned for cpu:%d\n",
raw_smp_processor_id());
io->wq = hw->hw_wq[0];
}
kref_init(&io->ref);
io->release = efct_hw_io_free_internal;
} else {
atomic_add(1, &hw->io_alloc_failed_count);
}
return io;
}
struct efct_hw_io *
efct_hw_io_alloc(struct efct_hw *hw)
{
struct efct_hw_io *io = NULL;
unsigned long flags = 0;
spin_lock_irqsave(&hw->io_lock, flags);
io = _efct_hw_io_alloc(hw);
spin_unlock_irqrestore(&hw->io_lock, flags);
return io;
}
static void
efct_hw_io_free_move_correct_list(struct efct_hw *hw,
struct efct_hw_io *io)
{
/*
* When an IO is freed, depending on the exchange busy flag,
* move it to the correct list.
*/
if (io->xbusy) {
/*
* add to wait_free list and wait for XRI_ABORTED CQEs to clean
* up
*/
INIT_LIST_HEAD(&io->list_entry);
list_add_tail(&io->list_entry, &hw->io_wait_free);
io->state = EFCT_HW_IO_STATE_WAIT_FREE;
} else {
/* IO not busy, add to free list */
INIT_LIST_HEAD(&io->list_entry);
list_add_tail(&io->list_entry, &hw->io_free);
io->state = EFCT_HW_IO_STATE_FREE;
}
}
static inline void
efct_hw_io_free_common(struct efct_hw *hw, struct efct_hw_io *io)
{
/* initialize IO fields */
efct_hw_init_free_io(io);
/* Restore default SGL */
efct_hw_io_restore_sgl(hw, io);
}
void
efct_hw_io_free_internal(struct kref *arg)
{
unsigned long flags = 0;
struct efct_hw_io *io = container_of(arg, struct efct_hw_io, ref);
struct efct_hw *hw = io->hw;
/* perform common cleanup */
efct_hw_io_free_common(hw, io);
spin_lock_irqsave(&hw->io_lock, flags);
/* remove from in-use list */
if (!list_empty(&io->list_entry) && !list_empty(&hw->io_inuse)) {
list_del_init(&io->list_entry);
efct_hw_io_free_move_correct_list(hw, io);
}
spin_unlock_irqrestore(&hw->io_lock, flags);
}
int
efct_hw_io_free(struct efct_hw *hw, struct efct_hw_io *io)
{
return kref_put(&io->ref, io->release);
}
struct efct_hw_io *
efct_hw_io_lookup(struct efct_hw *hw, u32 xri)
{
u32 ioindex;
ioindex = xri - hw->sli.ext[SLI4_RSRC_XRI].base[0];
return hw->io[ioindex];
}
int
efct_hw_io_init_sges(struct efct_hw *hw, struct efct_hw_io *io,
enum efct_hw_io_type type)
{
struct sli4_sge *data = NULL;
u32 i = 0;
u32 skips = 0;
u32 sge_flags = 0;
if (!io) {
efc_log_err(hw->os, "bad parameter hw=%p io=%p\n", hw, io);
return -EIO;
}
/* Clear / reset the scatter-gather list */
io->sgl = &io->def_sgl;
io->sgl_count = io->def_sgl_count;
io->first_data_sge = 0;
memset(io->sgl->virt, 0, 2 * sizeof(struct sli4_sge));
io->n_sge = 0;
io->sge_offset = 0;
io->type = type;
data = io->sgl->virt;
/*
* Some IO types have underlying hardware requirements on the order
* of SGEs. Process all special entries here.
*/
switch (type) {
case EFCT_HW_IO_TARGET_WRITE:
/* populate host resident XFER_RDY buffer */
sge_flags = le32_to_cpu(data->dw2_flags);
sge_flags &= (~SLI4_SGE_TYPE_MASK);
sge_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT);
data->buffer_address_high =
cpu_to_le32(upper_32_bits(io->xfer_rdy.phys));
data->buffer_address_low =
cpu_to_le32(lower_32_bits(io->xfer_rdy.phys));
data->buffer_length = cpu_to_le32(io->xfer_rdy.size);
data->dw2_flags = cpu_to_le32(sge_flags);
data++;
skips = EFCT_TARGET_WRITE_SKIPS;
io->n_sge = 1;
break;
case EFCT_HW_IO_TARGET_READ:
/*
* For FCP_TSEND64, the first 2 entries are SKIP SGE's
*/
skips = EFCT_TARGET_READ_SKIPS;
break;
case EFCT_HW_IO_TARGET_RSP:
/*
* No skips, etc. for FCP_TRSP64
*/
break;
default:
efc_log_err(hw->os, "unsupported IO type %#x\n", type);
return -EIO;
}
/*
* Write skip entries
*/
for (i = 0; i < skips; i++) {
sge_flags = le32_to_cpu(data->dw2_flags);
sge_flags &= (~SLI4_SGE_TYPE_MASK);
sge_flags |= (SLI4_SGE_TYPE_SKIP << SLI4_SGE_TYPE_SHIFT);
data->dw2_flags = cpu_to_le32(sge_flags);
data++;
}
io->n_sge += skips;
/*
* Set last
*/
sge_flags = le32_to_cpu(data->dw2_flags);
sge_flags |= SLI4_SGE_LAST;
data->dw2_flags = cpu_to_le32(sge_flags);
return 0;
}
int
efct_hw_io_add_sge(struct efct_hw *hw, struct efct_hw_io *io,
uintptr_t addr, u32 length)
{
struct sli4_sge *data = NULL;
u32 sge_flags = 0;
if (!io || !addr || !length) {
efc_log_err(hw->os,
"bad parameter hw=%p io=%p addr=%lx length=%u\n",
hw, io, addr, length);
return -EIO;
}
if (length > hw->sli.sge_supported_length) {
efc_log_err(hw->os,
"length of SGE %d bigger than allowed %d\n",
length, hw->sli.sge_supported_length);
return -EIO;
}
data = io->sgl->virt;
data += io->n_sge;
sge_flags = le32_to_cpu(data->dw2_flags);
sge_flags &= ~SLI4_SGE_TYPE_MASK;
sge_flags |= SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT;
sge_flags &= ~SLI4_SGE_DATA_OFFSET_MASK;
sge_flags |= SLI4_SGE_DATA_OFFSET_MASK & io->sge_offset;
data->buffer_address_high = cpu_to_le32(upper_32_bits(addr));
data->buffer_address_low = cpu_to_le32(lower_32_bits(addr));
data->buffer_length = cpu_to_le32(length);
/*
* Always assume this is the last entry and mark as such.
* If this is not the first entry unset the "last SGE"
* indication for the previous entry
*/
sge_flags |= SLI4_SGE_LAST;
data->dw2_flags = cpu_to_le32(sge_flags);
if (io->n_sge) {
sge_flags = le32_to_cpu(data[-1].dw2_flags);
sge_flags &= ~SLI4_SGE_LAST;
data[-1].dw2_flags = cpu_to_le32(sge_flags);
}
/* Set first_data_bde if not previously set */
if (io->first_data_sge == 0)
io->first_data_sge = io->n_sge;
io->sge_offset += length;
io->n_sge++;
return 0;
}
void
efct_hw_io_abort_all(struct efct_hw *hw)
{
struct efct_hw_io *io_to_abort = NULL;
struct efct_hw_io *next_io = NULL;
list_for_each_entry_safe(io_to_abort, next_io,
&hw->io_inuse, list_entry) {
efct_hw_io_abort(hw, io_to_abort, true, NULL, NULL);
}
}
static void
efct_hw_wq_process_abort(void *arg, u8 *cqe, int status)
{
struct efct_hw_io *io = arg;
struct efct_hw *hw = io->hw;
u32 ext = 0;
u32 len = 0;
struct hw_wq_callback *wqcb;
/*
* For IOs that were aborted internally, we may need to issue the
* callback here depending on whether a XRI_ABORTED CQE is expected ot
* not. If the status is Local Reject/No XRI, then
* issue the callback now.
