blob: a30d0f172986b8187960465eade0d817bbca1d1b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for Gigabit Ethernet adapters based on the Session Layer
* Interface (SLIC) technology by Alacritech. The driver does not
* support the hardware acceleration features provided by these cards.
*
* Copyright (C) 2016 Lino Sanfilippo <LinoSanfilippo@gmx.de>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/dma-mapping.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/list.h>
#include <linux/u64_stats_sync.h>
#include "slic.h"
#define DRV_NAME "slicoss"
static const struct pci_device_id slic_id_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_ALACRITECH,
PCI_DEVICE_ID_ALACRITECH_MOJAVE) },
{ PCI_DEVICE(PCI_VENDOR_ID_ALACRITECH,
PCI_DEVICE_ID_ALACRITECH_OASIS) },
{ 0 }
};
static const char slic_stats_strings[][ETH_GSTRING_LEN] = {
"rx_packets",
"rx_bytes",
"rx_multicasts",
"rx_errors",
"rx_buff_miss",
"rx_tp_csum",
"rx_tp_oflow",
"rx_tp_hlen",
"rx_ip_csum",
"rx_ip_len",
"rx_ip_hdr_len",
"rx_early",
"rx_buff_oflow",
"rx_lcode",
"rx_drbl",
"rx_crc",
"rx_oflow_802",
"rx_uflow_802",
"tx_packets",
"tx_bytes",
"tx_carrier",
"tx_dropped",
"irq_errs",
};
static inline int slic_next_queue_idx(unsigned int idx, unsigned int qlen)
{
return (idx + 1) & (qlen - 1);
}
static inline int slic_get_free_queue_descs(unsigned int put_idx,
unsigned int done_idx,
unsigned int qlen)
{
if (put_idx >= done_idx)
return (qlen - (put_idx - done_idx) - 1);
return (done_idx - put_idx - 1);
}
static unsigned int slic_next_compl_idx(struct slic_device *sdev)
{
struct slic_stat_queue *stq = &sdev->stq;
unsigned int active = stq->active_array;
struct slic_stat_desc *descs;
struct slic_stat_desc *stat;
unsigned int idx;
descs = stq->descs[active];
stat = &descs[stq->done_idx];
if (!stat->status)
return SLIC_INVALID_STAT_DESC_IDX;
idx = (le32_to_cpu(stat->hnd) & 0xffff) - 1;
/* reset desc */
stat->hnd = 0;
stat->status = 0;
stq->done_idx = slic_next_queue_idx(stq->done_idx, stq->len);
/* check for wraparound */
if (!stq->done_idx) {
dma_addr_t paddr = stq->paddr[active];
slic_write(sdev, SLIC_REG_RBAR, lower_32_bits(paddr) |
stq->len);
/* make sure new status descriptors are immediately available */
slic_flush_write(sdev);
active++;
active &= (SLIC_NUM_STAT_DESC_ARRAYS - 1);
stq->active_array = active;
}
return idx;
}
static unsigned int slic_get_free_tx_descs(struct slic_tx_queue *txq)
{
/* ensure tail idx is updated */
smp_mb();
return slic_get_free_queue_descs(txq->put_idx, txq->done_idx, txq->len);
}
static unsigned int slic_get_free_rx_descs(struct slic_rx_queue *rxq)
{
return slic_get_free_queue_descs(rxq->put_idx, rxq->done_idx, rxq->len);
}
static void slic_clear_upr_list(struct slic_upr_list *upr_list)
{
struct slic_upr *upr;
struct slic_upr *tmp;
spin_lock_bh(&upr_list->lock);
list_for_each_entry_safe(upr, tmp, &upr_list->list, list) {
list_del(&upr->list);
kfree(upr);
}
upr_list->pending = false;
spin_unlock_bh(&upr_list->lock);
}
static void slic_start_upr(struct slic_device *sdev, struct slic_upr *upr)
{
u32 reg;
reg = (upr->type == SLIC_UPR_CONFIG) ? SLIC_REG_RCONFIG :
SLIC_REG_LSTAT;
slic_write(sdev, reg, lower_32_bits(upr->paddr));
slic_flush_write(sdev);
}
static void slic_queue_upr(struct slic_device *sdev, struct slic_upr *upr)
{
struct slic_upr_list *upr_list = &sdev->upr_list;
bool pending;
spin_lock_bh(&upr_list->lock);
pending = upr_list->pending;
INIT_LIST_HEAD(&upr->list);
list_add_tail(&upr->list, &upr_list->list);
upr_list->pending = true;
spin_unlock_bh(&upr_list->lock);
if (!pending)
slic_start_upr(sdev, upr);
}
static struct slic_upr *slic_dequeue_upr(struct slic_device *sdev)
{
struct slic_upr_list *upr_list = &sdev->upr_list;
struct slic_upr *next_upr = NULL;
struct slic_upr *upr = NULL;
spin_lock_bh(&upr_list->lock);
if (!list_empty(&upr_list->list)) {
upr = list_first_entry(&upr_list->list, struct slic_upr, list);
list_del(&upr->list);
if (list_empty(&upr_list->list))
upr_list->pending = false;
else
next_upr = list_first_entry(&upr_list->list,
struct slic_upr, list);
}
spin_unlock_bh(&upr_list->lock);
/* trigger processing of the next upr in list */
if (next_upr)
slic_start_upr(sdev, next_upr);
return upr;
}
static int slic_new_upr(struct slic_device *sdev, unsigned int type,
dma_addr_t paddr)
{
struct slic_upr *upr;
upr = kmalloc(sizeof(*upr), GFP_ATOMIC);
if (!upr)
return -ENOMEM;
upr->type = type;
upr->paddr = paddr;
slic_queue_upr(sdev, upr);
return 0;
}
static void slic_set_mcast_bit(u64 *mcmask, unsigned char const *addr)
{
u64 mask = *mcmask;
u8 crc;
/* Get the CRC polynomial for the mac address: we use bits 1-8 (lsb),
* bitwise reversed, msb (= lsb bit 0 before bitrev) is automatically
* discarded.
