| /* |
| * SN Platform GRU Driver |
| * |
| * FAULT HANDLER FOR GRU DETECTED TLB MISSES |
| * |
| * This file contains code that handles TLB misses within the GRU. |
| * These misses are reported either via interrupts or user polling of |
| * the user CB. |
| * |
| * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/spinlock.h> |
| #include <linux/mm.h> |
| #include <linux/hugetlb.h> |
| #include <linux/device.h> |
| #include <linux/io.h> |
| #include <linux/uaccess.h> |
| #include <linux/security.h> |
| #include <linux/prefetch.h> |
| #include <asm/pgtable.h> |
| #include "gru.h" |
| #include "grutables.h" |
| #include "grulib.h" |
| #include "gru_instructions.h" |
| #include <asm/uv/uv_hub.h> |
| |
| /* Return codes for vtop functions */ |
| #define VTOP_SUCCESS 0 |
| #define VTOP_INVALID -1 |
| #define VTOP_RETRY -2 |
| |
| |
| /* |
| * Test if a physical address is a valid GRU GSEG address |
| */ |
| static inline int is_gru_paddr(unsigned long paddr) |
| { |
| return paddr >= gru_start_paddr && paddr < gru_end_paddr; |
| } |
| |
| /* |
| * Find the vma of a GRU segment. Caller must hold mmap_sem. |
| */ |
| struct vm_area_struct *gru_find_vma(unsigned long vaddr) |
| { |
| struct vm_area_struct *vma; |
| |
| vma = find_vma(current->mm, vaddr); |
| if (vma && vma->vm_start <= vaddr && vma->vm_ops == &gru_vm_ops) |
| return vma; |
| return NULL; |
| } |
| |
| /* |
| * Find and lock the gts that contains the specified user vaddr. |
| * |
| * Returns: |
| * - *gts with the mmap_sem locked for read and the GTS locked. |
| * - NULL if vaddr invalid OR is not a valid GSEG vaddr. |
| */ |
| |
| static struct gru_thread_state *gru_find_lock_gts(unsigned long vaddr) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| struct gru_thread_state *gts = NULL; |
| |
| down_read(&mm->mmap_sem); |
| vma = gru_find_vma(vaddr); |
| if (vma) |
| gts = gru_find_thread_state(vma, TSID(vaddr, vma)); |
| if (gts) |
| mutex_lock(>s->ts_ctxlock); |
| else |
| up_read(&mm->mmap_sem); |
| return gts; |
| } |
| |
| static struct gru_thread_state *gru_alloc_locked_gts(unsigned long vaddr) |
| { |
| struct mm_struct *mm = current->mm; |
| struct vm_area_struct *vma; |
| struct gru_thread_state *gts = ERR_PTR(-EINVAL); |
| |
| down_write(&mm->mmap_sem); |
| vma = gru_find_vma(vaddr); |
| if (!vma) |
| goto err; |
| |
| gts = gru_alloc_thread_state(vma, TSID(vaddr, vma)); |
| if (IS_ERR(gts)) |
| goto err; |
| mutex_lock(>s->ts_ctxlock); |
| downgrade_write(&mm->mmap_sem); |
| return gts; |
| |
| err: |
| up_write(&mm->mmap_sem); |
| return gts; |
| } |
| |
| /* |
| * Unlock a GTS that was previously locked with gru_find_lock_gts(). |
| */ |
| static void gru_unlock_gts(struct gru_thread_state *gts) |
| { |
| mutex_unlock(>s->ts_ctxlock); |
| up_read(¤t->mm->mmap_sem); |
| } |
| |
| /* |
| * Set a CB.istatus to active using a user virtual address. This must be done |
| * just prior to a TFH RESTART. The new cb.istatus is an in-cache status ONLY. |
| * If the line is evicted, the status may be lost. The in-cache update |
| * is necessary to prevent the user from seeing a stale cb.istatus that will |