*/
ext = sli_fc_ext_status(&hw->sli, cqe);
if (status == SLI4_FC_WCQE_STATUS_LOCAL_REJECT &&
ext == SLI4_FC_LOCAL_REJECT_NO_XRI && io->done) {
efct_hw_done_t done = io->done;
io->done = NULL;
/*
* Use latched status as this is always saved for an internal
* abort Note: We won't have both a done and abort_done
* function, so don't worry about
* clobbering the len, status and ext fields.
*/
status = io->saved_status;
len = io->saved_len;
ext = io->saved_ext;
io->status_saved = false;
done(io, len, status, ext, io->arg);
}
if (io->abort_done) {
efct_hw_done_t done = io->abort_done;
io->abort_done = NULL;
done(io, len, status, ext, io->abort_arg);
}
/* clear abort bit to indicate abort is complete */
io->abort_in_progress = false;
/* Free the WQ callback */
if (io->abort_reqtag == U32_MAX) {
efc_log_err(hw->os, "HW IO already freed\n");
return;
}
wqcb = efct_hw_reqtag_get_instance(hw, io->abort_reqtag);
efct_hw_reqtag_free(hw, wqcb);
/*
* Call efct_hw_io_free() because this releases the WQ reservation as
* well as doing the refcount put. Don't duplicate the code here.
*/
(void)efct_hw_io_free(hw, io);
}
static void
efct_hw_fill_abort_wqe(struct efct_hw *hw, struct efct_hw_wqe *wqe)
{
struct sli4_abort_wqe *abort = (void *)wqe->wqebuf;
memset(abort, 0, hw->sli.wqe_size);
abort->criteria = SLI4_ABORT_CRITERIA_XRI_TAG;
abort->ia_ir_byte |= wqe->send_abts ? 0 : 1;
/* Suppress ABTS retries */
abort->ia_ir_byte |= SLI4_ABRT_WQE_IR;
abort->t_tag = cpu_to_le32(wqe->id);
abort->command = SLI4_WQE_ABORT;
abort->request_tag = cpu_to_le16(wqe->abort_reqtag);
abort->dw10w0_flags = cpu_to_le16(SLI4_ABRT_WQE_QOSD);
abort->cq_id = cpu_to_le16(SLI4_CQ_DEFAULT);
}
int
efct_hw_io_abort(struct efct_hw *hw, struct efct_hw_io *io_to_abort,
bool send_abts, void *cb, void *arg)
{
struct hw_wq_callback *wqcb;
unsigned long flags = 0;
if (!io_to_abort) {
efc_log_err(hw->os, "bad parameter hw=%p io=%p\n",
hw, io_to_abort);
return -EIO;
}
if (hw->state != EFCT_HW_STATE_ACTIVE) {
efc_log_err(hw->os, "cannot send IO abort, HW state=%d\n",
hw->state);
return -EIO;
}
/* take a reference on IO being aborted */
if (kref_get_unless_zero(&io_to_abort->ref) == 0) {
/* command no longer active */
efc_log_debug(hw->os,
"io not active xri=0x%x tag=0x%x\n",
io_to_abort->indicator, io_to_abort->reqtag);
return -ENOENT;
}
/* Must have a valid WQ reference */
if (!io_to_abort->wq) {
efc_log_debug(hw->os, "io_to_abort xri=0x%x not active on WQ\n",
io_to_abort->indicator);
/* efct_ref_get(): same function */
kref_put(&io_to_abort->ref, io_to_abort->release);
return -ENOENT;
}
/*
* Validation checks complete; now check to see if already being
* aborted, if not set the flag.
*/
if (cmpxchg(&io_to_abort->abort_in_progress, false, true)) {
/* efct_ref_get(): same function */
kref_put(&io_to_abort->ref, io_to_abort->release);
efc_log_debug(hw->os,
"io already being aborted xri=0x%x tag=0x%x\n",
io_to_abort->indicator, io_to_abort->reqtag);
return -EINPROGRESS;
}
/*
* If we got here, the possibilities are:
* - host owned xri
* - io_to_abort->wq_index != U32_MAX
* - submit ABORT_WQE to same WQ
* - port owned xri:
* - rxri: io_to_abort->wq_index == U32_MAX
* - submit ABORT_WQE to any WQ
* - non-rxri
* - io_to_abort->index != U32_MAX
* - submit ABORT_WQE to same WQ
* - io_to_abort->index == U32_MAX
* - submit ABORT_WQE to any WQ
*/
io_to_abort->abort_done = cb;
io_to_abort->abort_arg = arg;
/* Allocate a request tag for the abort portion of this IO */
wqcb = efct_hw_reqtag_alloc(hw, efct_hw_wq_process_abort, io_to_abort);
if (!wqcb) {
efc_log_err(hw->os, "can't allocate request tag\n");
return -ENOSPC;
}
io_to_abort->abort_reqtag = wqcb->instance_index;
io_to_abort->wqe.send_abts = send_abts;
io_to_abort->wqe.id = io_to_abort->indicator;
io_to_abort->wqe.abort_reqtag = io_to_abort->abort_reqtag;
/*
* If the wqe is on the pending list, then set this wqe to be
* aborted when the IO's wqe is removed from the list.
*/
if (io_to_abort->wq) {
spin_lock_irqsave(&io_to_abort->wq->queue->lock, flags);
if (io_to_abort->wqe.list_entry.next) {
io_to_abort->wqe.abort_wqe_submit_needed = true;
spin_unlock_irqrestore(&io_to_abort->wq->queue->lock,
flags);
return 0;
}
spin_unlock_irqrestore(&io_to_abort->wq->queue->lock, flags);
}
efct_hw_fill_abort_wqe(hw, &io_to_abort->wqe);
/* ABORT_WQE does not actually utilize an XRI on the Port,
* therefore, keep xbusy as-is to track the exchange's state,
* not the ABORT_WQE's state
*/
if (efct_hw_wq_write(io_to_abort->wq, &io_to_abort->wqe)) {
io_to_abort->abort_in_progress = false;
/* efct_ref_get(): same function */
kref_put(&io_to_abort->ref, io_to_abort->release);
return -EIO;
}
return 0;
}
void
efct_hw_reqtag_pool_free(struct efct_hw *hw)
{
u32 i;
struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool;
struct hw_wq_callback *wqcb = NULL;
if (reqtag_pool) {
for (i = 0; i < U16_MAX; i++) {
wqcb = reqtag_pool->tags[i];
if (!wqcb)
continue;
kfree(wqcb);
}
kfree(reqtag_pool);
hw->wq_reqtag_pool = NULL;
}
}
struct reqtag_pool *
efct_hw_reqtag_pool_alloc(struct efct_hw *hw)
{
u32 i = 0;
struct reqtag_pool *reqtag_pool;
struct hw_wq_callback *wqcb;
reqtag_pool = kzalloc(sizeof(*reqtag_pool), GFP_KERNEL);
if (!reqtag_pool)
return NULL;
INIT_LIST_HEAD(&reqtag_pool->freelist);
/* initialize reqtag pool lock */
spin_lock_init(&reqtag_pool->lock);
for (i = 0; i < U16_MAX; i++) {
wqcb = kmalloc(sizeof(*wqcb), GFP_KERNEL);
if (!wqcb)
break;
reqtag_pool->tags[i] = wqcb;
wqcb->instance_index = i;
wqcb->callback = NULL;
wqcb->arg = NULL;
INIT_LIST_HEAD(&wqcb->list_entry);
list_add_tail(&wqcb->list_entry, &reqtag_pool->freelist);
}
return reqtag_pool;
}
struct hw_wq_callback *
efct_hw_reqtag_alloc(struct efct_hw *hw,
void (*callback)(void *arg, u8 *cqe, int status),
void *arg)
{
struct hw_wq_callback *wqcb = NULL;
struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool;
unsigned long flags = 0;
if (!callback)
return wqcb;
spin_lock_irqsave(&reqtag_pool->lock, flags);
if (!list_empty(&reqtag_pool->freelist)) {
wqcb = list_first_entry(&reqtag_pool->freelist,
struct hw_wq_callback, list_entry);
}
if (wqcb) {
list_del_init(&wqcb->list_entry);
spin_unlock_irqrestore(&reqtag_pool->lock, flags);
wqcb->callback = callback;
wqcb->arg = arg;
} else {
spin_unlock_irqrestore(&reqtag_pool->lock, flags);
}
return wqcb;
}
void
efct_hw_reqtag_free(struct efct_hw *hw, struct hw_wq_callback *wqcb)
{
unsigned long flags = 0;
struct reqtag_pool *reqtag_pool = hw->wq_reqtag_pool;
if (!wqcb->callback)
efc_log_err(hw->os, "WQCB is already freed\n");
spin_lock_irqsave(&reqtag_pool->lock, flags);
wqcb->callback = NULL;
wqcb->arg = NULL;
INIT_LIST_HEAD(&wqcb->list_entry);
list_add(&wqcb->list_entry, &hw->wq_reqtag_pool->freelist);
spin_unlock_irqrestore(&reqtag_pool->lock, flags);
}
struct hw_wq_callback *
efct_hw_reqtag_get_instance(struct efct_hw *hw, u32 instance_index)
{
struct hw_wq_callback *wqcb;
wqcb = hw->wq_reqtag_pool->tags[instance_index];
if (!wqcb)
efc_log_err(hw->os, "wqcb for instance %d is null\n",
instance_index);
return wqcb;
}
int
efct_hw_queue_hash_find(struct efct_queue_hash *hash, u16 id)
{
int index = -1;
int i = id & (EFCT_HW_Q_HASH_SIZE - 1);
/*
* Since the hash is always bigger than the maximum number of Qs, then
* we never have to worry about an infinite loop. We will always find
* an unused entry.
