| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * This contains encryption functions for per-file encryption. |
| * |
| * Copyright (C) 2015, Google, Inc. |
| * Copyright (C) 2015, Motorola Mobility |
| * |
| * Written by Michael Halcrow, 2014. |
| * |
| * Filename encryption additions |
| * Uday Savagaonkar, 2014 |
| * Encryption policy handling additions |
| * Ildar Muslukhov, 2014 |
| * Add fscrypt_pullback_bio_page() |
| * Jaegeuk Kim, 2015. |
| * |
| * This has not yet undergone a rigorous security audit. |
| * |
| * The usage of AES-XTS should conform to recommendations in NIST |
| * Special Publication 800-38E and IEEE P1619/D16. |
| */ |
| |
| #include <linux/pagemap.h> |
| #include <linux/mempool.h> |
| #include <linux/module.h> |
| #include <linux/scatterlist.h> |
| #include <linux/ratelimit.h> |
| #include <crypto/skcipher.h> |
| #include "fscrypt_private.h" |
| |
| static unsigned int num_prealloc_crypto_pages = 32; |
| |
| module_param(num_prealloc_crypto_pages, uint, 0444); |
| MODULE_PARM_DESC(num_prealloc_crypto_pages, |
| "Number of crypto pages to preallocate"); |
| |
| static mempool_t *fscrypt_bounce_page_pool = NULL; |
| |
| static struct workqueue_struct *fscrypt_read_workqueue; |
| static DEFINE_MUTEX(fscrypt_init_mutex); |
| |
| struct kmem_cache *fscrypt_info_cachep; |
| |
| void fscrypt_enqueue_decrypt_work(struct work_struct *work) |
| { |
| queue_work(fscrypt_read_workqueue, work); |
| } |
| EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work); |
| |
| struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags) |
| { |
| return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags); |
| } |
| |
| /** |
| * fscrypt_free_bounce_page() - free a ciphertext bounce page |
| * @bounce_page: the bounce page to free, or NULL |
| * |
| * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(), |
| * or by fscrypt_alloc_bounce_page() directly. |
| */ |
| void fscrypt_free_bounce_page(struct page *bounce_page) |
| { |
| if (!bounce_page) |
| return; |
| set_page_private(bounce_page, (unsigned long)NULL); |
| ClearPagePrivate(bounce_page); |
| mempool_free(bounce_page, fscrypt_bounce_page_pool); |
| } |
| EXPORT_SYMBOL(fscrypt_free_bounce_page); |
| |
| /* |
| * Generate the IV for the given logical block number within the given file. |
| * For filenames encryption, lblk_num == 0. |
| * |
| * Keep this in sync with fscrypt_limit_io_blocks(). fscrypt_limit_io_blocks() |
| * needs to know about any IV generation methods where the low bits of IV don't |
| * simply contain the lblk_num (e.g., IV_INO_LBLK_32). |
| */ |
| void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num, |
| const struct fscrypt_info *ci) |
| { |
| u8 flags = fscrypt_policy_flags(&ci->ci_policy); |
| |
| memset(iv, 0, ci->ci_mode->ivsize); |
| |
| if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { |
| WARN_ON_ONCE(lblk_num > U32_MAX); |
| WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX); |
| lblk_num |= (u64)ci->ci_inode->i_ino << 32; |
| } else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { |
| WARN_ON_ONCE(lblk_num > U32_MAX); |
| lblk_num = (u32)(ci->ci_hashed_ino + lblk_num); |
| } else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { |
| memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE); |
| } |
| iv->lblk_num = cpu_to_le64(lblk_num); |
| } |
| |
| /* Encrypt or decrypt a single filesystem block of file contents */ |
| int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw, |
| u64 lblk_num, struct page *src_page, |
| struct page *dest_page, unsigned int len, |
| unsigned int offs, gfp_t gfp_flags) |
| { |
| union fscrypt_iv iv; |
| struct skcipher_request *req = NULL; |
| DECLARE_CRYPTO_WAIT(wait); |
| struct scatterlist dst, src; |
| struct fscrypt_info *ci = inode->i_crypt_info; |
| struct crypto_skcipher *tfm = ci->ci_enc_key.tfm; |
| int res = 0; |
| |
| if (WARN_ON_ONCE(len <= 0)) |
| return -EINVAL; |
| if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0)) |
| return -EINVAL; |
| |
| fscrypt_generate_iv(&iv, lblk_num, ci); |
| |
| req = skcipher_request_alloc(tfm, gfp_flags); |
| if (!req) |
| return -ENOMEM; |
| |
| skcipher_request_set_callback( |
| req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| crypto_req_done, &wait); |
| |
| sg_init_table(&dst, 1); |
| sg_set_page(&dst, dest_page, len, offs); |
| sg_init_table(&src, 1); |
| sg_set_page(&src, src_page, len, offs); |
| skcipher_request_set_crypt(req, &src, &dst, len, &iv); |
| if (rw == FS_DECRYPT) |
| res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait); |