*/
crc = ether_crc(ETH_ALEN, addr) >> 23;
/* we only have space on the SLIC for 64 entries */
crc &= 0x3F;
mask |= (u64)1 << crc;
*mcmask = mask;
}
/* must be called with link_lock held */
static void slic_configure_rcv(struct slic_device *sdev)
{
u32 val;
val = SLIC_GRCR_RESET | SLIC_GRCR_ADDRAEN | SLIC_GRCR_RCVEN |
SLIC_GRCR_HASHSIZE << SLIC_GRCR_HASHSIZE_SHIFT | SLIC_GRCR_RCVBAD;
if (sdev->duplex == DUPLEX_FULL)
val |= SLIC_GRCR_CTLEN;
if (sdev->promisc)
val |= SLIC_GRCR_RCVALL;
slic_write(sdev, SLIC_REG_WRCFG, val);
}
/* must be called with link_lock held */
static void slic_configure_xmt(struct slic_device *sdev)
{
u32 val;
val = SLIC_GXCR_RESET | SLIC_GXCR_XMTEN;
if (sdev->duplex == DUPLEX_FULL)
val |= SLIC_GXCR_PAUSEEN;
slic_write(sdev, SLIC_REG_WXCFG, val);
}
/* must be called with link_lock held */
static void slic_configure_mac(struct slic_device *sdev)
{
u32 val;
if (sdev->speed == SPEED_1000) {
val = SLIC_GMCR_GAPBB_1000 << SLIC_GMCR_GAPBB_SHIFT |
SLIC_GMCR_GAPR1_1000 << SLIC_GMCR_GAPR1_SHIFT |
SLIC_GMCR_GAPR2_1000 << SLIC_GMCR_GAPR2_SHIFT |
SLIC_GMCR_GBIT; /* enable GMII */
} else {
val = SLIC_GMCR_GAPBB_100 << SLIC_GMCR_GAPBB_SHIFT |
SLIC_GMCR_GAPR1_100 << SLIC_GMCR_GAPR1_SHIFT |
SLIC_GMCR_GAPR2_100 << SLIC_GMCR_GAPR2_SHIFT;
}
if (sdev->duplex == DUPLEX_FULL)
val |= SLIC_GMCR_FULLD;
slic_write(sdev, SLIC_REG_WMCFG, val);
}
static void slic_configure_link_locked(struct slic_device *sdev, int speed,
unsigned int duplex)
{
struct net_device *dev = sdev->netdev;
if (sdev->speed == speed && sdev->duplex == duplex)
return;
sdev->speed = speed;
sdev->duplex = duplex;
if (sdev->speed == SPEED_UNKNOWN) {
if (netif_carrier_ok(dev))
netif_carrier_off(dev);
} else {
/* (re)configure link settings */
slic_configure_mac(sdev);
slic_configure_xmt(sdev);
slic_configure_rcv(sdev);
slic_flush_write(sdev);
if (!netif_carrier_ok(dev))
netif_carrier_on(dev);
}
}
static void slic_configure_link(struct slic_device *sdev, int speed,
unsigned int duplex)
{
spin_lock_bh(&sdev->link_lock);
slic_configure_link_locked(sdev, speed, duplex);
spin_unlock_bh(&sdev->link_lock);
}
static void slic_set_rx_mode(struct net_device *dev)
{
struct slic_device *sdev = netdev_priv(dev);
struct netdev_hw_addr *hwaddr;
bool set_promisc;
u64 mcmask;
if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
/* Turn on all multicast addresses. We have to do this for
* promiscuous mode as well as ALLMCAST mode (it saves the
* microcode from having to keep state about the MAC
* configuration).
*/
mcmask = ~(u64)0;
} else {
mcmask = 0;
netdev_for_each_mc_addr(hwaddr, dev) {
slic_set_mcast_bit(&mcmask, hwaddr->addr);
}
}
slic_write(sdev, SLIC_REG_MCASTLOW, lower_32_bits(mcmask));
slic_write(sdev, SLIC_REG_MCASTHIGH, upper_32_bits(mcmask));
set_promisc = !!(dev->flags & IFF_PROMISC);
spin_lock_bh(&sdev->link_lock);
if (sdev->promisc != set_promisc) {
sdev->promisc = set_promisc;
slic_configure_rcv(sdev);
}
spin_unlock_bh(&sdev->link_lock);
}
static void slic_xmit_complete(struct slic_device *sdev)
{
struct slic_tx_queue *txq = &sdev->txq;
struct net_device *dev = sdev->netdev;
struct slic_tx_buffer *buff;
unsigned int frames = 0;
unsigned int bytes = 0;
unsigned int idx;
/* Limit processing to SLIC_MAX_TX_COMPLETIONS frames to avoid that new
* completions during processing keeps the loop running endlessly.
*/
do {
idx = slic_next_compl_idx(sdev);
if (idx == SLIC_INVALID_STAT_DESC_IDX)
break;
txq->done_idx = idx;
buff = &txq->txbuffs[idx];
if (unlikely(!buff->skb)) {
netdev_warn(dev,
"no skb found for desc idx %i\n", idx);
continue;
}
dma_unmap_single(&sdev->pdev->dev,
dma_unmap_addr(buff, map_addr),
dma_unmap_len(buff, map_len), DMA_TO_DEVICE);
bytes += buff->skb->len;
frames++;
dev_kfree_skb_any(buff->skb);
buff->skb = NULL;
} while (frames < SLIC_MAX_TX_COMPLETIONS);
/* make sure xmit sees the new value for done_idx */
smp_wmb();
u64_stats_update_begin(&sdev->stats.syncp);
sdev->stats.tx_bytes += bytes;
sdev->stats.tx_packets += frames;
u64_stats_update_end(&sdev->stats.syncp);
netif_tx_lock(dev);
if (netif_queue_stopped(dev) &&
(slic_get_free_tx_descs(txq) >= SLIC_MIN_TX_WAKEUP_DESCS))
netif_wake_queue(dev);
netif_tx_unlock(dev);
}
static void slic_refill_rx_queue(struct slic_device *sdev, gfp_t gfp)
{
const unsigned int ALIGN_MASK = SLIC_RX_BUFF_ALIGN - 1;
unsigned int maplen = SLIC_RX_BUFF_SIZE;
struct slic_rx_queue *rxq = &sdev->rxq;
struct net_device *dev = sdev->netdev;
struct slic_rx_buffer *buff;
struct slic_rx_desc *desc;
unsigned int misalign;
unsigned int offset;
struct sk_buff *skb;
dma_addr_t paddr;
while (slic_get_free_rx_descs(rxq) > SLIC_MAX_REQ_RX_DESCS) {
skb = alloc_skb(maplen + ALIGN_MASK, gfp);
if (!skb)
break;
paddr = dma_map_single(&sdev->pdev->dev, skb->data, maplen,
DMA_FROM_DEVICE);
if (dma_mapping_error(&sdev->pdev->dev, paddr)) {
netdev_err(dev, "mapping rx packet failed\n");
/* drop skb */
dev_kfree_skb_any(skb);
break;
}
/* ensure head buffer descriptors are 256 byte aligned */
offset = 0;
misalign = paddr & ALIGN_MASK;
if (misalign) {
offset = SLIC_RX_BUFF_ALIGN - misalign;
skb_reserve(skb, offset);
}
/* the HW expects dma chunks for descriptor + frame data */
desc = (struct slic_rx_desc *)skb->data;
/* temporarily sync descriptor for CPU to clear status */
dma_sync_single_for_cpu(&sdev->pdev->dev, paddr,
offset + sizeof(*desc),
DMA_FROM_DEVICE);
desc->status = 0;
/* return it to HW again */
dma_sync_single_for_device(&sdev->pdev->dev, paddr,
offset + sizeof(*desc),
DMA_FROM_DEVICE);
buff = &rxq->rxbuffs[rxq->put_idx];
buff->skb = skb;
dma_unmap_addr_set(buff, map_addr, paddr);
dma_unmap_len_set(buff, map_len, maplen);
buff->addr_offset = offset;
/* complete write to descriptor before it is handed to HW */
wmb();
/* head buffer descriptors are placed immediately before skb */
slic_write(sdev, SLIC_REG_HBAR, lower_32_bits(paddr) + offset);
rxq->put_idx = slic_next_queue_idx(rxq->put_idx, rxq->len);
}
}
static void slic_handle_frame_error(struct slic_device *sdev,