*/
do {
if (hash[i].in_use && hash[i].id == id)
index = hash[i].index;
else
i = (i + 1) & (EFCT_HW_Q_HASH_SIZE - 1);
} while (index == -1 && hash[i].in_use);
return index;
}
int
efct_hw_process(struct efct_hw *hw, u32 vector,
u32 max_isr_time_msec)
{
struct hw_eq *eq;
/*
* The caller should disable interrupts if they wish to prevent us
* from processing during a shutdown. The following states are defined:
* EFCT_HW_STATE_UNINITIALIZED - No queues allocated
* EFCT_HW_STATE_QUEUES_ALLOCATED - The state after a chip reset,
* queues are cleared.
* EFCT_HW_STATE_ACTIVE - Chip and queues are operational
* EFCT_HW_STATE_RESET_IN_PROGRESS - reset, we still want completions
* EFCT_HW_STATE_TEARDOWN_IN_PROGRESS - We still want mailbox
* completions.
*/
if (hw->state == EFCT_HW_STATE_UNINITIALIZED)
return 0;
/* Get pointer to struct hw_eq */
eq = hw->hw_eq[vector];
if (!eq)
return 0;
eq->use_count++;
return efct_hw_eq_process(hw, eq, max_isr_time_msec);
}
int
efct_hw_eq_process(struct efct_hw *hw, struct hw_eq *eq,
u32 max_isr_time_msec)
{
u8 eqe[sizeof(struct sli4_eqe)] = { 0 };
u32 tcheck_count;
u64 tstart;
u64 telapsed;
bool done = false;
tcheck_count = EFCT_HW_TIMECHECK_ITERATIONS;
tstart = jiffies_to_msecs(jiffies);
while (!done && !sli_eq_read(&hw->sli, eq->queue, eqe)) {
u16 cq_id = 0;
int rc;
rc = sli_eq_parse(&hw->sli, eqe, &cq_id);
if (unlikely(rc)) {
if (rc == SLI4_EQE_STATUS_EQ_FULL) {
u32 i;
/*
* Received a sentinel EQE indicating the
* EQ is full. Process all CQs
*/
for (i = 0; i < hw->cq_count; i++)
efct_hw_cq_process(hw, hw->hw_cq[i]);
continue;
} else {
return rc;
}
} else {
int index;
index = efct_hw_queue_hash_find(hw->cq_hash, cq_id);
if (likely(index >= 0))
efct_hw_cq_process(hw, hw->hw_cq[index]);
else
efc_log_err(hw->os, "bad CQ_ID %#06x\n", cq_id);
}
if (eq->queue->n_posted > eq->queue->posted_limit)
sli_queue_arm(&hw->sli, eq->queue, false);
if (tcheck_count && (--tcheck_count == 0)) {
tcheck_count = EFCT_HW_TIMECHECK_ITERATIONS;
telapsed = jiffies_to_msecs(jiffies) - tstart;
if (telapsed >= max_isr_time_msec)
done = true;
}
}
sli_queue_eq_arm(&hw->sli, eq->queue, true);
return 0;
}
static int
_efct_hw_wq_write(struct hw_wq *wq, struct efct_hw_wqe *wqe)
{
int queue_rc;
/* Every so often, set the wqec bit to generate comsummed completions */
if (wq->wqec_count)
wq->wqec_count--;
if (wq->wqec_count == 0) {
struct sli4_generic_wqe *genwqe = (void *)wqe->wqebuf;
genwqe->cmdtype_wqec_byte |= SLI4_GEN_WQE_WQEC;
wq->wqec_count = wq->wqec_set_count;
}
/* Decrement WQ free count */
wq->free_count--;
queue_rc = sli_wq_write(&wq->hw->sli, wq->queue, wqe->wqebuf);
return (queue_rc < 0) ? -EIO : 0;
}
static void
hw_wq_submit_pending(struct hw_wq *wq, u32 update_free_count)
{
struct efct_hw_wqe *wqe;
unsigned long flags = 0;
spin_lock_irqsave(&wq->queue->lock, flags);
/* Update free count with value passed in */
wq->free_count += update_free_count;
while ((wq->free_count > 0) && (!list_empty(&wq->pending_list))) {
wqe = list_first_entry(&wq->pending_list,
struct efct_hw_wqe, list_entry);
list_del_init(&wqe->list_entry);
_efct_hw_wq_write(wq, wqe);
if (wqe->abort_wqe_submit_needed) {
wqe->abort_wqe_submit_needed = false;
efct_hw_fill_abort_wqe(wq->hw, wqe);
INIT_LIST_HEAD(&wqe->list_entry);
list_add_tail(&wqe->list_entry, &wq->pending_list);
wq->wq_pending_count++;
}
}
spin_unlock_irqrestore(&wq->queue->lock, flags);
}
void
efct_hw_cq_process(struct efct_hw *hw, struct hw_cq *cq)
{
u8 cqe[sizeof(struct sli4_mcqe)];
u16 rid = U16_MAX;
/* completion type */
enum sli4_qentry ctype;
u32 n_processed = 0;
u32 tstart, telapsed;
tstart = jiffies_to_msecs(jiffies);
while (!sli_cq_read(&hw->sli, cq->queue, cqe)) {
int status;
status = sli_cq_parse(&hw->sli, cq->queue, cqe, &ctype, &rid);
/*
* The sign of status is significant. If status is:
* == 0 : call completed correctly and
* the CQE indicated success
* > 0 : call completed correctly and
* the CQE indicated an error
* < 0 : call failed and no information is available about the
* CQE
*/
if (status < 0) {
if (status == SLI4_MCQE_STATUS_NOT_COMPLETED)
/*
* Notification that an entry was consumed,
* but not completed
*/
continue;
break;
}
switch (ctype) {
case SLI4_QENTRY_ASYNC:
sli_cqe_async(&hw->sli, cqe);
break;
case SLI4_QENTRY_MQ:
/*
* Process MQ entry. Note there is no way to determine
* the MQ_ID from the completion entry.