| * change as soon as the TFH restart is complete. Races may cause an |
| * occasional failure to clear the cb.istatus, but that is ok. |
| */ |
| static void gru_cb_set_istatus_active(struct gru_instruction_bits *cbk) |
| { |
| if (cbk) { |
| cbk->istatus = CBS_ACTIVE; |
| } |
| } |
| |
| /* |
| * Read & clear a TFM |
| * |
| * The GRU has an array of fault maps. A map is private to a cpu |
| * Only one cpu will be accessing a cpu's fault map. |
| * |
| * This function scans the cpu-private fault map & clears all bits that |
| * are set. The function returns a bitmap that indicates the bits that |
| * were cleared. Note that sense the maps may be updated asynchronously by |
| * the GRU, atomic operations must be used to clear bits. |
| */ |
| static void get_clear_fault_map(struct gru_state *gru, |
| struct gru_tlb_fault_map *imap, |
| struct gru_tlb_fault_map *dmap) |
| { |
| unsigned long i, k; |
| struct gru_tlb_fault_map *tfm; |
| |
| tfm = get_tfm_for_cpu(gru, gru_cpu_fault_map_id()); |
| prefetchw(tfm); /* Helps on hardware, required for emulator */ |
| for (i = 0; i < BITS_TO_LONGS(GRU_NUM_CBE); i++) { |
| k = tfm->fault_bits[i]; |
| if (k) |
| k = xchg(&tfm->fault_bits[i], 0UL); |
| imap->fault_bits[i] = k; |
| k = tfm->done_bits[i]; |
| if (k) |
| k = xchg(&tfm->done_bits[i], 0UL); |
| dmap->fault_bits[i] = k; |
| } |
| |
| /* |
| * Not functionally required but helps performance. (Required |
| * on emulator) |
| */ |
| gru_flush_cache(tfm); |
| } |
| |
| /* |
| * Atomic (interrupt context) & non-atomic (user context) functions to |
| * convert a vaddr into a physical address. The size of the page |
| * is returned in pageshift. |
| * returns: |
| * 0 - successful |
| * < 0 - error code |
| * 1 - (atomic only) try again in non-atomic context |
| */ |
| static int non_atomic_pte_lookup(struct vm_area_struct *vma, |
| unsigned long vaddr, int write, |
| unsigned long *paddr, int *pageshift) |
| { |
| struct page *page; |
| |
| #ifdef CONFIG_HUGETLB_PAGE |
| *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; |
| #else |
| *pageshift = PAGE_SHIFT; |
| #endif |
| if (get_user_pages(vaddr, 1, write ? FOLL_WRITE : 0, &page, NULL) <= 0) |
| return -EFAULT; |
| *paddr = page_to_phys(page); |
| put_page(page); |
| return 0; |
| } |
| |
| /* |
| * atomic_pte_lookup |
| * |
| * Convert a user virtual address to a physical address |
| * Only supports Intel large pages (2MB only) on x86_64. |
| * ZZZ - hugepage support is incomplete |
| * |
| * NOTE: mmap_sem is already held on entry to this function. This |
| * guarantees existence of the page tables. |
| */ |
| static int atomic_pte_lookup(struct vm_area_struct *vma, unsigned long vaddr, |
| int write, unsigned long *paddr, int *pageshift) |
| { |
| pgd_t *pgdp; |
| pmd_t *pmdp; |
| pud_t *pudp; |
| pte_t pte; |
| |
| pgdp = pgd_offset(vma->vm_mm, vaddr); |
| if (unlikely(pgd_none(*pgdp))) |
| goto err; |
| |
| pudp = pud_offset(pgdp, vaddr); |
| if (unlikely(pud_none(*pudp))) |
| goto err; |
| |
| pmdp = pmd_offset(pudp, vaddr); |
| if (unlikely(pmd_none(*pmdp))) |
| goto err; |
| #ifdef CONFIG_X86_64 |
| if (unlikely(pmd_large(*pmdp))) |
| pte = *(pte_t *) pmdp; |