| else |
| res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); |
| skcipher_request_free(req); |
| if (res) { |
| fscrypt_err(inode, "%scryption failed for block %llu: %d", |
| (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res); |
| return res; |
| } |
| return 0; |
| } |
| |
| /** |
| * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a |
| * pagecache page |
| * @page: The locked pagecache page containing the block(s) to encrypt |
| * @len: Total size of the block(s) to encrypt. Must be a nonzero |
| * multiple of the filesystem's block size. |
| * @offs: Byte offset within @page of the first block to encrypt. Must be |
| * a multiple of the filesystem's block size. |
| * @gfp_flags: Memory allocation flags. See details below. |
| * |
| * A new bounce page is allocated, and the specified block(s) are encrypted into |
| * it. In the bounce page, the ciphertext block(s) will be located at the same |
| * offsets at which the plaintext block(s) were located in the source page; any |
| * other parts of the bounce page will be left uninitialized. However, normally |
| * blocksize == PAGE_SIZE and the whole page is encrypted at once. |
| * |
| * This is for use by the filesystem's ->writepages() method. |
| * |
| * The bounce page allocation is mempool-backed, so it will always succeed when |
| * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS. However, |
| * only the first page of each bio can be allocated this way. To prevent |
| * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used. |
| * |
| * Return: the new encrypted bounce page on success; an ERR_PTR() on failure |
| */ |
| struct page *fscrypt_encrypt_pagecache_blocks(struct page *page, |
| unsigned int len, |
| unsigned int offs, |
| gfp_t gfp_flags) |
| |
| { |
| const struct inode *inode = page->mapping->host; |
| const unsigned int blockbits = inode->i_blkbits; |
| const unsigned int blocksize = 1 << blockbits; |
| struct page *ciphertext_page; |
| u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) + |
| (offs >> blockbits); |
| unsigned int i; |
| int err; |
| |
| if (WARN_ON_ONCE(!PageLocked(page))) |
| return ERR_PTR(-EINVAL); |
| |
| if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize))) |
| return ERR_PTR(-EINVAL); |
| |
| ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags); |
| if (!ciphertext_page) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = offs; i < offs + len; i += blocksize, lblk_num++) { |
| err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, |
| page, ciphertext_page, |
| blocksize, i, gfp_flags); |
| if (err) { |
| fscrypt_free_bounce_page(ciphertext_page); |
| return ERR_PTR(err); |
| } |
| } |
| SetPagePrivate(ciphertext_page); |
| set_page_private(ciphertext_page, (unsigned long)page); |
| return ciphertext_page; |
| } |
| EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks); |
| |
| /** |
| * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place |
| * @inode: The inode to which this block belongs |
| * @page: The page containing the block to encrypt |
| * @len: Size of block to encrypt. Doesn't need to be a multiple of the |
| * fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE. |
| * @offs: Byte offset within @page at which the block to encrypt begins |
| * @lblk_num: Filesystem logical block number of the block, i.e. the 0-based |
| * number of the block within the file |
| * @gfp_flags: Memory allocation flags |
| * |
| * Encrypt a possibly-compressed filesystem block that is located in an |
| * arbitrary page, not necessarily in the original pagecache page. The @inode |
| * and @lblk_num must be specified, as they can't be determined from @page. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page, |
| unsigned int len, unsigned int offs, |
| u64 lblk_num, gfp_t gfp_flags) |
| { |
| return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page, |
| len, offs, gfp_flags); |
| } |
| EXPORT_SYMBOL(fscrypt_encrypt_block_inplace); |
| |
| /** |
| * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a |
| * pagecache page |
| * @page: The locked pagecache page containing the block(s) to decrypt |
| * @len: Total size of the block(s) to decrypt. Must be a nonzero |
| * multiple of the filesystem's block size. |
| * @offs: Byte offset within @page of the first block to decrypt. Must be |
| * a multiple of the filesystem's block size. |
| * |
| * The specified block(s) are decrypted in-place within the pagecache page, |
| * which must still be locked and not uptodate. Normally, blocksize == |