*/
efct_hw_mq_process(hw, status, hw->mq);
break;
case SLI4_QENTRY_WQ:
efct_hw_wq_process(hw, cq, cqe, status, rid);
break;
case SLI4_QENTRY_WQ_RELEASE: {
u32 wq_id = rid;
int index;
struct hw_wq *wq = NULL;
index = efct_hw_queue_hash_find(hw->wq_hash, wq_id);
if (likely(index >= 0)) {
wq = hw->hw_wq[index];
} else {
efc_log_err(hw->os, "bad WQ_ID %#06x\n", wq_id);
break;
}
/* Submit any HW IOs that are on the WQ pending list */
hw_wq_submit_pending(wq, wq->wqec_set_count);
break;
}
case SLI4_QENTRY_RQ:
efct_hw_rqpair_process_rq(hw, cq, cqe);
break;
case SLI4_QENTRY_XABT: {
efct_hw_xabt_process(hw, cq, cqe, rid);
break;
}
default:
efc_log_debug(hw->os, "unhandled ctype=%#x rid=%#x\n",
ctype, rid);
break;
}
n_processed++;
if (n_processed == cq->queue->proc_limit)
break;
if (cq->queue->n_posted >= cq->queue->posted_limit)
sli_queue_arm(&hw->sli, cq->queue, false);
}
sli_queue_arm(&hw->sli, cq->queue, true);
if (n_processed > cq->queue->max_num_processed)
cq->queue->max_num_processed = n_processed;
telapsed = jiffies_to_msecs(jiffies) - tstart;
if (telapsed > cq->queue->max_process_time)
cq->queue->max_process_time = telapsed;
}
void
efct_hw_wq_process(struct efct_hw *hw, struct hw_cq *cq,
u8 *cqe, int status, u16 rid)
{
struct hw_wq_callback *wqcb;
if (rid == EFCT_HW_REQUE_XRI_REGTAG) {
if (status)
efc_log_err(hw->os, "reque xri failed, status = %d\n",
status);
return;
}
wqcb = efct_hw_reqtag_get_instance(hw, rid);
if (!wqcb) {
efc_log_err(hw->os, "invalid request tag: x%x\n", rid);
return;
}
if (!wqcb->callback) {
efc_log_err(hw->os, "wqcb callback is NULL\n");
return;
}
(*wqcb->callback)(wqcb->arg, cqe, status);
}
void
efct_hw_xabt_process(struct efct_hw *hw, struct hw_cq *cq,
u8 *cqe, u16 rid)
{
/* search IOs wait free list */
struct efct_hw_io *io = NULL;
unsigned long flags = 0;
io = efct_hw_io_lookup(hw, rid);
if (!io) {
/* IO lookup failure should never happen */
efc_log_err(hw->os, "xabt io lookup failed rid=%#x\n", rid);
return;
}
if (!io->xbusy)
efc_log_debug(hw->os, "xabt io not busy rid=%#x\n", rid);
else
/* mark IO as no longer busy */
io->xbusy = false;
/*
* For IOs that were aborted internally, we need to issue any pending
* callback here.
*/
if (io->done) {
efct_hw_done_t done = io->done;
void *arg = io->arg;
/*
* Use latched status as this is always saved for an internal
* abort
*/
int status = io->saved_status;
u32 len = io->saved_len;
u32 ext = io->saved_ext;
io->done = NULL;
io->status_saved = false;
done(io, len, status, ext, arg);
}
spin_lock_irqsave(&hw->io_lock, flags);
if (io->state == EFCT_HW_IO_STATE_INUSE ||
io->state == EFCT_HW_IO_STATE_WAIT_FREE) {
/* if on wait_free list, caller has already freed IO;
* remove from wait_free list and add to free list.
* if on in-use list, already marked as no longer busy;
* just leave there and wait for caller to free.
*/
if (io->state == EFCT_HW_IO_STATE_WAIT_FREE) {
io->state = EFCT_HW_IO_STATE_FREE;
list_del_init(&io->list_entry);
efct_hw_io_free_move_correct_list(hw, io);
}
}
spin_unlock_irqrestore(&hw->io_lock, flags);
}
static int
efct_hw_flush(struct efct_hw *hw)
{
u32 i = 0;
/* Process any remaining completions */
for (i = 0; i < hw->eq_count; i++)
efct_hw_process(hw, i, ~0);
return 0;
}
int
efct_hw_wq_write(struct hw_wq *wq, struct efct_hw_wqe *wqe)
{
int rc = 0;
unsigned long flags = 0;
spin_lock_irqsave(&wq->queue->lock, flags);
if (list_empty(&wq->pending_list)) {
if (wq->free_count > 0) {
rc = _efct_hw_wq_write(wq, wqe);
} else {
INIT_LIST_HEAD(&wqe->list_entry);
list_add_tail(&wqe->list_entry, &wq->pending_list);
wq->wq_pending_count++;
}
spin_unlock_irqrestore(&wq->queue->lock, flags);
return rc;
}
INIT_LIST_HEAD(&wqe->list_entry);
list_add_tail(&wqe->list_entry, &wq->pending_list);
wq->wq_pending_count++;
while (wq->free_count > 0) {
wqe = list_first_entry(&wq->pending_list, struct efct_hw_wqe,
list_entry);
if (!wqe)
break;
list_del_init(&wqe->list_entry);
rc = _efct_hw_wq_write(wq, wqe);
if (rc)
break;
if (wqe->abort_wqe_submit_needed) {
wqe->abort_wqe_submit_needed = false;
efct_hw_fill_abort_wqe(wq->hw, wqe);
INIT_LIST_HEAD(&wqe->list_entry);
list_add_tail(&wqe->list_entry, &wq->pending_list);
wq->wq_pending_count++;
}
}
spin_unlock_irqrestore(&wq->queue->lock, flags);
return rc;
}
int
efct_efc_bls_send(struct efc *efc, u32 type, struct sli_bls_params *bls)
{
struct efct *efct = efc->base;
return efct_hw_bls_send(efct, type, bls, NULL, NULL);
}
int
efct_hw_bls_send(struct efct *efct, u32 type, struct sli_bls_params *bls_params,
void *cb, void *arg)
{
struct efct_hw *hw = &efct->hw;
struct efct_hw_io *hio;
struct sli_bls_payload bls;
int rc;
if (hw->state != EFCT_HW_STATE_ACTIVE) {
efc_log_err(hw->os,
"cannot send BLS, HW state=%d\n", hw->state);
return -EIO;
}
hio = efct_hw_io_alloc(hw);
if (!hio) {
efc_log_err(hw->os, "HIO allocation failed\n");
return -EIO;
}
hio->done = cb;
hio->arg = arg;
bls_params->xri = hio->indicator;
bls_params->tag = hio->reqtag;
if (type == FC_RCTL_BA_ACC) {
hio->type = EFCT_HW_BLS_ACC;
bls.type = SLI4_SLI_BLS_ACC;
memcpy(&bls.u.acc, bls_params->payload, sizeof(bls.u.acc));
} else {
hio->type = EFCT_HW_BLS_RJT;
bls.type = SLI4_SLI_BLS_RJT;
memcpy(&bls.u.rjt, bls_params->payload, sizeof(bls.u.rjt));
}
bls.ox_id = cpu_to_le16(bls_params->ox_id);
bls.rx_id = cpu_to_le16(bls_params->rx_id);
if (sli_xmit_bls_rsp64_wqe(&hw->sli, hio->wqe.wqebuf,
&bls, bls_params)) {
efc_log_err(hw->os, "XMIT_BLS_RSP64 WQE error\n");
return -EIO;
}
hio->xbusy = true;
/*
* Add IO to active io wqe list before submitting, in case the
* wcqe processing preempts this thread.
*/
hio->wq->use_count++;
rc = efct_hw_wq_write(hio->wq, &hio->wqe);
if (rc >= 0) {
/* non-negative return is success */
rc = 0;
} else {
/* failed to write wqe, remove from active wqe list */
efc_log_err(hw->os,
"sli_queue_write failed: %d\n", rc);
hio->xbusy = false;
}
return rc;
}
static int
efct_els_ssrs_send_cb(struct efct_hw_io *hio, u32 length, int status,
u32 ext_status, void *arg)
{
struct efc_disc_io *io = arg;
efc_disc_io_complete(io, length, status, ext_status);
return 0;
}
static inline void
efct_fill_els_params(struct efc_disc_io *io, struct sli_els_params *params)
{
u8 *cmd = io->req.virt;
params->cmd = *cmd;
params->s_id = io->s_id;
params->d_id = io->d_id;
params->ox_id = io->iparam.els.ox_id;
params->rpi = io->rpi;
params->vpi = io->vpi;
params->rpi_registered = io->rpi_registered;
params->xmit_len = io->xmit_len;
params->rsp_len = io->rsp_len;
params->timeout = io->iparam.els.timeout;
}
static inline void
efct_fill_ct_params(struct efc_disc_io *io, struct sli_ct_params *params)
{
params->r_ctl = io->iparam.ct.r_ctl;
params->type = io->iparam.ct.type;
params->df_ctl = io->iparam.ct.df_ctl;
params->d_id = io->d_id;
params->ox_id = io->iparam.ct.ox_id;
params->rpi = io->rpi;
params->vpi = io->vpi;
params->rpi_registered = io->rpi_registered;
params->xmit_len = io->xmit_len;
params->rsp_len = io->rsp_len;
params->timeout = io->iparam.ct.timeout;
}
/**
* efct_els_hw_srrs_send() - Send a single request and response cmd.