| else |
| #endif |
| pte = *pte_offset_kernel(pmdp, vaddr); |
| |
| if (unlikely(!pte_present(pte) || |
| (write && (!pte_write(pte) || !pte_dirty(pte))))) |
| return 1; |
| |
| *paddr = pte_pfn(pte) << PAGE_SHIFT; |
| #ifdef CONFIG_HUGETLB_PAGE |
| *pageshift = is_vm_hugetlb_page(vma) ? HPAGE_SHIFT : PAGE_SHIFT; |
| #else |
| *pageshift = PAGE_SHIFT; |
| #endif |
| return 0; |
| |
| err: |
| return 1; |
| } |
| |
| static int gru_vtop(struct gru_thread_state *gts, unsigned long vaddr, |
| int write, int atomic, unsigned long *gpa, int *pageshift) |
| { |
| struct mm_struct *mm = gts->ts_mm; |
| struct vm_area_struct *vma; |
| unsigned long paddr; |
| int ret, ps; |
| |
| vma = find_vma(mm, vaddr); |
| if (!vma) |
| goto inval; |
| |
| /* |
| * Atomic lookup is faster & usually works even if called in non-atomic |
| * context. |
| */ |
| rmb(); /* Must/check ms_range_active before loading PTEs */ |
| ret = atomic_pte_lookup(vma, vaddr, write, &paddr, &ps); |
| if (ret) { |
| if (atomic) |
| goto upm; |
| if (non_atomic_pte_lookup(vma, vaddr, write, &paddr, &ps)) |
| goto inval; |
| } |
| if (is_gru_paddr(paddr)) |
| goto inval; |
| paddr = paddr & ~((1UL << ps) - 1); |
| *gpa = uv_soc_phys_ram_to_gpa(paddr); |
| *pageshift = ps; |
| return VTOP_SUCCESS; |
| |
| inval: |
| return VTOP_INVALID; |
| upm: |
| return VTOP_RETRY; |
| } |
| |
| |
| /* |
| * Flush a CBE from cache. The CBE is clean in the cache. Dirty the |
| * CBE cacheline so that the line will be written back to home agent. |
| * Otherwise the line may be silently dropped. This has no impact |
| * except on performance. |
| */ |
| static void gru_flush_cache_cbe(struct gru_control_block_extended *cbe) |
| { |
| if (unlikely(cbe)) { |
| cbe->cbrexecstatus = 0; /* make CL dirty */ |
| gru_flush_cache(cbe); |
| } |
| } |
| |
| /* |
| * Preload the TLB with entries that may be required. Currently, preloading |
| * is implemented only for BCOPY. Preload <tlb_preload_count> pages OR to |
| * the end of the bcopy tranfer, whichever is smaller. |
| */ |
| static void gru_preload_tlb(struct gru_state *gru, |
| struct gru_thread_state *gts, int atomic, |
| unsigned long fault_vaddr, int asid, int write, |
| unsigned char tlb_preload_count, |
| struct gru_tlb_fault_handle *tfh, |
| struct gru_control_block_extended *cbe) |
| { |
| unsigned long vaddr = 0, gpa; |
| int ret, pageshift; |
| |
| if (cbe->opccpy != OP_BCOPY) |
| return; |
| |
| if (fault_vaddr == cbe->cbe_baddr0) |
| vaddr = fault_vaddr + GRU_CACHE_LINE_BYTES * cbe->cbe_src_cl - 1; |
| else if (fault_vaddr == cbe->cbe_baddr1) |
| vaddr = fault_vaddr + (1 << cbe->xtypecpy) * cbe->cbe_nelemcur - 1; |
| |
| fault_vaddr &= PAGE_MASK; |
| vaddr &= PAGE_MASK; |
| vaddr = min(vaddr, fault_vaddr + tlb_preload_count * PAGE_SIZE); |
| |
| while (vaddr > fault_vaddr) { |
| ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); |
| if (ret || tfh_write_only(tfh, gpa, GAA_RAM, vaddr, asid, write, |
| GRU_PAGESIZE(pageshift))) |
| return; |
| gru_dbg(grudev, |
| "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, rw %d, ps %d, gpa 0x%lx\n", |
| atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, |