struct sk_buff *skb)
{
struct slic_stats *stats = &sdev->stats;
if (sdev->model == SLIC_MODEL_OASIS) {
struct slic_rx_info_oasis *info;
u32 status_b;
u32 status;
info = (struct slic_rx_info_oasis *)skb->data;
status = le32_to_cpu(info->frame_status);
status_b = le32_to_cpu(info->frame_status_b);
/* transport layer */
if (status_b & SLIC_VRHSTATB_TPCSUM)
SLIC_INC_STATS_COUNTER(stats, rx_tpcsum);
if (status & SLIC_VRHSTAT_TPOFLO)
SLIC_INC_STATS_COUNTER(stats, rx_tpoflow);
if (status_b & SLIC_VRHSTATB_TPHLEN)
SLIC_INC_STATS_COUNTER(stats, rx_tphlen);
/* ip layer */
if (status_b & SLIC_VRHSTATB_IPCSUM)
SLIC_INC_STATS_COUNTER(stats, rx_ipcsum);
if (status_b & SLIC_VRHSTATB_IPLERR)
SLIC_INC_STATS_COUNTER(stats, rx_iplen);
if (status_b & SLIC_VRHSTATB_IPHERR)
SLIC_INC_STATS_COUNTER(stats, rx_iphlen);
/* link layer */
if (status_b & SLIC_VRHSTATB_RCVE)
SLIC_INC_STATS_COUNTER(stats, rx_early);
if (status_b & SLIC_VRHSTATB_BUFF)
SLIC_INC_STATS_COUNTER(stats, rx_buffoflow);
if (status_b & SLIC_VRHSTATB_CODE)
SLIC_INC_STATS_COUNTER(stats, rx_lcode);
if (status_b & SLIC_VRHSTATB_DRBL)
SLIC_INC_STATS_COUNTER(stats, rx_drbl);
if (status_b & SLIC_VRHSTATB_CRC)
SLIC_INC_STATS_COUNTER(stats, rx_crc);
if (status & SLIC_VRHSTAT_802OE)
SLIC_INC_STATS_COUNTER(stats, rx_oflow802);
if (status_b & SLIC_VRHSTATB_802UE)
SLIC_INC_STATS_COUNTER(stats, rx_uflow802);
if (status_b & SLIC_VRHSTATB_CARRE)
SLIC_INC_STATS_COUNTER(stats, tx_carrier);
} else { /* mojave */
struct slic_rx_info_mojave *info;
u32 status;
info = (struct slic_rx_info_mojave *)skb->data;
status = le32_to_cpu(info->frame_status);
/* transport layer */
if (status & SLIC_VGBSTAT_XPERR) {
u32 xerr = status >> SLIC_VGBSTAT_XERRSHFT;
if (xerr == SLIC_VGBSTAT_XCSERR)
SLIC_INC_STATS_COUNTER(stats, rx_tpcsum);
if (xerr == SLIC_VGBSTAT_XUFLOW)
SLIC_INC_STATS_COUNTER(stats, rx_tpoflow);
if (xerr == SLIC_VGBSTAT_XHLEN)
SLIC_INC_STATS_COUNTER(stats, rx_tphlen);
}
/* ip layer */
if (status & SLIC_VGBSTAT_NETERR) {
u32 nerr = status >> SLIC_VGBSTAT_NERRSHFT &
SLIC_VGBSTAT_NERRMSK;
if (nerr == SLIC_VGBSTAT_NCSERR)
SLIC_INC_STATS_COUNTER(stats, rx_ipcsum);
if (nerr == SLIC_VGBSTAT_NUFLOW)
SLIC_INC_STATS_COUNTER(stats, rx_iplen);
if (nerr == SLIC_VGBSTAT_NHLEN)
SLIC_INC_STATS_COUNTER(stats, rx_iphlen);
}
/* link layer */
if (status & SLIC_VGBSTAT_LNKERR) {
u32 lerr = status & SLIC_VGBSTAT_LERRMSK;
if (lerr == SLIC_VGBSTAT_LDEARLY)
SLIC_INC_STATS_COUNTER(stats, rx_early);
if (lerr == SLIC_VGBSTAT_LBOFLO)
SLIC_INC_STATS_COUNTER(stats, rx_buffoflow);
if (lerr == SLIC_VGBSTAT_LCODERR)
SLIC_INC_STATS_COUNTER(stats, rx_lcode);
if (lerr == SLIC_VGBSTAT_LDBLNBL)
SLIC_INC_STATS_COUNTER(stats, rx_drbl);
if (lerr == SLIC_VGBSTAT_LCRCERR)
SLIC_INC_STATS_COUNTER(stats, rx_crc);
if (lerr == SLIC_VGBSTAT_LOFLO)
SLIC_INC_STATS_COUNTER(stats, rx_oflow802);
if (lerr == SLIC_VGBSTAT_LUFLO)
SLIC_INC_STATS_COUNTER(stats, rx_uflow802);
}
}
SLIC_INC_STATS_COUNTER(stats, rx_errors);
}
static void slic_handle_receive(struct slic_device *sdev, unsigned int todo,
unsigned int *done)
{
struct slic_rx_queue *rxq = &sdev->rxq;
struct net_device *dev = sdev->netdev;
struct slic_rx_buffer *buff;
struct slic_rx_desc *desc;
unsigned int frames = 0;
unsigned int bytes = 0;
struct sk_buff *skb;
u32 status;
u32 len;
while (todo && (rxq->done_idx != rxq->put_idx)) {
buff = &rxq->rxbuffs[rxq->done_idx];
skb = buff->skb;
if (!skb)
break;
desc = (struct slic_rx_desc *)skb->data;
dma_sync_single_for_cpu(&sdev->pdev->dev,
dma_unmap_addr(buff, map_addr),
buff->addr_offset + sizeof(*desc),
DMA_FROM_DEVICE);
status = le32_to_cpu(desc->status);
if (!(status & SLIC_IRHDDR_SVALID)) {
dma_sync_single_for_device(&sdev->pdev->dev,
dma_unmap_addr(buff,
map_addr),
buff->addr_offset +
sizeof(*desc),
DMA_FROM_DEVICE);
break;
}
buff->skb = NULL;
dma_unmap_single(&sdev->pdev->dev,
dma_unmap_addr(buff, map_addr),
dma_unmap_len(buff, map_len),
DMA_FROM_DEVICE);
/* skip rx descriptor that is placed before the frame data */
skb_reserve(skb, SLIC_RX_BUFF_HDR_SIZE);
if (unlikely(status & SLIC_IRHDDR_ERR)) {
slic_handle_frame_error(sdev, skb);
dev_kfree_skb_any(skb);
} else {
struct ethhdr *eh = (struct ethhdr *)skb->data;
if (is_multicast_ether_addr(eh->h_dest))
SLIC_INC_STATS_COUNTER(&sdev->stats, rx_mcasts);
len = le32_to_cpu(desc->length) & SLIC_IRHDDR_FLEN_MSK;
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
napi_gro_receive(&sdev->napi, skb);
bytes += len;
frames++;
}
rxq->done_idx = slic_next_queue_idx(rxq->done_idx, rxq->len);
todo--;
}
u64_stats_update_begin(&sdev->stats.syncp);
sdev->stats.rx_bytes += bytes;
sdev->stats.rx_packets += frames;
u64_stats_update_end(&sdev->stats.syncp);
slic_refill_rx_queue(sdev, GFP_ATOMIC);
}
static void slic_handle_link_irq(struct slic_device *sdev)
{
struct slic_shmem *sm = &sdev->shmem;
struct slic_shmem_data *sm_data = sm->shmem_data;
unsigned int duplex;
int speed;
u32 link;
link = le32_to_cpu(sm_data->link);
if (link & SLIC_GIG_LINKUP) {
if (link & SLIC_GIG_SPEED_1000)
speed = SPEED_1000;
else if (link & SLIC_GIG_SPEED_100)
speed = SPEED_100;
else
speed = SPEED_10;
duplex = (link & SLIC_GIG_FULLDUPLEX) ? DUPLEX_FULL :
DUPLEX_HALF;
} else {
duplex = DUPLEX_UNKNOWN;
speed = SPEED_UNKNOWN;
}
slic_configure_link(sdev, speed, duplex);
}
static void slic_handle_upr_irq(struct slic_device *sdev, u32 irqs)
{
struct slic_upr *upr;
/* remove upr that caused this irq (always the first entry in list) */
upr = slic_dequeue_upr(sdev);
if (!upr) {
netdev_warn(sdev->netdev, "no upr found on list\n");
return;
}
if (upr->type == SLIC_UPR_LSTAT) {
if (unlikely(irqs & SLIC_ISR_UPCERR_MASK)) {
/* try again */
slic_queue_upr(sdev, upr);
return;
}
slic_handle_link_irq(sdev);
}
kfree(upr);
}
static int slic_handle_link_change(struct slic_device *sdev)
{
return slic_new_upr(sdev, SLIC_UPR_LSTAT, sdev->shmem.link_paddr);
}
static void slic_handle_err_irq(struct slic_device *sdev, u32 isr)
{
struct slic_stats *stats = &sdev->stats;
if (isr & SLIC_ISR_RMISS)
SLIC_INC_STATS_COUNTER(stats, rx_buff_miss);