* @efc: efc library structure
* @io: Discovery IO used to hold els and ct cmd context.
*
* This routine supports communication sequences consisting of a single
* request and single response between two endpoints. Examples include:
* - Sending an ELS request.
* - Sending an ELS response - To send an ELS response, the caller must provide
* the OX_ID from the received request.
* - Sending a FC Common Transport (FC-CT) request - To send a FC-CT request,
* the caller must provide the R_CTL, TYPE, and DF_CTL
* values to place in the FC frame header.
*
* Return: Status of the request.
*/
int
efct_els_hw_srrs_send(struct efc *efc, struct efc_disc_io *io)
{
struct efct *efct = efc->base;
struct efct_hw_io *hio;
struct efct_hw *hw = &efct->hw;
struct efc_dma *send = &io->req;
struct efc_dma *receive = &io->rsp;
struct sli4_sge *sge = NULL;
int rc = 0;
u32 len = io->xmit_len;
u32 sge0_flags;
u32 sge1_flags;
hio = efct_hw_io_alloc(hw);
if (!hio) {
pr_err("HIO alloc failed\n");
return -EIO;
}
if (hw->state != EFCT_HW_STATE_ACTIVE) {
efc_log_debug(hw->os,
"cannot send SRRS, HW state=%d\n", hw->state);
return -EIO;
}
hio->done = efct_els_ssrs_send_cb;
hio->arg = io;
sge = hio->sgl->virt;
/* clear both SGE */
memset(hio->sgl->virt, 0, 2 * sizeof(struct sli4_sge));
sge0_flags = le32_to_cpu(sge[0].dw2_flags);
sge1_flags = le32_to_cpu(sge[1].dw2_flags);
if (send->size) {
sge[0].buffer_address_high =
cpu_to_le32(upper_32_bits(send->phys));
sge[0].buffer_address_low =
cpu_to_le32(lower_32_bits(send->phys));
sge0_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT);
sge[0].buffer_length = cpu_to_le32(len);
}
if (io->io_type == EFC_DISC_IO_ELS_REQ ||
io->io_type == EFC_DISC_IO_CT_REQ) {
sge[1].buffer_address_high =
cpu_to_le32(upper_32_bits(receive->phys));
sge[1].buffer_address_low =
cpu_to_le32(lower_32_bits(receive->phys));
sge1_flags |= (SLI4_SGE_TYPE_DATA << SLI4_SGE_TYPE_SHIFT);
sge1_flags |= SLI4_SGE_LAST;
sge[1].buffer_length = cpu_to_le32(receive->size);
} else {
sge0_flags |= SLI4_SGE_LAST;
}
sge[0].dw2_flags = cpu_to_le32(sge0_flags);
sge[1].dw2_flags = cpu_to_le32(sge1_flags);
switch (io->io_type) {
case EFC_DISC_IO_ELS_REQ: {
struct sli_els_params els_params;
hio->type = EFCT_HW_ELS_REQ;
efct_fill_els_params(io, &els_params);
els_params.xri = hio->indicator;
els_params.tag = hio->reqtag;
if (sli_els_request64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl,
&els_params)) {
efc_log_err(hw->os, "REQ WQE error\n");
rc = -EIO;
}
break;
}
case EFC_DISC_IO_ELS_RESP: {
struct sli_els_params els_params;
hio->type = EFCT_HW_ELS_RSP;
efct_fill_els_params(io, &els_params);
els_params.xri = hio->indicator;
els_params.tag = hio->reqtag;
if (sli_xmit_els_rsp64_wqe(&hw->sli, hio->wqe.wqebuf, send,
&els_params)){
efc_log_err(hw->os, "RSP WQE error\n");
rc = -EIO;
}
break;
}
case EFC_DISC_IO_CT_REQ: {
struct sli_ct_params ct_params;
hio->type = EFCT_HW_FC_CT;
efct_fill_ct_params(io, &ct_params);
ct_params.xri = hio->indicator;
ct_params.tag = hio->reqtag;
if (sli_gen_request64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl,
&ct_params)){
efc_log_err(hw->os, "GEN WQE error\n");
rc = -EIO;
}
break;
}
case EFC_DISC_IO_CT_RESP: {
struct sli_ct_params ct_params;
hio->type = EFCT_HW_FC_CT_RSP;
efct_fill_ct_params(io, &ct_params);
ct_params.xri = hio->indicator;
ct_params.tag = hio->reqtag;
if (sli_xmit_sequence64_wqe(&hw->sli, hio->wqe.wqebuf, hio->sgl,
&ct_params)){
efc_log_err(hw->os, "XMIT SEQ WQE error\n");
rc = -EIO;
}
break;
}
default:
efc_log_err(hw->os, "bad SRRS type %#x\n", io->io_type);
rc = -EIO;
}
if (rc == 0) {
hio->xbusy = true;
/*
* Add IO to active io wqe list before submitting, in case the
* wcqe processing preempts this thread.
*/
hio->wq->use_count++;
rc = efct_hw_wq_write(hio->wq, &hio->wqe);
if (rc >= 0) {
/* non-negative return is success */
rc = 0;
} else {
/* failed to write wqe, remove from active wqe list */
efc_log_err(hw->os,
"sli_queue_write failed: %d\n", rc);
hio->xbusy = false;
}
}
return rc;
}
int
efct_hw_io_send(struct efct_hw *hw, enum efct_hw_io_type type,
struct efct_hw_io *io, union efct_hw_io_param_u *iparam,
void *cb, void *arg)
{
int rc = 0;
bool send_wqe = true;
if (!io) {
pr_err("bad parm hw=%p io=%p\n", hw, io);
return -EIO;
}
if (hw->state != EFCT_HW_STATE_ACTIVE) {
efc_log_err(hw->os, "cannot send IO, HW state=%d\n", hw->state);
return -EIO;
}
/*
* Save state needed during later stages
*/
io->type = type;
io->done = cb;
io->arg = arg;
/*
* Format the work queue entry used to send the IO
*/
switch (type) {
case EFCT_HW_IO_TARGET_WRITE: {
u16 *flags = &iparam->fcp_tgt.flags;
struct fcp_txrdy *xfer = io->xfer_rdy.virt;
/*
* Fill in the XFER_RDY for IF_TYPE 0 devices
*/
xfer->ft_data_ro = cpu_to_be32(iparam->fcp_tgt.offset);
xfer->ft_burst_len = cpu_to_be32(iparam->fcp_tgt.xmit_len);
if (io->xbusy)
*flags |= SLI4_IO_CONTINUATION;
else
*flags &= ~SLI4_IO_CONTINUATION;
iparam->fcp_tgt.xri = io->indicator;
iparam->fcp_tgt.tag = io->reqtag;
if (sli_fcp_treceive64_wqe(&hw->sli, io->wqe.wqebuf,
&io->def_sgl, io->first_data_sge,
SLI4_CQ_DEFAULT,
0, 0, &iparam->fcp_tgt)) {
efc_log_err(hw->os, "TRECEIVE WQE error\n");
rc = -EIO;
}
break;
}
case EFCT_HW_IO_TARGET_READ: {
u16 *flags = &iparam->fcp_tgt.flags;
if (io->xbusy)
*flags |= SLI4_IO_CONTINUATION;
else
*flags &= ~SLI4_IO_CONTINUATION;
iparam->fcp_tgt.xri = io->indicator;
iparam->fcp_tgt.tag = io->reqtag;
if (sli_fcp_tsend64_wqe(&hw->sli, io->wqe.wqebuf,
&io->def_sgl, io->first_data_sge,
SLI4_CQ_DEFAULT,
0, 0, &iparam->fcp_tgt)) {
efc_log_err(hw->os, "TSEND WQE error\n");
rc = -EIO;
}
break;
}
case EFCT_HW_IO_TARGET_RSP: {
u16 *flags = &iparam->fcp_tgt.flags;
if (io->xbusy)
*flags |= SLI4_IO_CONTINUATION;
else
*flags &= ~SLI4_IO_CONTINUATION;
iparam->fcp_tgt.xri = io->indicator;
iparam->fcp_tgt.tag = io->reqtag;
if (sli_fcp_trsp64_wqe(&hw->sli, io->wqe.wqebuf,
&io->def_sgl, SLI4_CQ_DEFAULT,
0, &iparam->fcp_tgt)) {
efc_log_err(hw->os, "TRSP WQE error\n");
rc = -EIO;
}
break;
}
default:
efc_log_err(hw->os, "unsupported IO type %#x\n", type);
rc = -EIO;
}
if (send_wqe && rc == 0) {
io->xbusy = true;
/*
* Add IO to active io wqe list before submitting, in case the
* wcqe processing preempts this thread.