| vaddr, asid, write, pageshift, gpa); |
| vaddr -= PAGE_SIZE; |
| STAT(tlb_preload_page); |
| } |
| } |
| |
| /* |
| * Drop a TLB entry into the GRU. The fault is described by info in an TFH. |
| * Input: |
| * cb Address of user CBR. Null if not running in user context |
| * Return: |
| * 0 = dropin, exception, or switch to UPM successful |
| * 1 = range invalidate active |
| * < 0 = error code |
| * |
| */ |
| static int gru_try_dropin(struct gru_state *gru, |
| struct gru_thread_state *gts, |
| struct gru_tlb_fault_handle *tfh, |
| struct gru_instruction_bits *cbk) |
| { |
| struct gru_control_block_extended *cbe = NULL; |
| unsigned char tlb_preload_count = gts->ts_tlb_preload_count; |
| int pageshift = 0, asid, write, ret, atomic = !cbk, indexway; |
| unsigned long gpa = 0, vaddr = 0; |
| |
| /* |
| * NOTE: The GRU contains magic hardware that eliminates races between |
| * TLB invalidates and TLB dropins. If an invalidate occurs |
| * in the window between reading the TFH and the subsequent TLB dropin, |
| * the dropin is ignored. This eliminates the need for additional locks. |
| */ |
| |
| /* |
| * Prefetch the CBE if doing TLB preloading |
| */ |
| if (unlikely(tlb_preload_count)) { |
| cbe = gru_tfh_to_cbe(tfh); |
| prefetchw(cbe); |
| } |
| |
| /* |
| * Error if TFH state is IDLE or FMM mode & the user issuing a UPM call. |
| * Might be a hardware race OR a stupid user. Ignore FMM because FMM |
| * is a transient state. |
| */ |
| if (tfh->status != TFHSTATUS_EXCEPTION) { |
| gru_flush_cache(tfh); |
| sync_core(); |
| if (tfh->status != TFHSTATUS_EXCEPTION) |
| goto failnoexception; |
| STAT(tfh_stale_on_fault); |
| } |
| if (tfh->state == TFHSTATE_IDLE) |
| goto failidle; |
| if (tfh->state == TFHSTATE_MISS_FMM && cbk) |
| goto failfmm; |
| |
| write = (tfh->cause & TFHCAUSE_TLB_MOD) != 0; |
| vaddr = tfh->missvaddr; |
| asid = tfh->missasid; |
| indexway = tfh->indexway; |
| if (asid == 0) |
| goto failnoasid; |
| |
| rmb(); /* TFH must be cache resident before reading ms_range_active */ |
| |
| /* |
| * TFH is cache resident - at least briefly. Fail the dropin |
| * if a range invalidate is active. |
| */ |
| if (atomic_read(>s->ts_gms->ms_range_active)) |
| goto failactive; |
| |
| ret = gru_vtop(gts, vaddr, write, atomic, &gpa, &pageshift); |
| if (ret == VTOP_INVALID) |
| goto failinval; |
| if (ret == VTOP_RETRY) |
| goto failupm; |
| |
| if (!(gts->ts_sizeavail & GRU_SIZEAVAIL(pageshift))) { |
| gts->ts_sizeavail |= GRU_SIZEAVAIL(pageshift); |
| if (atomic || !gru_update_cch(gts)) { |
| gts->ts_force_cch_reload = 1; |
| goto failupm; |
| } |
| } |
| |
| if (unlikely(cbe) && pageshift == PAGE_SHIFT) { |
| gru_preload_tlb(gru, gts, atomic, vaddr, asid, write, tlb_preload_count, tfh, cbe); |
| gru_flush_cache_cbe(cbe); |
| } |
| |
| gru_cb_set_istatus_active(cbk); |
| gts->ustats.tlbdropin++; |
| tfh_write_restart(tfh, gpa, GAA_RAM, vaddr, asid, write, |
| GRU_PAGESIZE(pageshift)); |
| gru_dbg(grudev, |
| "%s: gid %d, gts 0x%p, tfh 0x%p, vaddr 0x%lx, asid 0x%x, indexway 0x%x," |
| " rw %d, ps %d, gpa 0x%lx\n", |