if (isr & SLIC_ISR_XDROP)
SLIC_INC_STATS_COUNTER(stats, tx_dropped);
if (!(isr & (SLIC_ISR_RMISS | SLIC_ISR_XDROP)))
SLIC_INC_STATS_COUNTER(stats, irq_errs);
}
static void slic_handle_irq(struct slic_device *sdev, u32 isr,
unsigned int todo, unsigned int *done)
{
if (isr & SLIC_ISR_ERR)
slic_handle_err_irq(sdev, isr);
if (isr & SLIC_ISR_LEVENT)
slic_handle_link_change(sdev);
if (isr & SLIC_ISR_UPC_MASK)
slic_handle_upr_irq(sdev, isr);
if (isr & SLIC_ISR_RCV)
slic_handle_receive(sdev, todo, done);
if (isr & SLIC_ISR_CMD)
slic_xmit_complete(sdev);
}
static int slic_poll(struct napi_struct *napi, int todo)
{
struct slic_device *sdev = container_of(napi, struct slic_device, napi);
struct slic_shmem *sm = &sdev->shmem;
struct slic_shmem_data *sm_data = sm->shmem_data;
u32 isr = le32_to_cpu(sm_data->isr);
int done = 0;
slic_handle_irq(sdev, isr, todo, &done);
if (done < todo) {
napi_complete_done(napi, done);
/* reenable irqs */
sm_data->isr = 0;
/* make sure sm_data->isr is cleard before irqs are reenabled */
wmb();
slic_write(sdev, SLIC_REG_ISR, 0);
slic_flush_write(sdev);
}
return done;
}
static irqreturn_t slic_irq(int irq, void *dev_id)
{
struct slic_device *sdev = dev_id;
struct slic_shmem *sm = &sdev->shmem;
struct slic_shmem_data *sm_data = sm->shmem_data;
slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_MASK);
slic_flush_write(sdev);
/* make sure sm_data->isr is read after ICR_INT_MASK is set */
wmb();
if (!sm_data->isr) {
dma_rmb();
/* spurious interrupt */
slic_write(sdev, SLIC_REG_ISR, 0);
slic_flush_write(sdev);
return IRQ_NONE;
}
napi_schedule_irqoff(&sdev->napi);
return IRQ_HANDLED;
}
static void slic_card_reset(struct slic_device *sdev)
{
u16 cmd;
slic_write(sdev, SLIC_REG_RESET, SLIC_RESET_MAGIC);
/* flush write by means of config space */
pci_read_config_word(sdev->pdev, PCI_COMMAND, &cmd);
mdelay(1);
}
static int slic_init_stat_queue(struct slic_device *sdev)
{
const unsigned int DESC_ALIGN_MASK = SLIC_STATS_DESC_ALIGN - 1;
struct slic_stat_queue *stq = &sdev->stq;
struct slic_stat_desc *descs;
unsigned int misalign;
unsigned int offset;
dma_addr_t paddr;
size_t size;
int err;
int i;
stq->len = SLIC_NUM_STAT_DESCS;
stq->active_array = 0;
stq->done_idx = 0;
size = stq->len * sizeof(*descs) + DESC_ALIGN_MASK;
for (i = 0; i < SLIC_NUM_STAT_DESC_ARRAYS; i++) {
descs = dma_alloc_coherent(&sdev->pdev->dev, size, &paddr,
GFP_KERNEL);
if (!descs) {
netdev_err(sdev->netdev,
"failed to allocate status descriptors\n");
err = -ENOMEM;
goto free_descs;
}
/* ensure correct alignment */
offset = 0;
misalign = paddr & DESC_ALIGN_MASK;
if (misalign) {
offset = SLIC_STATS_DESC_ALIGN - misalign;
descs += offset;
paddr += offset;
}
slic_write(sdev, SLIC_REG_RBAR, lower_32_bits(paddr) |
stq->len);
stq->descs[i] = descs;
stq->paddr[i] = paddr;
stq->addr_offset[i] = offset;
}
stq->mem_size = size;
return 0;
free_descs:
while (i--) {
dma_free_coherent(&sdev->pdev->dev, stq->mem_size,
stq->descs[i] - stq->addr_offset[i],
stq->paddr[i] - stq->addr_offset[i]);
}
return err;
}
static void slic_free_stat_queue(struct slic_device *sdev)
{
struct slic_stat_queue *stq = &sdev->stq;
int i;
for (i = 0; i < SLIC_NUM_STAT_DESC_ARRAYS; i++) {
dma_free_coherent(&sdev->pdev->dev, stq->mem_size,
stq->descs[i] - stq->addr_offset[i],
stq->paddr[i] - stq->addr_offset[i]);
}
}
static int slic_init_tx_queue(struct slic_device *sdev)
{
struct slic_tx_queue *txq = &sdev->txq;
struct slic_tx_buffer *buff;
struct slic_tx_desc *desc;
unsigned int i;
int err;
txq->len = SLIC_NUM_TX_DESCS;
txq->put_idx = 0;
txq->done_idx = 0;
txq->txbuffs = kcalloc(txq->len, sizeof(*buff), GFP_KERNEL);
if (!txq->txbuffs)
return -ENOMEM;
txq->dma_pool = dma_pool_create("slic_pool", &sdev->pdev->dev,
sizeof(*desc), SLIC_TX_DESC_ALIGN,
4096);
if (!txq->dma_pool) {
err = -ENOMEM;
netdev_err(sdev->netdev, "failed to create dma pool\n");
goto free_buffs;
}
for (i = 0; i < txq->len; i++) {
buff = &txq->txbuffs[i];
desc = dma_pool_zalloc(txq->dma_pool, GFP_KERNEL,
&buff->desc_paddr);
if (!desc) {
netdev_err(sdev->netdev,
"failed to alloc pool chunk (%i)\n", i);
err = -ENOMEM;
goto free_descs;
}
desc->hnd = cpu_to_le32((u32)(i + 1));
desc->cmd = SLIC_CMD_XMT_REQ;
desc->flags = 0;
desc->type = cpu_to_le32(SLIC_CMD_TYPE_DUMB);
buff->desc = desc;
}
return 0;
free_descs:
while (i--) {
buff = &txq->txbuffs[i];
dma_pool_free(txq->dma_pool, buff->desc, buff->desc_paddr);
}
dma_pool_destroy(txq->dma_pool);
free_buffs:
kfree(txq->txbuffs);
return err;
}
static void slic_free_tx_queue(struct slic_device *sdev)
{
struct slic_tx_queue *txq = &sdev->txq;
struct slic_tx_buffer *buff;
unsigned int i;
for (i = 0; i < txq->len; i++) {
buff = &txq->txbuffs[i];
dma_pool_free(txq->dma_pool, buff->desc, buff->desc_paddr);
if (!buff->skb)
continue;
dma_unmap_single(&sdev->pdev->dev,
dma_unmap_addr(buff, map_addr),
dma_unmap_len(buff, map_len), DMA_TO_DEVICE);
consume_skb(buff->skb);
}
dma_pool_destroy(txq->dma_pool);
kfree(txq->txbuffs);
}
static int slic_init_rx_queue(struct slic_device *sdev)
{
struct slic_rx_queue *rxq = &sdev->rxq;
struct slic_rx_buffer *buff;
rxq->len = SLIC_NUM_RX_LES;
rxq->done_idx = 0;
rxq->put_idx = 0;
buff = kcalloc(rxq->len, sizeof(*buff), GFP_KERNEL);
if (!buff)
return -ENOMEM;
rxq->rxbuffs = buff;
slic_refill_rx_queue(sdev, GFP_KERNEL);
return 0;
}
static void slic_free_rx_queue(struct slic_device *sdev)
{
struct slic_rx_queue *rxq = &sdev->rxq;
struct slic_rx_buffer *buff;
unsigned int i;
/* free rx buffers */
for (i = 0; i < rxq->len; i++) {
buff = &rxq->rxbuffs[i];
if (!buff->skb)
continue;
dma_unmap_single(&sdev->pdev->dev,
dma_unmap_addr(buff, map_addr),
dma_unmap_len(buff, map_len),
DMA_FROM_DEVICE);
consume_skb(buff->skb);
}
kfree(rxq->rxbuffs);
}
static void slic_set_link_autoneg(struct slic_device *sdev)
{
unsigned int subid = sdev->pdev->subsystem_device;
u32 val;
if (sdev->is_fiber) {
/* We've got a fiber gigabit interface, and register 4 is
* different in fiber mode than in copper mode.