*/
hw->tcmd_wq_submit[io->wq->instance]++;
io->wq->use_count++;
rc = efct_hw_wq_write(io->wq, &io->wqe);
if (rc >= 0) {
/* non-negative return is success */
rc = 0;
} else {
/* failed to write wqe, remove from active wqe list */
efc_log_err(hw->os,
"sli_queue_write failed: %d\n", rc);
io->xbusy = false;
}
}
return rc;
}
int
efct_hw_send_frame(struct efct_hw *hw, struct fc_frame_header *hdr,
u8 sof, u8 eof, struct efc_dma *payload,
struct efct_hw_send_frame_context *ctx,
void (*callback)(void *arg, u8 *cqe, int status),
void *arg)
{
int rc;
struct efct_hw_wqe *wqe;
u32 xri;
struct hw_wq *wq;
wqe = &ctx->wqe;
/* populate the callback object */
ctx->hw = hw;
/* Fetch and populate request tag */
ctx->wqcb = efct_hw_reqtag_alloc(hw, callback, arg);
if (!ctx->wqcb) {
efc_log_err(hw->os, "can't allocate request tag\n");
return -ENOSPC;
}
wq = hw->hw_wq[0];
/* Set XRI and RX_ID in the header based on which WQ, and which
* send_frame_io we are using
*/
xri = wq->send_frame_io->indicator;
/* Build the send frame WQE */
rc = sli_send_frame_wqe(&hw->sli, wqe->wqebuf,
sof, eof, (u32 *)hdr, payload, payload->len,
EFCT_HW_SEND_FRAME_TIMEOUT, xri,
ctx->wqcb->instance_index);
if (rc) {
efc_log_err(hw->os, "sli_send_frame_wqe failed: %d\n", rc);
return -EIO;
}
/* Write to WQ */
rc = efct_hw_wq_write(wq, wqe);
if (rc) {
efc_log_err(hw->os, "efct_hw_wq_write failed: %d\n", rc);
return -EIO;
}
wq->use_count++;
return 0;
}
static int
efct_hw_cb_link_stat(struct efct_hw *hw, int status,
u8 *mqe, void *arg)
{
struct sli4_cmd_read_link_stats *mbox_rsp;
struct efct_hw_link_stat_cb_arg *cb_arg = arg;
struct efct_hw_link_stat_counts counts[EFCT_HW_LINK_STAT_MAX];
u32 num_counters, i;
u32 mbox_rsp_flags = 0;
mbox_rsp = (struct sli4_cmd_read_link_stats *)mqe;
mbox_rsp_flags = le32_to_cpu(mbox_rsp->dw1_flags);
num_counters = (mbox_rsp_flags & SLI4_READ_LNKSTAT_GEC) ? 20 : 13;
memset(counts, 0, sizeof(struct efct_hw_link_stat_counts) *
EFCT_HW_LINK_STAT_MAX);
/* Fill overflow counts, mask starts from SLI4_READ_LNKSTAT_W02OF*/
for (i = 0; i < EFCT_HW_LINK_STAT_MAX; i++)
counts[i].overflow = (mbox_rsp_flags & (1 << (i + 2)));
counts[EFCT_HW_LINK_STAT_LINK_FAILURE_COUNT].counter =
le32_to_cpu(mbox_rsp->linkfail_errcnt);
counts[EFCT_HW_LINK_STAT_LOSS_OF_SYNC_COUNT].counter =
le32_to_cpu(mbox_rsp->losssync_errcnt);
counts[EFCT_HW_LINK_STAT_LOSS_OF_SIGNAL_COUNT].counter =
le32_to_cpu(mbox_rsp->losssignal_errcnt);
counts[EFCT_HW_LINK_STAT_PRIMITIVE_SEQ_COUNT].counter =
le32_to_cpu(mbox_rsp->primseq_errcnt);
counts[EFCT_HW_LINK_STAT_INVALID_XMIT_WORD_COUNT].counter =
le32_to_cpu(mbox_rsp->inval_txword_errcnt);
counts[EFCT_HW_LINK_STAT_CRC_COUNT].counter =
le32_to_cpu(mbox_rsp->crc_errcnt);
counts[EFCT_HW_LINK_STAT_PRIMITIVE_SEQ_TIMEOUT_COUNT].counter =
le32_to_cpu(mbox_rsp->primseq_eventtimeout_cnt);
counts[EFCT_HW_LINK_STAT_ELASTIC_BUFFER_OVERRUN_COUNT].counter =
le32_to_cpu(mbox_rsp->elastic_bufoverrun_errcnt);
counts[EFCT_HW_LINK_STAT_ARB_TIMEOUT_COUNT].counter =
le32_to_cpu(mbox_rsp->arbit_fc_al_timeout_cnt);
counts[EFCT_HW_LINK_STAT_ADVERTISED_RCV_B2B_CREDIT].counter =
le32_to_cpu(mbox_rsp->adv_rx_buftor_to_buf_credit);
counts[EFCT_HW_LINK_STAT_CURR_RCV_B2B_CREDIT].counter =
le32_to_cpu(mbox_rsp->curr_rx_buf_to_buf_credit);
counts[EFCT_HW_LINK_STAT_ADVERTISED_XMIT_B2B_CREDIT].counter =
le32_to_cpu(mbox_rsp->adv_tx_buf_to_buf_credit);
counts[EFCT_HW_LINK_STAT_CURR_XMIT_B2B_CREDIT].counter =
le32_to_cpu(mbox_rsp->curr_tx_buf_to_buf_credit);
counts[EFCT_HW_LINK_STAT_RCV_EOFA_COUNT].counter =
le32_to_cpu(mbox_rsp->rx_eofa_cnt);
counts[EFCT_HW_LINK_STAT_RCV_EOFDTI_COUNT].counter =
le32_to_cpu(mbox_rsp->rx_eofdti_cnt);
counts[EFCT_HW_LINK_STAT_RCV_EOFNI_COUNT].counter =
le32_to_cpu(mbox_rsp->rx_eofni_cnt);
counts[EFCT_HW_LINK_STAT_RCV_SOFF_COUNT].counter =
le32_to_cpu(mbox_rsp->rx_soff_cnt);
counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_AER_COUNT].counter =
le32_to_cpu(mbox_rsp->rx_dropped_no_aer_cnt);
counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_RPI_COUNT].counter =
le32_to_cpu(mbox_rsp->rx_dropped_no_avail_rpi_rescnt);
counts[EFCT_HW_LINK_STAT_RCV_DROPPED_NO_XRI_COUNT].counter =