| atomic ? "atomic" : "non-atomic", gru->gs_gid, gts, tfh, vaddr, asid, |
| indexway, write, pageshift, gpa); |
| STAT(tlb_dropin); |
| return 0; |
| |
| failnoasid: |
| /* No asid (delayed unload). */ |
| STAT(tlb_dropin_fail_no_asid); |
| gru_dbg(grudev, "FAILED no_asid tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); |
| if (!cbk) |
| tfh_user_polling_mode(tfh); |
| else |
| gru_flush_cache(tfh); |
| gru_flush_cache_cbe(cbe); |
| return -EAGAIN; |
| |
| failupm: |
| /* Atomic failure switch CBR to UPM */ |
| tfh_user_polling_mode(tfh); |
| gru_flush_cache_cbe(cbe); |
| STAT(tlb_dropin_fail_upm); |
| gru_dbg(grudev, "FAILED upm tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); |
| return 1; |
| |
| failfmm: |
| /* FMM state on UPM call */ |
| gru_flush_cache(tfh); |
| gru_flush_cache_cbe(cbe); |
| STAT(tlb_dropin_fail_fmm); |
| gru_dbg(grudev, "FAILED fmm tfh: 0x%p, state %d\n", tfh, tfh->state); |
| return 0; |
| |
| failnoexception: |
| /* TFH status did not show exception pending */ |
| gru_flush_cache(tfh); |
| gru_flush_cache_cbe(cbe); |
| if (cbk) |
| gru_flush_cache(cbk); |
| STAT(tlb_dropin_fail_no_exception); |
| gru_dbg(grudev, "FAILED non-exception tfh: 0x%p, status %d, state %d\n", |
| tfh, tfh->status, tfh->state); |
| return 0; |
| |
| failidle: |
| /* TFH state was idle - no miss pending */ |
| gru_flush_cache(tfh); |
| gru_flush_cache_cbe(cbe); |
| if (cbk) |
| gru_flush_cache(cbk); |
| STAT(tlb_dropin_fail_idle); |
| gru_dbg(grudev, "FAILED idle tfh: 0x%p, state %d\n", tfh, tfh->state); |
| return 0; |
| |
| failinval: |
| /* All errors (atomic & non-atomic) switch CBR to EXCEPTION state */ |
| tfh_exception(tfh); |
| gru_flush_cache_cbe(cbe); |
| STAT(tlb_dropin_fail_invalid); |
| gru_dbg(grudev, "FAILED inval tfh: 0x%p, vaddr 0x%lx\n", tfh, vaddr); |
| return -EFAULT; |
| |
| failactive: |
| /* Range invalidate active. Switch to UPM iff atomic */ |
| if (!cbk) |
| tfh_user_polling_mode(tfh); |
| else |
| gru_flush_cache(tfh); |
| gru_flush_cache_cbe(cbe); |
| STAT(tlb_dropin_fail_range_active); |
| gru_dbg(grudev, "FAILED range active: tfh 0x%p, vaddr 0x%lx\n", |
| tfh, vaddr); |
| return 1; |
| } |
| |
| /* |
| * Process an external interrupt from the GRU. This interrupt is |
| * caused by a TLB miss. |
| * Note that this is the interrupt handler that is registered with linux |
| * interrupt handlers. |
| */ |
| static irqreturn_t gru_intr(int chiplet, int blade) |
| { |
| struct gru_state *gru; |
| struct gru_tlb_fault_map imap, dmap; |
| struct gru_thread_state *gts; |
| struct gru_tlb_fault_handle *tfh = NULL; |
| struct completion *cmp; |
| int cbrnum, ctxnum; |
| |
| STAT(intr); |
| |
| gru = &gru_base[blade]->bs_grus[chiplet]; |
| if (!gru) { |
| dev_err(grudev, "GRU: invalid interrupt: cpu %d, chiplet %d\n", |
| raw_smp_processor_id(), chiplet); |
| return IRQ_NONE; |
| } |
| get_clear_fault_map(gru, &imap, &dmap); |
| gru_dbg(grudev, |
| "cpu %d, chiplet %d, gid %d, imap %016lx %016lx, dmap %016lx %016lx\n", |
| smp_processor_id(), chiplet, gru->gs_gid, |
| imap.fault_bits[0], imap.fault_bits[1], |
| dmap.fault_bits[0], dmap.fault_bits[1]); |
| |
| for_each_cbr_in_tfm(cbrnum, dmap.fault_bits) { |