| * PAGE_SIZE and the whole page is decrypted at once. |
| * |
| * This is for use by the filesystem's ->readahead() method. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len, |
| unsigned int offs) |
| { |
| const struct inode *inode = page->mapping->host; |
| const unsigned int blockbits = inode->i_blkbits; |
| const unsigned int blocksize = 1 << blockbits; |
| u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) + |
| (offs >> blockbits); |
| unsigned int i; |
| int err; |
| |
| if (WARN_ON_ONCE(!PageLocked(page))) |
| return -EINVAL; |
| |
| if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize))) |
| return -EINVAL; |
| |
| for (i = offs; i < offs + len; i += blocksize, lblk_num++) { |
| err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, |
| page, blocksize, i, GFP_NOFS); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks); |
| |
| /** |
| * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place |
| * @inode: The inode to which this block belongs |
| * @page: The page containing the block to decrypt |
| * @len: Size of block to decrypt. Doesn't need to be a multiple of the |
| * fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE. |
| * @offs: Byte offset within @page at which the block to decrypt begins |
| * @lblk_num: Filesystem logical block number of the block, i.e. the 0-based |
| * number of the block within the file |
| * |
| * Decrypt a possibly-compressed filesystem block that is located in an |
| * arbitrary page, not necessarily in the original pagecache page. The @inode |
| * and @lblk_num must be specified, as they can't be determined from @page. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page, |
| unsigned int len, unsigned int offs, |
| u64 lblk_num) |
| { |
| return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page, |
| len, offs, GFP_NOFS); |
| } |
| EXPORT_SYMBOL(fscrypt_decrypt_block_inplace); |
| |
| /** |
| * fscrypt_initialize() - allocate major buffers for fs encryption. |
| * @cop_flags: fscrypt operations flags |
| * |
| * We only call this when we start accessing encrypted files, since it |
| * results in memory getting allocated that wouldn't otherwise be used. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| int fscrypt_initialize(unsigned int cop_flags) |
| { |
| int err = 0; |
| |
| /* No need to allocate a bounce page pool if this FS won't use it. */ |
| if (cop_flags & FS_CFLG_OWN_PAGES) |
| return 0; |
| |
| mutex_lock(&fscrypt_init_mutex); |
| if (fscrypt_bounce_page_pool) |
| goto out_unlock; |
| |
| err = -ENOMEM; |
| fscrypt_bounce_page_pool = |
| mempool_create_page_pool(num_prealloc_crypto_pages, 0); |
| if (!fscrypt_bounce_page_pool) |
| goto out_unlock; |
| |
| err = 0; |
| out_unlock: |
| mutex_unlock(&fscrypt_init_mutex); |
| return err; |
| } |
| |
| void fscrypt_msg(const struct inode *inode, const char *level, |
| const char *fmt, ...) |
| { |
| static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| struct va_format vaf; |
| va_list args; |
| |
| if (!__ratelimit(&rs)) |
| return; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| if (inode && inode->i_ino) |
| printk("%sfscrypt (%s, inode %lu): %pV\n", |
| level, inode->i_sb->s_id, inode->i_ino, &vaf); |
| else if (inode) |
| printk("%sfscrypt (%s): %pV\n", level, inode->i_sb->s_id, &vaf); |
| else |
| printk("%sfscrypt: %pV\n", level, &vaf); |
| va_end(args); |
| } |
| |
| /** |
| * fscrypt_init() - Set up for fs encryption. |
| * |
| * Return: 0 on success; -errno on failure |
| */ |
| static int __init fscrypt_init(void) |
| { |
| int err = -ENOMEM; |
| |
| /* |
| * Use an unbound workqueue to allow bios to be decrypted in parallel |
| * even when they happen to complete on the same CPU. This sacrifices |
| * locality, but it's worthwhile since decryption is CPU-intensive. |
| * |
| * Also use a high-priority workqueue to prioritize decryption work, |
| * which blocks reads from completing, over regular application tasks. |
| */ |
| fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue", |
| WQ_UNBOUND | WQ_HIGHPRI, |
| num_online_cpus()); |
| if (!fscrypt_read_workqueue) |
| goto fail; |
| |
| fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT); |
| if (!fscrypt_info_cachep) |
| goto fail_free_queue; |
| |
| err = fscrypt_init_keyring(); |
| if (err) |
| goto fail_free_info; |
| |
| return 0; |
| |
| fail_free_info: |
| kmem_cache_destroy(fscrypt_info_cachep); |
| fail_free_queue: |
| destroy_workqueue(fscrypt_read_workqueue); |
| fail: |
| return err; |
| } |
| late_initcall(fscrypt_init) |