le32_to_cpu(mbox_rsp->rx_dropped_no_avail_xri_rescnt);
if (cb_arg) {
if (cb_arg->cb) {
if (status == 0 && le16_to_cpu(mbox_rsp->hdr.status))
status = le16_to_cpu(mbox_rsp->hdr.status);
cb_arg->cb(status, num_counters, counts, cb_arg->arg);
}
kfree(cb_arg);
}
return 0;
}
int
efct_hw_get_link_stats(struct efct_hw *hw, u8 req_ext_counters,
u8 clear_overflow_flags, u8 clear_all_counters,
void (*cb)(int status, u32 num_counters,
struct efct_hw_link_stat_counts *counters,
void *arg),
void *arg)
{
int rc = -EIO;
struct efct_hw_link_stat_cb_arg *cb_arg;
u8 mbxdata[SLI4_BMBX_SIZE];
cb_arg = kzalloc(sizeof(*cb_arg), GFP_ATOMIC);
if (!cb_arg)
return -ENOMEM;
cb_arg->cb = cb;
cb_arg->arg = arg;
/* Send the HW command */
if (!sli_cmd_read_link_stats(&hw->sli, mbxdata, req_ext_counters,
clear_overflow_flags, clear_all_counters))
rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT,
efct_hw_cb_link_stat, cb_arg);
if (rc)
kfree(cb_arg);
return rc;
}
static int
efct_hw_cb_host_stat(struct efct_hw *hw, int status, u8 *mqe, void *arg)
{
struct sli4_cmd_read_status *mbox_rsp =
(struct sli4_cmd_read_status *)mqe;
struct efct_hw_host_stat_cb_arg *cb_arg = arg;
struct efct_hw_host_stat_counts counts[EFCT_HW_HOST_STAT_MAX];
u32 num_counters = EFCT_HW_HOST_STAT_MAX;
memset(counts, 0, sizeof(struct efct_hw_host_stat_counts) *
EFCT_HW_HOST_STAT_MAX);
counts[EFCT_HW_HOST_STAT_TX_KBYTE_COUNT].counter =
le32_to_cpu(mbox_rsp->trans_kbyte_cnt);
counts[EFCT_HW_HOST_STAT_RX_KBYTE_COUNT].counter =
le32_to_cpu(mbox_rsp->recv_kbyte_cnt);
counts[EFCT_HW_HOST_STAT_TX_FRAME_COUNT].counter =
le32_to_cpu(mbox_rsp->trans_frame_cnt);
counts[EFCT_HW_HOST_STAT_RX_FRAME_COUNT].counter =
le32_to_cpu(mbox_rsp->recv_frame_cnt);
counts[EFCT_HW_HOST_STAT_TX_SEQ_COUNT].counter =
le32_to_cpu(mbox_rsp->trans_seq_cnt);
counts[EFCT_HW_HOST_STAT_RX_SEQ_COUNT].counter =
le32_to_cpu(mbox_rsp->recv_seq_cnt);
counts[EFCT_HW_HOST_STAT_TOTAL_EXCH_ORIG].counter =
le32_to_cpu(mbox_rsp->tot_exchanges_orig);
counts[EFCT_HW_HOST_STAT_TOTAL_EXCH_RESP].counter =
le32_to_cpu(mbox_rsp->tot_exchanges_resp);
counts[EFCT_HW_HOSY_STAT_RX_P_BSY_COUNT].counter =
le32_to_cpu(mbox_rsp->recv_p_bsy_cnt);
counts[EFCT_HW_HOST_STAT_RX_F_BSY_COUNT].counter =
le32_to_cpu(mbox_rsp->recv_f_bsy_cnt);
counts[EFCT_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_RQ_BUF_COUNT].counter =
le32_to_cpu(mbox_rsp->no_rq_buf_dropped_frames_cnt);
counts[EFCT_HW_HOST_STAT_EMPTY_RQ_TIMEOUT_COUNT].counter =
le32_to_cpu(mbox_rsp->empty_rq_timeout_cnt);
counts[EFCT_HW_HOST_STAT_DROP_FRM_DUE_TO_NO_XRI_COUNT].counter =
le32_to_cpu(mbox_rsp->no_xri_dropped_frames_cnt);
counts[EFCT_HW_HOST_STAT_EMPTY_XRI_POOL_COUNT].counter =
le32_to_cpu(mbox_rsp->empty_xri_pool_cnt);
if (cb_arg) {
if (cb_arg->cb) {
if (status == 0 && le16_to_cpu(mbox_rsp->hdr.status))
status = le16_to_cpu(mbox_rsp->hdr.status);
cb_arg->cb(status, num_counters, counts, cb_arg->arg);
}
kfree(cb_arg);
}
return 0;
}
int
efct_hw_get_host_stats(struct efct_hw *hw, u8 cc,
void (*cb)(int status, u32 num_counters,
struct efct_hw_host_stat_counts *counters,
void *arg),
void *arg)
{
int rc = -EIO;
struct efct_hw_host_stat_cb_arg *cb_arg;
u8 mbxdata[SLI4_BMBX_SIZE];
cb_arg = kmalloc(sizeof(*cb_arg), GFP_ATOMIC);
if (!cb_arg)
return -ENOMEM;
cb_arg->cb = cb;
cb_arg->arg = arg;
/* Send the HW command to get the host stats */
if (!sli_cmd_read_status(&hw->sli, mbxdata, cc))
rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT,
efct_hw_cb_host_stat, cb_arg);
if (rc) {
efc_log_debug(hw->os, "READ_HOST_STATS failed\n");
kfree(cb_arg);
}
return rc;
}
struct efct_hw_async_call_ctx {
efct_hw_async_cb_t callback;
void *arg;
u8 cmd[SLI4_BMBX_SIZE];
};
static void
efct_hw_async_cb(struct efct_hw *hw, int status, u8 *mqe, void *arg)
{
struct efct_hw_async_call_ctx *ctx = arg;
if (ctx) {
if (ctx->callback)
(*ctx->callback)(hw, status, mqe, ctx->arg);
kfree(ctx);
}
}
int
efct_hw_async_call(struct efct_hw *hw, efct_hw_async_cb_t callback, void *arg)
{
struct efct_hw_async_call_ctx *ctx;
int rc;
/*
* Allocate a callback context (which includes the mbox cmd buffer),
* we need this to be persistent as the mbox cmd submission may be
* queued and executed later execution.