*/
/* advertise FD only @1000 Mb */
val = MII_ADVERTISE << 16 | ADVERTISE_1000XFULL |
ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
/* enable PAUSE frames */
slic_write(sdev, SLIC_REG_WPHY, val);
/* reset phy, enable auto-neg */
val = MII_BMCR << 16 | BMCR_RESET | BMCR_ANENABLE |
BMCR_ANRESTART;
slic_write(sdev, SLIC_REG_WPHY, val);
} else { /* copper gigabit */
/* We've got a copper gigabit interface, and register 4 is
* different in copper mode than in fiber mode.
*/
/* advertise 10/100 Mb modes */
val = MII_ADVERTISE << 16 | ADVERTISE_100FULL |
ADVERTISE_100HALF | ADVERTISE_10FULL | ADVERTISE_10HALF;
/* enable PAUSE frames */
val |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
/* required by the Cicada PHY */
val |= ADVERTISE_CSMA;
slic_write(sdev, SLIC_REG_WPHY, val);
/* advertise FD only @1000 Mb */
val = MII_CTRL1000 << 16 | ADVERTISE_1000FULL;
slic_write(sdev, SLIC_REG_WPHY, val);
if (subid != PCI_SUBDEVICE_ID_ALACRITECH_CICADA) {
/* if a Marvell PHY enable auto crossover */
val = SLIC_MIICR_REG_16 | SLIC_MRV_REG16_XOVERON;
slic_write(sdev, SLIC_REG_WPHY, val);
/* reset phy, enable auto-neg */
val = MII_BMCR << 16 | BMCR_RESET | BMCR_ANENABLE |
BMCR_ANRESTART;
slic_write(sdev, SLIC_REG_WPHY, val);
} else {
/* enable and restart auto-neg (don't reset) */
val = MII_BMCR << 16 | BMCR_ANENABLE | BMCR_ANRESTART;
slic_write(sdev, SLIC_REG_WPHY, val);
}
}
}
static void slic_set_mac_address(struct slic_device *sdev)
{
const u8 *addr = sdev->netdev->dev_addr;
u32 val;
val = addr[5] | addr[4] << 8 | addr[3] << 16 | addr[2] << 24;
slic_write(sdev, SLIC_REG_WRADDRAL, val);
slic_write(sdev, SLIC_REG_WRADDRBL, val);
val = addr[0] << 8 | addr[1];
slic_write(sdev, SLIC_REG_WRADDRAH, val);
slic_write(sdev, SLIC_REG_WRADDRBH, val);
slic_flush_write(sdev);
}
static u32 slic_read_dword_from_firmware(const struct firmware *fw, int *offset)
{
int idx = *offset;
__le32 val;
memcpy(&val, fw->data + *offset, sizeof(val));
idx += 4;
*offset = idx;
return le32_to_cpu(val);
}
MODULE_FIRMWARE(SLIC_RCV_FIRMWARE_MOJAVE);
MODULE_FIRMWARE(SLIC_RCV_FIRMWARE_OASIS);
static int slic_load_rcvseq_firmware(struct slic_device *sdev)
{
const struct firmware *fw;
const char *file;
u32 codelen;
int idx = 0;
u32 instr;
u32 addr;
int err;
file = (sdev->model == SLIC_MODEL_OASIS) ? SLIC_RCV_FIRMWARE_OASIS :
SLIC_RCV_FIRMWARE_MOJAVE;
err = request_firmware(&fw, file, &sdev->pdev->dev);
if (err) {
dev_err(&sdev->pdev->dev,
"failed to load receive sequencer firmware %s\n", file);
return err;
}
/* Do an initial sanity check concerning firmware size now. A further
* check follows below.
*/
if (fw->size < SLIC_FIRMWARE_MIN_SIZE) {
dev_err(&sdev->pdev->dev,
"invalid firmware size %zu (min %u expected)\n",
fw->size, SLIC_FIRMWARE_MIN_SIZE);
err = -EINVAL;
goto release;
}
codelen = slic_read_dword_from_firmware(fw, &idx);
/* do another sanity check against firmware size */
if ((codelen + 4) > fw->size) {
dev_err(&sdev->pdev->dev,
"invalid rcv-sequencer firmware size %zu\n", fw->size);
err = -EINVAL;
goto release;
}
/* download sequencer code to card */
slic_write(sdev, SLIC_REG_RCV_WCS, SLIC_RCVWCS_BEGIN);
for (addr = 0; addr < codelen; addr++) {
__le32 val;
/* write out instruction address */
slic_write(sdev, SLIC_REG_RCV_WCS, addr);
instr = slic_read_dword_from_firmware(fw, &idx);
/* write out the instruction data low addr */
slic_write(sdev, SLIC_REG_RCV_WCS, instr);
val = (__le32)fw->data[idx];
instr = le32_to_cpu(val);
idx++;
/* write out the instruction data high addr */
slic_write(sdev, SLIC_REG_RCV_WCS, instr);
}
/* finish download */
slic_write(sdev, SLIC_REG_RCV_WCS, SLIC_RCVWCS_FINISH);
slic_flush_write(sdev);
release:
release_firmware(fw);
return err;
}
MODULE_FIRMWARE(SLIC_FIRMWARE_MOJAVE);
MODULE_FIRMWARE(SLIC_FIRMWARE_OASIS);
static int slic_load_firmware(struct slic_device *sdev)
{
u32 sectstart[SLIC_FIRMWARE_MAX_SECTIONS];
u32 sectsize[SLIC_FIRMWARE_MAX_SECTIONS];
const struct firmware *fw;
unsigned int datalen;
const char *file;
int code_start;
unsigned int i;
u32 numsects;
int idx = 0;
u32 sect;
u32 instr;
u32 addr;
u32 base;
int err;
file = (sdev->model == SLIC_MODEL_OASIS) ? SLIC_FIRMWARE_OASIS :
SLIC_FIRMWARE_MOJAVE;
err = request_firmware(&fw, file, &sdev->pdev->dev);
if (err) {
dev_err(&sdev->pdev->dev, "failed to load firmware %s\n", file);
return err;
}
/* Do an initial sanity check concerning firmware size now. A further
* check follows below.