| STAT(intr_cbr); |
| cmp = gru->gs_blade->bs_async_wq; |
| if (cmp) |
| complete(cmp); |
| gru_dbg(grudev, "gid %d, cbr_done %d, done %d\n", |
| gru->gs_gid, cbrnum, cmp ? cmp->done : -1); |
| } |
| |
| for_each_cbr_in_tfm(cbrnum, imap.fault_bits) { |
| STAT(intr_tfh); |
| tfh = get_tfh_by_index(gru, cbrnum); |
| prefetchw(tfh); /* Helps on hdw, required for emulator */ |
| |
| /* |
| * When hardware sets a bit in the faultmap, it implicitly |
| * locks the GRU context so that it cannot be unloaded. |
| * The gts cannot change until a TFH start/writestart command |
| * is issued. |
| */ |
| ctxnum = tfh->ctxnum; |
| gts = gru->gs_gts[ctxnum]; |
| |
| /* Spurious interrupts can cause this. Ignore. */ |
| if (!gts) { |
| STAT(intr_spurious); |
| continue; |
| } |
| |
| /* |
| * This is running in interrupt context. Trylock the mmap_sem. |
| * If it fails, retry the fault in user context. |
| */ |
| gts->ustats.fmm_tlbmiss++; |
| if (!gts->ts_force_cch_reload && |
| down_read_trylock(>s->ts_mm->mmap_sem)) { |
| gru_try_dropin(gru, gts, tfh, NULL); |
| up_read(>s->ts_mm->mmap_sem); |
| } else { |
| tfh_user_polling_mode(tfh); |
| STAT(intr_mm_lock_failed); |
| } |
| } |
| return IRQ_HANDLED; |
| } |
| |
| irqreturn_t gru0_intr(int irq, void *dev_id) |
| { |
| return gru_intr(0, uv_numa_blade_id()); |
| } |
| |
| irqreturn_t gru1_intr(int irq, void *dev_id) |
| { |
| return gru_intr(1, uv_numa_blade_id()); |
| } |
| |
| irqreturn_t gru_intr_mblade(int irq, void *dev_id) |
| { |
| int blade; |
| |
| for_each_possible_blade(blade) { |
| if (uv_blade_nr_possible_cpus(blade)) |
| continue; |
| gru_intr(0, blade); |
| gru_intr(1, blade); |
| } |
| return IRQ_HANDLED; |
| } |
| |
| |
| static int gru_user_dropin(struct gru_thread_state *gts, |
| struct gru_tlb_fault_handle *tfh, |
| void *cb) |
| { |
| struct gru_mm_struct *gms = gts->ts_gms; |
| int ret; |
| |
| gts->ustats.upm_tlbmiss++; |
| while (1) { |
| wait_event(gms->ms_wait_queue, |
| atomic_read(&gms->ms_range_active) == 0); |
| prefetchw(tfh); /* Helps on hdw, required for emulator */ |
| ret = gru_try_dropin(gts->ts_gru, gts, tfh, cb); |
| if (ret <= 0) |
| return ret; |
| STAT(call_os_wait_queue); |
| } |
| } |
| |
| /* |
| * This interface is called as a result of a user detecting a "call OS" bit |
| * in a user CB. Normally means that a TLB fault has occurred. |
| * cb - user virtual address of the CB |
| */ |
| int gru_handle_user_call_os(unsigned long cb) |
| { |
| struct gru_tlb_fault_handle *tfh; |
| struct gru_thread_state *gts; |
| void *cbk; |
| int ucbnum, cbrnum, ret = -EINVAL; |
| |
| STAT(call_os); |
| |
| /* sanity check the cb pointer */ |
| ucbnum = get_cb_number((void *)cb); |
| if ((cb & (GRU_HANDLE_STRIDE - 1)) || ucbnum >= GRU_NUM_CB) |
| return -EINVAL; |
| |
| gts = gru_find_lock_gts(cb); |
| if (!gts) |
| return -EINVAL; |
| gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); |
| |
| if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) |
| goto exit; |
| |
| gru_check_context_placement(gts); |
| |
| /* |
| * CCH may contain stale data if ts_force_cch_reload is set. |
| */ |