*/
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->callback = callback;
ctx->arg = arg;
/* Build and send a NOP mailbox command */
if (sli_cmd_common_nop(&hw->sli, ctx->cmd, 0)) {
efc_log_err(hw->os, "COMMON_NOP format failure\n");
kfree(ctx);
return -EIO;
}
rc = efct_hw_command(hw, ctx->cmd, EFCT_CMD_NOWAIT, efct_hw_async_cb,
ctx);
if (rc) {
efc_log_err(hw->os, "COMMON_NOP command failure, rc=%d\n", rc);
kfree(ctx);
return -EIO;
}
return 0;
}
static int
efct_hw_cb_fw_write(struct efct_hw *hw, int status, u8 *mqe, void *arg)
{
struct sli4_cmd_sli_config *mbox_rsp =
(struct sli4_cmd_sli_config *)mqe;
struct sli4_rsp_cmn_write_object *wr_obj_rsp;
struct efct_hw_fw_wr_cb_arg *cb_arg = arg;
u32 bytes_written;
u16 mbox_status;
u32 change_status;
wr_obj_rsp = (struct sli4_rsp_cmn_write_object *)
&mbox_rsp->payload.embed;
bytes_written = le32_to_cpu(wr_obj_rsp->actual_write_length);
mbox_status = le16_to_cpu(mbox_rsp->hdr.status);
change_status = (le32_to_cpu(wr_obj_rsp->change_status_dword) &
RSP_CHANGE_STATUS);
if (cb_arg) {
if (cb_arg->cb) {
if (!status && mbox_status)
status = mbox_status;
cb_arg->cb(status, bytes_written, change_status,
cb_arg->arg);
}
kfree(cb_arg);
}
return 0;
}
int
efct_hw_firmware_write(struct efct_hw *hw, struct efc_dma *dma, u32 size,
u32 offset, int last,
void (*cb)(int status, u32 bytes_written,
u32 change_status, void *arg),
void *arg)
{
int rc = -EIO;
u8 mbxdata[SLI4_BMBX_SIZE];
struct efct_hw_fw_wr_cb_arg *cb_arg;
int noc = 0;
cb_arg = kzalloc(sizeof(*cb_arg), GFP_KERNEL);
if (!cb_arg)
return -ENOMEM;
cb_arg->cb = cb;
cb_arg->arg = arg;
/* Write a portion of a firmware image to the device */
if (!sli_cmd_common_write_object(&hw->sli, mbxdata,
noc, last, size, offset, "/prg/",
dma))
rc = efct_hw_command(hw, mbxdata, EFCT_CMD_NOWAIT,
efct_hw_cb_fw_write, cb_arg);
if (rc != 0) {
efc_log_debug(hw->os, "COMMON_WRITE_OBJECT failed\n");
kfree(cb_arg);
}
return rc;
}
static int
efct_hw_cb_port_control(struct efct_hw *hw, int status, u8 *mqe,
void *arg)
{
return 0;
}
int
efct_hw_port_control(struct efct_hw *hw, enum efct_hw_port ctrl,
uintptr_t value,
void (*cb)(int status, uintptr_t value, void *arg),
void *arg)
{
int rc = -EIO;
u8 link[SLI4_BMBX_SIZE];
u32 speed = 0;
u8 reset_alpa = 0;
switch (ctrl) {
case EFCT_HW_PORT_INIT:
if (!sli_cmd_config_link(&hw->sli, link))
rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT,
efct_hw_cb_port_control, NULL);
if (rc != 0) {
efc_log_err(hw->os, "CONFIG_LINK failed\n");
break;
}
speed = hw->config.speed;
reset_alpa = (u8)(value & 0xff);
rc = -EIO;
if (!sli_cmd_init_link(&hw->sli, link, speed, reset_alpa))
rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT,
efct_hw_cb_port_control, NULL);
/* Free buffer on error, since no callback is coming */
if (rc)
efc_log_err(hw->os, "INIT_LINK failed\n");
break;
case EFCT_HW_PORT_SHUTDOWN:
if (!sli_cmd_down_link(&hw->sli, link))
rc = efct_hw_command(hw, link, EFCT_CMD_NOWAIT,
efct_hw_cb_port_control, NULL);
/* Free buffer on error, since no callback is coming */
if (rc)
efc_log_err(hw->os, "DOWN_LINK failed\n");
break;
default:
efc_log_debug(hw->os, "unhandled control %#x\n", ctrl);
break;
}
return rc;
}
void
efct_hw_teardown(struct efct_hw *hw)
{
u32 i = 0;
u32 destroy_queues;
u32 free_memory;
struct efc_dma *dma;
struct efct *efct = hw->os;
destroy_queues = (hw->state == EFCT_HW_STATE_ACTIVE);
free_memory = (hw->state != EFCT_HW_STATE_UNINITIALIZED);
/* Cancel Sliport Healthcheck */
if (hw->sliport_healthcheck) {
hw->sliport_healthcheck = 0;
efct_hw_config_sli_port_health_check(hw, 0, 0);
}
if (hw->state != EFCT_HW_STATE_QUEUES_ALLOCATED) {
hw->state = EFCT_HW_STATE_TEARDOWN_IN_PROGRESS;
efct_hw_flush(hw);
if (list_empty(&hw->cmd_head))
efc_log_debug(hw->os,
"All commands completed on MQ queue\n");
else
efc_log_debug(hw->os,
"Some cmds still pending on MQ queue\n");
/* Cancel any remaining commands */
efct_hw_command_cancel(hw);
} else {
hw->state = EFCT_HW_STATE_TEARDOWN_IN_PROGRESS;
}
dma_free_coherent(&efct->pci->dev,
hw->rnode_mem.size, hw->rnode_mem.virt,
hw->rnode_mem.phys);
memset(&hw->rnode_mem, 0, sizeof(struct efc_dma));
if (hw->io) {
for (i = 0; i < hw->config.n_io; i++) {
if (hw->io[i] && hw->io[i]->sgl &&
hw->io[i]->sgl->virt) {
dma_free_coherent(&efct->pci->dev,
hw->io[i]->sgl->size,
hw->io[i]->sgl->virt,
hw->io[i]->sgl->phys);
}
kfree(hw->io[i]);
hw->io[i] = NULL;
}
kfree(hw->io);
hw->io = NULL;
kfree(hw->wqe_buffs);
hw->wqe_buffs = NULL;
}
dma = &hw->xfer_rdy;
dma_free_coherent(&efct->pci->dev,
dma->size, dma->virt, dma->phys);
memset(dma, 0, sizeof(struct efc_dma));
dma = &hw->loop_map;
dma_free_coherent(&efct->pci->dev,
dma->size, dma->virt, dma->phys);
memset(dma, 0, sizeof(struct efc_dma));
for (i = 0; i < hw->wq_count; i++)
sli_queue_free(&hw->sli, &hw->wq[i], destroy_queues,
free_memory);
for (i = 0; i < hw->rq_count; i++)
sli_queue_free(&hw->sli, &hw->rq[i], destroy_queues,
free_memory);
for (i = 0; i < hw->mq_count; i++)
sli_queue_free(&hw->sli, &hw->mq[i], destroy_queues,
free_memory);
for (i = 0; i < hw->cq_count; i++)
sli_queue_free(&hw->sli, &hw->cq[i], destroy_queues,
free_memory);
for (i = 0; i < hw->eq_count; i++)
sli_queue_free(&hw->sli, &hw->eq[i], destroy_queues,
free_memory);
/* Free rq buffers */
efct_hw_rx_free(hw);
efct_hw_queue_teardown(hw);
kfree(hw->wq_cpu_array);
sli_teardown(&hw->sli);
/* record the fact that the queues are non-functional */
hw->state = EFCT_HW_STATE_UNINITIALIZED;
/* free sequence free pool */
kfree(hw->seq_pool);
hw->seq_pool = NULL;
/* free hw_wq_callback pool */
efct_hw_reqtag_pool_free(hw);
mempool_destroy(hw->cmd_ctx_pool);
mempool_destroy(hw->mbox_rqst_pool);
/* Mark HW setup as not having been called */
hw->hw_setup_called = false;
}
static int
efct_hw_sli_reset(struct efct_hw *hw, enum efct_hw_reset reset,
enum efct_hw_state prev_state)
{
int rc = 0;
switch (reset) {
case EFCT_HW_RESET_FUNCTION:
efc_log_debug(hw->os, "issuing function level reset\n");
if (sli_reset(&hw->sli)) {
efc_log_err(hw->os, "sli_reset failed\n");
rc = -EIO;
}
break;
case EFCT_HW_RESET_FIRMWARE:
efc_log_debug(hw->os, "issuing firmware reset\n");
if (sli_fw_reset(&hw->sli)) {
efc_log_err(hw->os, "sli_soft_reset failed\n");
rc = -EIO;
}
/*
* Because the FW reset leaves the FW in a non-running state,
* follow that with a regular reset.
*/
efc_log_debug(hw->os, "issuing function level reset\n");
if (sli_reset(&hw->sli)) {
efc_log_err(hw->os, "sli_reset failed\n");
rc = -EIO;
}
break;
default:
efc_log_err(hw->os, "unknown type - no reset performed\n");
hw->state = prev_state;
rc = -EINVAL;
break;
}
return rc;
}
int
efct_hw_reset(struct efct_hw *hw, enum efct_hw_reset reset)
{
int rc = 0;
enum efct_hw_state prev_state = hw->state;
if (hw->state != EFCT_HW_STATE_ACTIVE)
efc_log_debug(hw->os,
"HW state %d is not active\n", hw->state);
hw->state = EFCT_HW_STATE_RESET_IN_PROGRESS;
/*
* If the prev_state is already reset/teardown in progress,
* don't continue further
*/
if (prev_state == EFCT_HW_STATE_RESET_IN_PROGRESS ||
prev_state == EFCT_HW_STATE_TEARDOWN_IN_PROGRESS)
return efct_hw_sli_reset(hw, reset, prev_state);
if (prev_state != EFCT_HW_STATE_UNINITIALIZED) {
efct_hw_flush(hw);
if (list_empty(&hw->cmd_head))
efc_log_debug(hw->os,
"All commands completed on MQ queue\n");
else
efc_log_err(hw->os,
"Some commands still pending on MQ queue\n");
}
/* Reset the chip */
rc = efct_hw_sli_reset(hw, reset, prev_state);
if (rc == -EINVAL)
return -EIO;
return rc;
}