*/
if (fw->size < SLIC_FIRMWARE_MIN_SIZE) {
dev_err(&sdev->pdev->dev,
"invalid firmware size %zu (min is %u)\n", fw->size,
SLIC_FIRMWARE_MIN_SIZE);
err = -EINVAL;
goto release;
}
numsects = slic_read_dword_from_firmware(fw, &idx);
if (numsects == 0 || numsects > SLIC_FIRMWARE_MAX_SECTIONS) {
dev_err(&sdev->pdev->dev,
"invalid number of sections in firmware: %u", numsects);
err = -EINVAL;
goto release;
}
datalen = numsects * 8 + 4;
for (i = 0; i < numsects; i++) {
sectsize[i] = slic_read_dword_from_firmware(fw, &idx);
datalen += sectsize[i];
}
/* do another sanity check against firmware size */
if (datalen > fw->size) {
dev_err(&sdev->pdev->dev,
"invalid firmware size %zu (expected >= %u)\n",
fw->size, datalen);
err = -EINVAL;
goto release;
}
/* get sections */
for (i = 0; i < numsects; i++)
sectstart[i] = slic_read_dword_from_firmware(fw, &idx);
code_start = idx;
instr = slic_read_dword_from_firmware(fw, &idx);
for (sect = 0; sect < numsects; sect++) {
unsigned int ssize = sectsize[sect] >> 3;
base = sectstart[sect];
for (addr = 0; addr < ssize; addr++) {
/* write out instruction address */
slic_write(sdev, SLIC_REG_WCS, base + addr);
/* write out instruction to low addr */
slic_write(sdev, SLIC_REG_WCS, instr);
instr = slic_read_dword_from_firmware(fw, &idx);
/* write out instruction to high addr */
slic_write(sdev, SLIC_REG_WCS, instr);
instr = slic_read_dword_from_firmware(fw, &idx);
}
}
idx = code_start;
for (sect = 0; sect < numsects; sect++) {
unsigned int ssize = sectsize[sect] >> 3;
instr = slic_read_dword_from_firmware(fw, &idx);
base = sectstart[sect];
if (base < 0x8000)
continue;
for (addr = 0; addr < ssize; addr++) {
/* write out instruction address */
slic_write(sdev, SLIC_REG_WCS,
SLIC_WCS_COMPARE | (base + addr));
/* write out instruction to low addr */
slic_write(sdev, SLIC_REG_WCS, instr);
instr = slic_read_dword_from_firmware(fw, &idx);
/* write out instruction to high addr */
slic_write(sdev, SLIC_REG_WCS, instr);
instr = slic_read_dword_from_firmware(fw, &idx);
}
}
slic_flush_write(sdev);
mdelay(10);
/* everything OK, kick off the card */
slic_write(sdev, SLIC_REG_WCS, SLIC_WCS_START);
slic_flush_write(sdev);
/* wait long enough for ucode to init card and reach the mainloop */
mdelay(20);
release:
release_firmware(fw);
return err;
}
static int slic_init_shmem(struct slic_device *sdev)
{
struct slic_shmem *sm = &sdev->shmem;
struct slic_shmem_data *sm_data;
dma_addr_t paddr;
sm_data = dma_alloc_coherent(&sdev->pdev->dev, sizeof(*sm_data),
&paddr, GFP_KERNEL);
if (!sm_data) {
dev_err(&sdev->pdev->dev, "failed to allocate shared memory\n");
return -ENOMEM;
}
sm->shmem_data = sm_data;
sm->isr_paddr = paddr;
sm->link_paddr = paddr + offsetof(struct slic_shmem_data, link);
return 0;
}
static void slic_free_shmem(struct slic_device *sdev)
{
struct slic_shmem *sm = &sdev->shmem;
struct slic_shmem_data *sm_data = sm->shmem_data;
dma_free_coherent(&sdev->pdev->dev, sizeof(*sm_data), sm_data,
sm->isr_paddr);
}
static int slic_init_iface(struct slic_device *sdev)
{
struct slic_shmem *sm = &sdev->shmem;
int err;
sdev->upr_list.pending = false;
err = slic_init_shmem(sdev);
if (err) {
netdev_err(sdev->netdev, "failed to init shared memory\n");
return err;
}
err = slic_load_firmware(sdev);
if (err) {
netdev_err(sdev->netdev, "failed to load firmware\n");
goto free_sm;
}
err = slic_load_rcvseq_firmware(sdev);
if (err) {
netdev_err(sdev->netdev,
"failed to load firmware for receive sequencer\n");
goto free_sm;
}
slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_OFF);
slic_flush_write(sdev);
mdelay(1);
err = slic_init_rx_queue(sdev);
if (err) {
netdev_err(sdev->netdev, "failed to init rx queue: %u\n", err);
goto free_sm;
}
err = slic_init_tx_queue(sdev);
if (err) {
netdev_err(sdev->netdev, "failed to init tx queue: %u\n", err);
goto free_rxq;
}
err = slic_init_stat_queue(sdev);
if (err) {
netdev_err(sdev->netdev, "failed to init status queue: %u\n",
err);
goto free_txq;
}
slic_write(sdev, SLIC_REG_ISP, lower_32_bits(sm->isr_paddr));
napi_enable(&sdev->napi);
/* disable irq mitigation */
slic_write(sdev, SLIC_REG_INTAGG, 0);
slic_write(sdev, SLIC_REG_ISR, 0);
slic_flush_write(sdev);
slic_set_mac_address(sdev);
spin_lock_bh(&sdev->link_lock);
sdev->duplex = DUPLEX_UNKNOWN;
sdev->speed = SPEED_UNKNOWN;
spin_unlock_bh(&sdev->link_lock);
slic_set_link_autoneg(sdev);
err = request_irq(sdev->pdev->irq, slic_irq, IRQF_SHARED, DRV_NAME,
sdev);
if (err) {
netdev_err(sdev->netdev, "failed to request irq: %u\n", err);
goto disable_napi;
}
slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_ON);
slic_flush_write(sdev);
/* request initial link status */
err = slic_handle_link_change(sdev);
if (err)
netdev_warn(sdev->netdev,
"failed to set initial link state: %u\n", err);
return 0;
disable_napi:
napi_disable(&sdev->napi);
slic_free_stat_queue(sdev);
free_txq:
slic_free_tx_queue(sdev);
free_rxq:
slic_free_rx_queue(sdev);
free_sm:
slic_free_shmem(sdev);
slic_card_reset(sdev);
return err;
}
static int slic_open(struct net_device *dev)
{
struct slic_device *sdev = netdev_priv(dev);
int err;
netif_carrier_off(dev);
err = slic_init_iface(sdev);
if (err) {
netdev_err(dev, "failed to initialize interface: %i\n", err);
return err;
}
netif_start_queue(dev);
return 0;
}
static int slic_close(struct net_device *dev)
{
struct slic_device *sdev = netdev_priv(dev);
u32 val;
netif_stop_queue(dev);
/* stop irq handling */
napi_disable(&sdev->napi);
slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_OFF);
slic_write(sdev, SLIC_REG_ISR, 0);
slic_flush_write(sdev);
free_irq(sdev->pdev->irq, sdev);
/* turn off RCV and XMT and power down PHY */
val = SLIC_GXCR_RESET | SLIC_GXCR_PAUSEEN;
slic_write(sdev, SLIC_REG_WXCFG, val);