| if (gts->ts_gru && gts->ts_force_cch_reload) { |
| gts->ts_force_cch_reload = 0; |
| gru_update_cch(gts); |
| } |
| |
| ret = -EAGAIN; |
| cbrnum = thread_cbr_number(gts, ucbnum); |
| if (gts->ts_gru) { |
| tfh = get_tfh_by_index(gts->ts_gru, cbrnum); |
| cbk = get_gseg_base_address_cb(gts->ts_gru->gs_gru_base_vaddr, |
| gts->ts_ctxnum, ucbnum); |
| ret = gru_user_dropin(gts, tfh, cbk); |
| } |
| exit: |
| gru_unlock_gts(gts); |
| return ret; |
| } |
| |
| /* |
| * Fetch the exception detail information for a CB that terminated with |
| * an exception. |
| */ |
| int gru_get_exception_detail(unsigned long arg) |
| { |
| struct control_block_extended_exc_detail excdet; |
| struct gru_control_block_extended *cbe; |
| struct gru_thread_state *gts; |
| int ucbnum, cbrnum, ret; |
| |
| STAT(user_exception); |
| if (copy_from_user(&excdet, (void __user *)arg, sizeof(excdet))) |
| return -EFAULT; |
| |
| gts = gru_find_lock_gts(excdet.cb); |
| if (!gts) |
| return -EINVAL; |
| |
| gru_dbg(grudev, "address 0x%lx, gid %d, gts 0x%p\n", excdet.cb, gts->ts_gru ? gts->ts_gru->gs_gid : -1, gts); |
| ucbnum = get_cb_number((void *)excdet.cb); |
| if (ucbnum >= gts->ts_cbr_au_count * GRU_CBR_AU_SIZE) { |
| ret = -EINVAL; |
| } else if (gts->ts_gru) { |
| cbrnum = thread_cbr_number(gts, ucbnum); |
| cbe = get_cbe_by_index(gts->ts_gru, cbrnum); |
| gru_flush_cache(cbe); /* CBE not coherent */ |
| sync_core(); /* make sure we are have current data */ |
| excdet.opc = cbe->opccpy; |
| excdet.exopc = cbe->exopccpy; |
| excdet.ecause = cbe->ecause; |
| excdet.exceptdet0 = cbe->idef1upd; |
| excdet.exceptdet1 = cbe->idef3upd; |
| excdet.cbrstate = cbe->cbrstate; |
| excdet.cbrexecstatus = cbe->cbrexecstatus; |
| gru_flush_cache_cbe(cbe); |
| ret = 0; |
| } else { |
| ret = -EAGAIN; |
| } |
| gru_unlock_gts(gts); |
| |
| gru_dbg(grudev, |
| "cb 0x%lx, op %d, exopc %d, cbrstate %d, cbrexecstatus 0x%x, ecause 0x%x, " |
| "exdet0 0x%lx, exdet1 0x%x\n", |
| excdet.cb, excdet.opc, excdet.exopc, excdet.cbrstate, excdet.cbrexecstatus, |
| excdet.ecause, excdet.exceptdet0, excdet.exceptdet1); |
| if (!ret && copy_to_user((void __user *)arg, &excdet, sizeof(excdet))) |
| ret = -EFAULT; |
| return ret; |
| } |
| |
| /* |
| * User request to unload a context. Content is saved for possible reload. |
| */ |
| static int gru_unload_all_contexts(void) |
| { |
| struct gru_thread_state *gts; |
| struct gru_state *gru; |
| int gid, ctxnum; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| foreach_gid(gid) { |
| gru = GID_TO_GRU(gid); |
| spin_lock(&gru->gs_lock); |
| for (ctxnum = 0; ctxnum < GRU_NUM_CCH; ctxnum++) { |
| gts = gru->gs_gts[ctxnum]; |
| if (gts && mutex_trylock(>s->ts_ctxlock)) { |
| spin_unlock(&gru->gs_lock); |
| gru_unload_context(gts, 1); |
| mutex_unlock(>s->ts_ctxlock); |
| spin_lock(&gru->gs_lock); |
| } |
| } |
| spin_unlock(&gru->gs_lock); |
| } |
| return 0; |
| } |
| |
| int gru_user_unload_context(unsigned long arg) |
| { |
| struct gru_thread_state *gts; |
| struct gru_unload_context_req req; |
| |
| STAT(user_unload_context); |
| if (copy_from_user(&req, (void __user *)arg, sizeof(req))) |
| return -EFAULT; |
| |
