| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * sched_clock() for unstable CPU clocks |
| * |
| * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra |
| * |
| * Updates and enhancements: |
| * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com> |
| * |
| * Based on code by: |
| * Ingo Molnar <mingo@redhat.com> |
| * Guillaume Chazarain <guichaz@gmail.com> |
| * |
| * |
| * What this file implements: |
| * |
| * cpu_clock(i) provides a fast (execution time) high resolution |
| * clock with bounded drift between CPUs. The value of cpu_clock(i) |
| * is monotonic for constant i. The timestamp returned is in nanoseconds. |
| * |
| * ######################### BIG FAT WARNING ########################## |
| * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # |
| * # go backwards !! # |
| * #################################################################### |
| * |
| * There is no strict promise about the base, although it tends to start |
| * at 0 on boot (but people really shouldn't rely on that). |
| * |
| * cpu_clock(i) -- can be used from any context, including NMI. |
| * local_clock() -- is cpu_clock() on the current CPU. |
| * |
| * sched_clock_cpu(i) |
| * |
| * How it is implemented: |
| * |
| * The implementation either uses sched_clock() when |
| * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the |
| * sched_clock() is assumed to provide these properties (mostly it means |
| * the architecture provides a globally synchronized highres time source). |
| * |
| * Otherwise it tries to create a semi stable clock from a mixture of other |
| * clocks, including: |
| * |
| * - GTOD (clock monotonic) |
| * - sched_clock() |
| * - explicit idle events |
| * |
| * We use GTOD as base and use sched_clock() deltas to improve resolution. The |
| * deltas are filtered to provide monotonicity and keeping it within an |
| * expected window. |
| * |
| * Furthermore, explicit sleep and wakeup hooks allow us to account for time |
| * that is otherwise invisible (TSC gets stopped). |
| * |
| */ |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| * This is default implementation. |
| * Architectures and sub-architectures can override this. |
| */ |
| notrace unsigned long long __weak sched_clock(void) |
| { |
| return (unsigned long long)(jiffies - INITIAL_JIFFIES) |
| * (NSEC_PER_SEC / HZ); |
| } |
| EXPORT_SYMBOL_GPL(sched_clock); |
| |
| static DEFINE_STATIC_KEY_FALSE(sched_clock_running); |
| |
| #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK |
| /* |
| * We must start with !__sched_clock_stable because the unstable -> stable |
| * transition is accurate, while the stable -> unstable transition is not. |
| * |
| * Similarly we start with __sched_clock_stable_early, thereby assuming we |
| * will become stable, such that there's only a single 1 -> 0 transition. |
| */ |
| static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable); |
| static int __sched_clock_stable_early = 1; |
| |
| /* |
| * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset |
| */ |
| __read_mostly u64 __sched_clock_offset; |
| static __read_mostly u64 __gtod_offset; |
| |
| struct sched_clock_data { |
| u64 tick_raw; |
| u64 tick_gtod; |
| u64 clock; |
| }; |
| |
| static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data); |
| |
| static __always_inline struct sched_clock_data *this_scd(void) |
| { |
| return this_cpu_ptr(&sched_clock_data); |
| } |
| |
| notrace static inline struct sched_clock_data *cpu_sdc(int cpu) |
| { |
| return &per_cpu(sched_clock_data, cpu); |
| } |
| |
| notrace int sched_clock_stable(void) |
| { |
| return static_branch_likely(&__sched_clock_stable); |
| } |
| |
| notrace static void __scd_stamp(struct sched_clock_data *scd) |
| { |
| scd->tick_gtod = ktime_get_ns(); |
| scd->tick_raw = sched_clock(); |
| } |
| |
| notrace static void __set_sched_clock_stable(void) |
| { |
| struct sched_clock_data *scd; |
| |
| /* |
| * Since we're still unstable and the tick is already running, we have |
| * to disable IRQs in order to get a consistent scd->tick* reading. |
| */ |
| local_irq_disable(); |
| scd = this_scd(); |
| /* |
| * Attempt to make the (initial) unstable->stable transition continuous. |
| */ |
| __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw); |
| local_irq_enable(); |
| |
| printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n", |
| scd->tick_gtod, __gtod_offset, |
| scd->tick_raw, __sched_clock_offset); |
| |
| static_branch_enable(&__sched_clock_stable); |
| tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE); |
| } |
| |
| /* |
| * If we ever get here, we're screwed, because we found out -- typically after |
| * the fact -- that TSC wasn't good. This means all our clocksources (including |