val = SLIC_GRCR_RESET | SLIC_GRCR_CTLEN | SLIC_GRCR_ADDRAEN |
SLIC_GRCR_HASHSIZE << SLIC_GRCR_HASHSIZE_SHIFT;
slic_write(sdev, SLIC_REG_WRCFG, val);
val = MII_BMCR << 16 | BMCR_PDOWN;
slic_write(sdev, SLIC_REG_WPHY, val);
slic_flush_write(sdev);
slic_clear_upr_list(&sdev->upr_list);
slic_write(sdev, SLIC_REG_QUIESCE, 0);
slic_free_stat_queue(sdev);
slic_free_tx_queue(sdev);
slic_free_rx_queue(sdev);
slic_free_shmem(sdev);
slic_card_reset(sdev);
netif_carrier_off(dev);
return 0;
}
static netdev_tx_t slic_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct slic_device *sdev = netdev_priv(dev);
struct slic_tx_queue *txq = &sdev->txq;
struct slic_tx_buffer *buff;
struct slic_tx_desc *desc;
dma_addr_t paddr;
u32 cbar_val;
u32 maplen;
if (unlikely(slic_get_free_tx_descs(txq) < SLIC_MAX_REQ_TX_DESCS)) {
netdev_err(dev, "BUG! not enough tx LEs left: %u\n",
slic_get_free_tx_descs(txq));
return NETDEV_TX_BUSY;
}
maplen = skb_headlen(skb);
paddr = dma_map_single(&sdev->pdev->dev, skb->data, maplen,
DMA_TO_DEVICE);
if (dma_mapping_error(&sdev->pdev->dev, paddr)) {
netdev_err(dev, "failed to map tx buffer\n");
goto drop_skb;
}
buff = &txq->txbuffs[txq->put_idx];
buff->skb = skb;
dma_unmap_addr_set(buff, map_addr, paddr);
dma_unmap_len_set(buff, map_len, maplen);
desc = buff->desc;
desc->totlen = cpu_to_le32(maplen);
desc->paddrl = cpu_to_le32(lower_32_bits(paddr));
desc->paddrh = cpu_to_le32(upper_32_bits(paddr));
desc->len = cpu_to_le32(maplen);
txq->put_idx = slic_next_queue_idx(txq->put_idx, txq->len);
cbar_val = lower_32_bits(buff->desc_paddr) | 1;
/* complete writes to RAM and DMA before hardware is informed */
wmb();
slic_write(sdev, SLIC_REG_CBAR, cbar_val);
if (slic_get_free_tx_descs(txq) < SLIC_MAX_REQ_TX_DESCS)
netif_stop_queue(dev);
return NETDEV_TX_OK;
drop_skb:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
static void slic_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *lst)
{
struct slic_device *sdev = netdev_priv(dev);
struct slic_stats *stats = &sdev->stats;
SLIC_GET_STATS_COUNTER(lst->rx_packets, stats, rx_packets);
SLIC_GET_STATS_COUNTER(lst->tx_packets, stats, tx_packets);
SLIC_GET_STATS_COUNTER(lst->rx_bytes, stats, rx_bytes);
SLIC_GET_STATS_COUNTER(lst->tx_bytes, stats, tx_bytes);
SLIC_GET_STATS_COUNTER(lst->rx_errors, stats, rx_errors);
SLIC_GET_STATS_COUNTER(lst->rx_dropped, stats, rx_buff_miss);
SLIC_GET_STATS_COUNTER(lst->tx_dropped, stats, tx_dropped);
SLIC_GET_STATS_COUNTER(lst->multicast, stats, rx_mcasts);
SLIC_GET_STATS_COUNTER(lst->rx_over_errors, stats, rx_buffoflow);
SLIC_GET_STATS_COUNTER(lst->rx_crc_errors, stats, rx_crc);
SLIC_GET_STATS_COUNTER(lst->rx_fifo_errors, stats, rx_oflow802);
SLIC_GET_STATS_COUNTER(lst->tx_carrier_errors, stats, tx_carrier);
}
static int slic_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(slic_stats_strings);
default:
return -EOPNOTSUPP;
}
}
static void slic_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *eth_stats, u64 *data)
{
struct slic_device *sdev = netdev_priv(dev);
struct slic_stats *stats = &sdev->stats;
SLIC_GET_STATS_COUNTER(data[0], stats, rx_packets);
SLIC_GET_STATS_COUNTER(data[1], stats, rx_bytes);
SLIC_GET_STATS_COUNTER(data[2], stats, rx_mcasts);
SLIC_GET_STATS_COUNTER(data[3], stats, rx_errors);
SLIC_GET_STATS_COUNTER(data[4], stats, rx_buff_miss);
SLIC_GET_STATS_COUNTER(data[5], stats, rx_tpcsum);
SLIC_GET_STATS_COUNTER(data[6], stats, rx_tpoflow);
SLIC_GET_STATS_COUNTER(data[7], stats, rx_tphlen);
SLIC_GET_STATS_COUNTER(data[8], stats, rx_ipcsum);
SLIC_GET_STATS_COUNTER(data[9], stats, rx_iplen);
SLIC_GET_STATS_COUNTER(data[10], stats, rx_iphlen);
SLIC_GET_STATS_COUNTER(data[11], stats, rx_early);
SLIC_GET_STATS_COUNTER(data[12], stats, rx_buffoflow);
SLIC_GET_STATS_COUNTER(data[13], stats, rx_lcode);
SLIC_GET_STATS_COUNTER(data[14], stats, rx_drbl);
SLIC_GET_STATS_COUNTER(data[15], stats, rx_crc);
SLIC_GET_STATS_COUNTER(data[16], stats, rx_oflow802);
SLIC_GET_STATS_COUNTER(data[17], stats, rx_uflow802);
SLIC_GET_STATS_COUNTER(data[18], stats, tx_packets);
SLIC_GET_STATS_COUNTER(data[19], stats, tx_bytes);
SLIC_GET_STATS_COUNTER(data[20], stats, tx_carrier);
SLIC_GET_STATS_COUNTER(data[21], stats, tx_dropped);
SLIC_GET_STATS_COUNTER(data[22], stats, irq_errs);
}
static void slic_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
if (stringset == ETH_SS_STATS) {
memcpy(data, slic_stats_strings, sizeof(slic_stats_strings));
data += sizeof(slic_stats_strings);
}
}
static void slic_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct slic_device *sdev = netdev_priv(dev);
strscpy(info->driver, DRV_NAME, sizeof(info->driver));
strscpy(info->bus_info, pci_name(sdev->pdev), sizeof(info->bus_info));
}
static const struct ethtool_ops slic_ethtool_ops = {
.get_drvinfo = slic_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_strings = slic_get_strings,
.get_ethtool_stats = slic_get_ethtool_stats,
.get_sset_count = slic_get_sset_count,
};
static const struct net_device_ops slic_netdev_ops = {
.ndo_open = slic_open,
.ndo_stop = slic_close,
.ndo_start_xmit = slic_xmit,
.ndo_set_mac_address = eth_mac_addr,
.ndo_get_stats64 = slic_get_stats,
.ndo_set_rx_mode = slic_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
};
static u16 slic_eeprom_csum(unsigned char *eeprom, unsigned int len)
{
unsigned char *ptr = eeprom;
u32 csum = 0;
__le16 data;
while (len > 1) {
memcpy(&data, ptr, sizeof(data));
csum += le16_to_cpu(data);
ptr += 2;
len -= 2;
}
if (len > 0)
csum += *(u8 *)ptr;
while (csum >> 16)
csum = (csum & 0xFFFF) + ((csum >> 16) & 0xFFFF);
return ~csum;
}
/* check eeprom size, magic and checksum */
static bool slic_eeprom_valid(unsigned char *eeprom, unsigned int size)
{
const unsigned int MAX_SIZE = 128;