| gru_dbg(grudev, "gseg 0x%lx\n", req.gseg); |
| |
| if (!req.gseg) |
| return gru_unload_all_contexts(); |
| |
| gts = gru_find_lock_gts(req.gseg); |
| if (!gts) |
| return -EINVAL; |
| |
| if (gts->ts_gru) |
| gru_unload_context(gts, 1); |
| gru_unlock_gts(gts); |
| |
| return 0; |
| } |
| |
| /* |
| * User request to flush a range of virtual addresses from the GRU TLB |
| * (Mainly for testing). |
| */ |
| int gru_user_flush_tlb(unsigned long arg) |
| { |
| struct gru_thread_state *gts; |
| struct gru_flush_tlb_req req; |
| struct gru_mm_struct *gms; |
| |
| STAT(user_flush_tlb); |
| if (copy_from_user(&req, (void __user *)arg, sizeof(req))) |
| return -EFAULT; |
| |
| gru_dbg(grudev, "gseg 0x%lx, vaddr 0x%lx, len 0x%lx\n", req.gseg, |
| req.vaddr, req.len); |
| |
| gts = gru_find_lock_gts(req.gseg); |
| if (!gts) |
| return -EINVAL; |
| |
| gms = gts->ts_gms; |
| gru_unlock_gts(gts); |
| gru_flush_tlb_range(gms, req.vaddr, req.len); |
| |
| return 0; |
| } |
| |
| /* |
| * Fetch GSEG statisticss |
| */ |
| long gru_get_gseg_statistics(unsigned long arg) |
| { |
| struct gru_thread_state *gts; |
| struct gru_get_gseg_statistics_req req; |
| |
| if (copy_from_user(&req, (void __user *)arg, sizeof(req))) |
| return -EFAULT; |
| |
| /* |
| * The library creates arrays of contexts for threaded programs. |
| * If no gts exists in the array, the context has never been used & all |
| * statistics are implicitly 0. |
| */ |
| gts = gru_find_lock_gts(req.gseg); |
| if (gts) { |
| memcpy(&req.stats, >s->ustats, sizeof(gts->ustats)); |
| gru_unlock_gts(gts); |
| } else { |
| memset(&req.stats, 0, sizeof(gts->ustats)); |
| } |
| |
| if (copy_to_user((void __user *)arg, &req, sizeof(req))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /* |
| * Register the current task as the user of the GSEG slice. |
| * Needed for TLB fault interrupt targeting. |
| */ |
| int gru_set_context_option(unsigned long arg) |
| { |
| struct gru_thread_state *gts; |
| struct gru_set_context_option_req req; |
| int ret = 0; |
| |
| STAT(set_context_option); |
| if (copy_from_user(&req, (void __user *)arg, sizeof(req))) |
| return -EFAULT; |
| gru_dbg(grudev, "op %d, gseg 0x%lx, value1 0x%lx\n", req.op, req.gseg, req.val1); |
| |
| gts = gru_find_lock_gts(req.gseg); |
| if (!gts) { |
| gts = gru_alloc_locked_gts(req.gseg); |
| if (IS_ERR(gts)) |
| return PTR_ERR(gts); |
| } |
| |
| switch (req.op) { |
| case sco_blade_chiplet: |
| /* Select blade/chiplet for GRU context */ |
| if (req.val0 < -1 || req.val0 >= GRU_CHIPLETS_PER_HUB || |
| req.val1 < -1 || req.val1 >= GRU_MAX_BLADES || |
| (req.val1 >= 0 && !gru_base[req.val1])) { |
| ret = -EINVAL; |
| } else { |
| gts->ts_user_blade_id = req.val1; |
| gts->ts_user_chiplet_id = req.val0; |
| gru_check_context_placement(gts); |
| } |
| break; |
| case sco_gseg_owner: |
| /* Register the current task as the GSEG owner */ |
| gts->ts_tgid_owner = current->tgid; |
| break; |
| case sco_cch_req_slice: |
| /* Set the CCH slice option */ |
| gts->ts_cch_req_slice = req.val1 & 3; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| gru_unlock_gts(gts); |
| |
| return ret; |
| } |