| * ktime) could have reported wrong values. |
| * |
| * What we do here is an attempt to fix up and continue sort of where we left |
| * off in a coherent manner. |
| * |
| * The only way to fully avoid random clock jumps is to boot with: |
| * "tsc=unstable". |
| */ |
| notrace static void __sched_clock_work(struct work_struct *work) |
| { |
| struct sched_clock_data *scd; |
| int cpu; |
| |
| /* take a current timestamp and set 'now' */ |
| preempt_disable(); |
| scd = this_scd(); |
| __scd_stamp(scd); |
| scd->clock = scd->tick_gtod + __gtod_offset; |
| preempt_enable(); |
| |
| /* clone to all CPUs */ |
| for_each_possible_cpu(cpu) |
| per_cpu(sched_clock_data, cpu) = *scd; |
| |
| printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n"); |
| printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n", |
| scd->tick_gtod, __gtod_offset, |
| scd->tick_raw, __sched_clock_offset); |
| |
| static_branch_disable(&__sched_clock_stable); |
| } |
| |
| static DECLARE_WORK(sched_clock_work, __sched_clock_work); |
| |
| notrace static void __clear_sched_clock_stable(void) |
| { |
| if (!sched_clock_stable()) |
| return; |
| |
| tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE); |
| schedule_work(&sched_clock_work); |
| } |
| |
| notrace void clear_sched_clock_stable(void) |
| { |
| __sched_clock_stable_early = 0; |
| |
| smp_mb(); /* matches sched_clock_init_late() */ |
| |
| if (static_key_count(&sched_clock_running.key) == 2) |
| __clear_sched_clock_stable(); |
| } |
| |
| notrace static void __sched_clock_gtod_offset(void) |
| { |
| struct sched_clock_data *scd = this_scd(); |
| |
| __scd_stamp(scd); |
| __gtod_offset = (scd->tick_raw + __sched_clock_offset) - scd->tick_gtod; |
| } |
| |
| void __init sched_clock_init(void) |
| { |
| /* |
| * Set __gtod_offset such that once we mark sched_clock_running, |
| * sched_clock_tick() continues where sched_clock() left off. |
| * |
| * Even if TSC is buggered, we're still UP at this point so it |
| * can't really be out of sync. |
| */ |
| local_irq_disable(); |
| __sched_clock_gtod_offset(); |
| local_irq_enable(); |
| |
| static_branch_inc(&sched_clock_running); |
| } |
| /* |
| * We run this as late_initcall() such that it runs after all built-in drivers, |
| * notably: acpi_processor and intel_idle, which can mark the TSC as unstable. |
| */ |
| static int __init sched_clock_init_late(void) |
| { |
| static_branch_inc(&sched_clock_running); |
| /* |
| * Ensure that it is impossible to not do a static_key update. |
| * |
| * Either {set,clear}_sched_clock_stable() must see sched_clock_running |
| * and do the update, or we must see their __sched_clock_stable_early |
| * and do the update, or both. |
| */ |
| smp_mb(); /* matches {set,clear}_sched_clock_stable() */ |
| |
| if (__sched_clock_stable_early) |
| __set_sched_clock_stable(); |
| |
| return 0; |
| } |
| late_initcall(sched_clock_init_late); |
| |
| /* |
| * min, max except they take wrapping into account |
| */ |
| |
| static __always_inline u64 wrap_min(u64 x, u64 y) |
| { |
| return (s64)(x - y) < 0 ? x : y; |
| } |
| |
| static __always_inline u64 wrap_max(u64 x, u64 y) |
| { |
| return (s64)(x - y) > 0 ? x : y; |
| } |
| |
| /* |
| * update the percpu scd from the raw @now value |
| * |
| * - filter out backward motion |
| * - use the GTOD tick value to create a window to filter crazy TSC values |
| */ |
| static __always_inline u64 sched_clock_local(struct sched_clock_data *scd) |
| { |
| u64 now, clock, old_clock, min_clock, max_clock, gtod; |
| s64 delta; |
| |
| again: |
| now = sched_clock(); |
| delta = now - scd->tick_raw; |
| if (unlikely(delta < 0)) |
| delta = 0; |
| |
| old_clock = scd->clock; |
| |
| /* |
| * scd->clock = clamp(scd->tick_gtod + delta, |
| * max(scd->tick_gtod, scd->clock), |
| * scd->tick_gtod + TICK_NSEC); |
| */ |
| |
| gtod = scd->tick_gtod + __gtod_offset; |
| clock = gtod + delta; |
| min_clock = wrap_max(gtod, old_clock); |
| max_clock = wrap_max(old_clock, gtod + TICK_NSEC); |
| |
| clock = wrap_max(clock, min_clock); |
| clock = wrap_min(clock, max_clock); |
| |
| if (!arch_try_cmpxchg64(&scd->clock, &old_clock, clock)) |
| goto again; |
| |
| return clock; |
| } |
| |
| noinstr u64 local_clock(void) |
| { |
| u64 clock; |
| |
| if (static_branch_likely(&__sched_clock_stable)) |
| return sched_clock() + __sched_clock_offset; |
| |
| preempt_disable_notrace(); |
| clock = sched_clock_local(this_scd()); |
| preempt_enable_notrace(); |
| |
| return clock; |
| } |
| EXPORT_SYMBOL_GPL(local_clock); |
| |
| static notrace u64 sched_clock_remote(struct sched_clock_data *scd) |
| { |
| struct sched_clock_data *my_scd = this_scd(); |