const unsigned int MIN_SIZE = 98;
__le16 magic;
__le16 csum;
if (size < MIN_SIZE || size > MAX_SIZE)
return false;
memcpy(&magic, eeprom, sizeof(magic));
if (le16_to_cpu(magic) != SLIC_EEPROM_MAGIC)
return false;
/* cut checksum bytes */
size -= 2;
memcpy(&csum, eeprom + size, sizeof(csum));
return (le16_to_cpu(csum) == slic_eeprom_csum(eeprom, size));
}
static int slic_read_eeprom(struct slic_device *sdev)
{
unsigned int devfn = PCI_FUNC(sdev->pdev->devfn);
struct slic_shmem *sm = &sdev->shmem;
struct slic_shmem_data *sm_data = sm->shmem_data;
const unsigned int MAX_LOOPS = 5000;
unsigned int codesize;
unsigned char *eeprom;
struct slic_upr *upr;
unsigned int i = 0;
dma_addr_t paddr;
int err = 0;
u8 *mac[2];
eeprom = dma_alloc_coherent(&sdev->pdev->dev, SLIC_EEPROM_SIZE,
&paddr, GFP_KERNEL);
if (!eeprom)
return -ENOMEM;
slic_write(sdev, SLIC_REG_ICR, SLIC_ICR_INT_OFF);
/* setup ISP temporarily */
slic_write(sdev, SLIC_REG_ISP, lower_32_bits(sm->isr_paddr));
err = slic_new_upr(sdev, SLIC_UPR_CONFIG, paddr);
if (!err) {
for (i = 0; i < MAX_LOOPS; i++) {
if (le32_to_cpu(sm_data->isr) & SLIC_ISR_UPC)
break;
mdelay(1);
}
if (i == MAX_LOOPS) {
dev_err(&sdev->pdev->dev,
"timed out while waiting for eeprom data\n");
err = -ETIMEDOUT;
}
upr = slic_dequeue_upr(sdev);
kfree(upr);
}
slic_write(sdev, SLIC_REG_ISP, 0);
slic_write(sdev, SLIC_REG_ISR, 0);
slic_flush_write(sdev);
if (err)
goto free_eeprom;
if (sdev->model == SLIC_MODEL_OASIS) {
struct slic_oasis_eeprom *oee;
oee = (struct slic_oasis_eeprom *)eeprom;
mac[0] = oee->mac;
mac[1] = oee->mac2;
codesize = le16_to_cpu(oee->eeprom_code_size);
} else {
struct slic_mojave_eeprom *mee;
mee = (struct slic_mojave_eeprom *)eeprom;
mac[0] = mee->mac;
mac[1] = mee->mac2;
codesize = le16_to_cpu(mee->eeprom_code_size);
}
if (!slic_eeprom_valid(eeprom, codesize)) {
dev_err(&sdev->pdev->dev, "invalid checksum in eeprom\n");
err = -EINVAL;
goto free_eeprom;
}
/* set mac address */
eth_hw_addr_set(sdev->netdev, mac[devfn]);
free_eeprom:
dma_free_coherent(&sdev->pdev->dev, SLIC_EEPROM_SIZE, eeprom, paddr);
return err;
}
static int slic_init(struct slic_device *sdev)
{
int err;
spin_lock_init(&sdev->upper_lock);
spin_lock_init(&sdev->link_lock);
INIT_LIST_HEAD(&sdev->upr_list.list);
spin_lock_init(&sdev->upr_list.lock);
u64_stats_init(&sdev->stats.syncp);
slic_card_reset(sdev);
err = slic_load_firmware(sdev);
if (err) {
dev_err(&sdev->pdev->dev, "failed to load firmware\n");
return err;
}
/* we need the shared memory to read EEPROM so set it up temporarily */
err = slic_init_shmem(sdev);
if (err) {
dev_err(&sdev->pdev->dev, "failed to init shared memory\n");
return err;
}
err = slic_read_eeprom(sdev);
if (err) {
dev_err(&sdev->pdev->dev, "failed to read eeprom\n");
goto free_sm;
}
slic_card_reset(sdev);
slic_free_shmem(sdev);
return 0;
free_sm:
slic_free_shmem(sdev);
return err;
}
static bool slic_is_fiber(unsigned short subdev)
{
switch (subdev) {
/* Mojave */
case PCI_SUBDEVICE_ID_ALACRITECH_1000X1F:
case PCI_SUBDEVICE_ID_ALACRITECH_SES1001F: fallthrough;
/* Oasis */
case PCI_SUBDEVICE_ID_ALACRITECH_SEN2002XF:
case PCI_SUBDEVICE_ID_ALACRITECH_SEN2001XF:
case PCI_SUBDEVICE_ID_ALACRITECH_SEN2104EF:
case PCI_SUBDEVICE_ID_ALACRITECH_SEN2102EF:
return true;
}
return false;
}
static void slic_configure_pci(struct pci_dev *pdev)
{
u16 old;
u16 cmd;
pci_read_config_word(pdev, PCI_COMMAND, &old);
cmd = old | PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
if (old != cmd)
pci_write_config_word(pdev, PCI_COMMAND, cmd);
}
static int slic_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct slic_device *sdev;
struct net_device *dev;
int err;
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "failed to enable PCI device\n");
return err;
}
pci_set_master(pdev);
pci_try_set_mwi(pdev);
slic_configure_pci(pdev);
err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "failed to setup DMA\n");
goto disable;
}
dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(&pdev->dev, "failed to obtain PCI regions\n");
goto disable;
}
dev = alloc_etherdev(sizeof(*sdev));
if (!dev) {
dev_err(&pdev->dev, "failed to alloc ethernet device\n");
err = -ENOMEM;
goto free_regions;
}
SET_NETDEV_DEV(dev, &pdev->dev);
pci_set_drvdata(pdev, dev);
dev->irq = pdev->irq;
dev->netdev_ops = &slic_netdev_ops;
dev->hw_features = NETIF_F_RXCSUM;
dev->features |= dev->hw_features;
dev->ethtool_ops = &slic_ethtool_ops;
sdev = netdev_priv(dev);
sdev->model = (pdev->device == PCI_DEVICE_ID_ALACRITECH_OASIS) ?
SLIC_MODEL_OASIS : SLIC_MODEL_MOJAVE;
sdev->is_fiber = slic_is_fiber(pdev->subsystem_device);
sdev->pdev = pdev;
sdev->netdev = dev;
sdev->regs = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!sdev->regs) {
dev_err(&pdev->dev, "failed to map registers\n");
err = -ENOMEM;
goto free_netdev;
}
err = slic_init(sdev);
if (err) {
dev_err(&pdev->dev, "failed to initialize driver\n");
goto unmap;
}
netif_napi_add(dev, &sdev->napi, slic_poll);
netif_carrier_off(dev);
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "failed to register net device: %i\n", err);
goto unmap;
}
return 0;
unmap:
iounmap(sdev->regs);
free_netdev:
free_netdev(dev);
free_regions:
pci_release_regions(pdev);
disable:
pci_disable_device(pdev);
return err;
}
static void slic_remove(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct slic_device *sdev = netdev_priv(dev);
unregister_netdev(dev);
iounmap(sdev->regs);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver slic_driver = {
.name = DRV_NAME,
.id_table = slic_id_tbl,
.probe = slic_probe,
.remove = slic_remove,
};
module_pci_driver(slic_driver);
MODULE_DESCRIPTION("Alacritech non-accelerated SLIC driver");
MODULE_AUTHOR("Lino Sanfilippo <LinoSanfilippo@gmx.de>");
MODULE_LICENSE("GPL");