| u64 this_clock, remote_clock; |
| u64 *ptr, old_val, val; |
| |
| #if BITS_PER_LONG != 64 |
| again: |
| /* |
| * Careful here: The local and the remote clock values need to |
| * be read out atomic as we need to compare the values and |
| * then update either the local or the remote side. So the |
| * cmpxchg64 below only protects one readout. |
| * |
| * We must reread via sched_clock_local() in the retry case on |
| * 32-bit kernels as an NMI could use sched_clock_local() via the |
| * tracer and hit between the readout of |
| * the low 32-bit and the high 32-bit portion. |
| */ |
| this_clock = sched_clock_local(my_scd); |
| /* |
| * We must enforce atomic readout on 32-bit, otherwise the |
| * update on the remote CPU can hit inbetween the readout of |
| * the low 32-bit and the high 32-bit portion. |
| */ |
| remote_clock = cmpxchg64(&scd->clock, 0, 0); |
| #else |
| /* |
| * On 64-bit kernels the read of [my]scd->clock is atomic versus the |
| * update, so we can avoid the above 32-bit dance. |
| */ |
| sched_clock_local(my_scd); |
| again: |
| this_clock = my_scd->clock; |
| remote_clock = scd->clock; |
| #endif |
| |
| /* |
| * Use the opportunity that we have both locks |
| * taken to couple the two clocks: we take the |
| * larger time as the latest time for both |
| * runqueues. (this creates monotonic movement) |
| */ |
| if (likely((s64)(remote_clock - this_clock) < 0)) { |
| ptr = &scd->clock; |
| old_val = remote_clock; |
| val = this_clock; |
| } else { |
| /* |
| * Should be rare, but possible: |
| */ |
| ptr = &my_scd->clock; |
| old_val = this_clock; |
| val = remote_clock; |
| } |
| |
| if (!try_cmpxchg64(ptr, &old_val, val)) |
| goto again; |
| |
| return val; |
| } |
| |
| /* |
| * Similar to cpu_clock(), but requires local IRQs to be disabled. |
| * |
| * See cpu_clock(). |
| */ |
| notrace u64 sched_clock_cpu(int cpu) |
| { |
| struct sched_clock_data *scd; |
| u64 clock; |
| |
| if (sched_clock_stable()) |
| return sched_clock() + __sched_clock_offset; |
| |
| if (!static_branch_likely(&sched_clock_running)) |
| return sched_clock(); |
| |
| preempt_disable_notrace(); |
| scd = cpu_sdc(cpu); |
| |
| if (cpu != smp_processor_id()) |
| clock = sched_clock_remote(scd); |
| else |
| clock = sched_clock_local(scd); |
| preempt_enable_notrace(); |
| |
| return clock; |
| } |
| EXPORT_SYMBOL_GPL(sched_clock_cpu); |
| |
| notrace void sched_clock_tick(void) |
| { |
| struct sched_clock_data *scd; |
| |
| if (sched_clock_stable()) |
| return; |
| |
| if (!static_branch_likely(&sched_clock_running)) |
| return; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| scd = this_scd(); |
| __scd_stamp(scd); |
| sched_clock_local(scd); |
| } |
| |
| notrace void sched_clock_tick_stable(void) |
| { |
| if (!sched_clock_stable()) |
| return; |
| |
| /* |
| * Called under watchdog_lock. |
| * |
| * The watchdog just found this TSC to (still) be stable, so now is a |
| * good moment to update our __gtod_offset. Because once we find the |
| * TSC to be unstable, any computation will be computing crap. |
| */ |
| local_irq_disable(); |
| __sched_clock_gtod_offset(); |
| local_irq_enable(); |
| } |
| |
| /* |
| * We are going deep-idle (irqs are disabled): |
| */ |
| notrace void sched_clock_idle_sleep_event(void) |
| { |
| sched_clock_cpu(smp_processor_id()); |
| } |
| EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event); |
| |
| /* |
| * We just idled; resync with ktime. |
| */ |
| notrace void sched_clock_idle_wakeup_event(void) |
| { |
| unsigned long flags; |
| |
| if (sched_clock_stable()) |
| return; |
| |
| if (unlikely(timekeeping_suspended)) |
| return; |
| |
| local_irq_save(flags); |
| sched_clock_tick(); |
| local_irq_restore(flags); |
| } |
| EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); |
| |
| #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ |
| |
| void __init sched_clock_init(void) |
| { |
| static_branch_inc(&sched_clock_running); |
| local_irq_disable(); |
| generic_sched_clock_init(); |
| local_irq_enable(); |
| } |
| |
| notrace u64 sched_clock_cpu(int cpu) |
| { |
| if (!static_branch_likely(&sched_clock_running)) |
| return 0; |
| |
| return sched_clock(); |
| } |
| |
| #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ |
| |
| /* |
| * Running clock - returns the time that has elapsed while a guest has been |
| * running. |
| * On a guest this value should be local_clock minus the time the guest was |
| * suspended by the hypervisor (for any reason). |
| * On bare metal this function should return the same as local_clock. |
| * Architectures and sub-architectures can override this. |
| */ |
| notrace u64 __weak running_clock(void) |
| { |
| return local_clock(); |
| } |