| /* |
| * User-space Probes (UProbes) for sparc |
| * |
| * Copyright (C) 2013 Oracle Inc. |
| * |
| * This program is free software: you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation, either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| * |
| * Authors: |
| * Jose E. Marchesi <jose.marchesi@oracle.com> |
| * Eric Saint Etienne <eric.saint.etienne@oracle.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/highmem.h> |
| #include <linux/uprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/sched.h> /* For struct task_struct */ |
| #include <linux/kdebug.h> |
| |
| #include <asm/cacheflush.h> |
| #include <asm/uaccess.h> |
| |
| /* Compute the address of the breakpoint instruction and return it. |
| * |
| * Note that uprobe_get_swbp_addr is defined as a weak symbol in |
| * kernel/events/uprobe.c. |
| */ |
| unsigned long uprobe_get_swbp_addr(struct pt_regs *regs) |
| { |
| return instruction_pointer(regs); |
| } |
| |
| static void copy_to_page(struct page *page, unsigned long vaddr, |
| const void *src, int len) |
| { |
| void *kaddr = kmap_atomic(page); |
| |
| memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); |
| kunmap_atomic(kaddr); |
| } |
| |
| /* Fill in the xol area with the probed instruction followed by the |
| * single-step trap. Some fixups in the copied instruction are |
| * performed at this point. |
| * |
| * Note that uprobe_xol_copy is defined as a weak symbol in |
| * kernel/events/uprobe.c. |
| */ |
| void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, |
| void *src, unsigned long len) |
| { |
| const u32 stp_insn = UPROBE_STP_INSN; |
| u32 insn = *(u32 *) src; |
| |
| /* Branches annulling their delay slot must be fixed to not do |
| * so. Clearing the annul bit on these instructions we can be |
| * sure the single-step breakpoint in the XOL slot will be |
| * executed. |
| */ |
| |
| u32 op = (insn >> 30) & 0x3; |
| u32 op2 = (insn >> 22) & 0x7; |
| |
| if (op == 0 && |
| (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) && |
| (insn & ANNUL_BIT) == ANNUL_BIT) |
| insn &= ~ANNUL_BIT; |
| |
| copy_to_page(page, vaddr, &insn, len); |
| copy_to_page(page, vaddr+len, &stp_insn, 4); |
| } |
| |
| |
| /* Instruction analysis/validity. |
| * |
| * This function returns 0 on success or a -ve number on error. |
| */ |
| int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, |
| struct mm_struct *mm, unsigned long addr) |
| { |
| /* Any unsupported instruction? Then return -EINVAL */ |
| return 0; |
| } |
| |
| /* If INSN is a relative control transfer instruction, return the |
| * corrected branch destination value. |
| * |
| * Note that regs->tpc and regs->tnpc still hold the values of the |
| * program counters at the time of the single-step trap due to the |
| * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4. |
| * |
| */ |
| static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask, |
| struct pt_regs *regs) |
| { |
| /* Branch not taken, no mods necessary. */ |
| if (regs->tnpc == regs->tpc + 0x4UL) |
| return utask->autask.saved_tnpc + 0x4UL; |
| |
| /* The three cases are call, branch w/prediction, |
| * and traditional branch. |
| */ |
| if ((insn & 0xc0000000) == 0x40000000 || |
| (insn & 0xc1c00000) == 0x00400000 || |
| (insn & 0xc1c00000) == 0x00800000) { |
| unsigned long real_pc = (unsigned long) utask->vaddr; |
| unsigned long ixol_addr = utask->xol_vaddr; |
| |
| /* The instruction did all the work for us |
| * already, just apply the offset to the correct |
| * instruction location. |
| */ |
| return (real_pc + (regs->tnpc - ixol_addr)); |
| } |
| |
| /* It is jmpl or some other absolute PC modification instruction, |
| * leave NPC as-is. |
| */ |
| return regs->tnpc; |
| } |
| |
| /* If INSN is an instruction which writes its PC location |
| * into a destination register, fix that up. |
| */ |
| static int retpc_fixup(struct pt_regs *regs, u32 insn, |
| unsigned long real_pc) |
| { |
| unsigned long *slot = NULL; |
| int rc = 0; |
| |
| /* Simplest case is 'call', which always uses %o7 */ |
| if ((insn & 0xc0000000) == 0x40000000) |
| slot = ®s->u_regs[UREG_I7]; |
| |
| /* 'jmpl' encodes the register inside of the opcode */ |
| if ((insn & 0xc1f80000) == 0x81c00000) { |
| unsigned long rd = ((insn >> 25) & 0x1f); |
| |
| if (rd <= 15) { |
| slot = ®s->u_regs[rd]; |
| } else { |
| unsigned long fp = regs->u_regs[UREG_FP]; |
| /* Hard case, it goes onto the stack. */ |
| flushw_all(); |
| |
| rd -= 16; |
| if (test_thread_64bit_stack(fp)) { |
| unsigned long __user *uslot = |
| (unsigned long __user *) (fp + STACK_BIAS) + rd; |
| rc = __put_user(real_pc, uslot); |
| } else { |
| unsigned int __user *uslot = (unsigned int |
| __user *) fp + rd; |
| rc = __put_user((u32) real_pc, uslot); |
| } |
| } |
| } |
| if (slot != NULL) |
| *slot = real_pc; |
| return rc; |
| } |
| |
| /* Single-stepping can be avoided for certain instructions: NOPs and |
| * instructions that can be emulated. This function determines |
| * whether the instruction where the uprobe is installed falls in one |
| * of these cases and emulates it. |
| * |
| * This function returns true if the single-stepping can be skipped, |
| * false otherwise. |
| */ |
| bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| /* We currently only emulate NOP instructions. |
| */ |
| |
| if (auprobe->ixol == (1 << 24)) { |
| regs->tnpc += 4; |
| regs->tpc += 4; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Prepare to execute out of line. At this point |
| * current->utask->xol_vaddr points to an allocated XOL slot properly |
| * initialized with the original instruction and the single-stepping |
| * trap instruction. |
| * |
| * This function returns 0 on success, any other number on error. |
| */ |
| int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| struct uprobe_task *utask = current->utask; |
| struct arch_uprobe_task *autask = ¤t->utask->autask; |
| |
| /* Save the current program counters so they can be restored |
| * later. |
| */ |
| autask->saved_tpc = regs->tpc; |
| autask->saved_tnpc = regs->tnpc; |
| |
| /* Adjust PC and NPC so the first instruction in the XOL slot |
| * will be executed by the user task. |
| */ |
| instruction_pointer_set(regs, utask->xol_vaddr); |
| |
| return 0; |
| } |
| |
| /* Prepare to resume execution after the single-step. Called after |
| * single-stepping. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. |
| * |
| * This function returns 0 on success, any other number on error. |
| */ |
| int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| struct uprobe_task *utask = current->utask; |
| struct arch_uprobe_task *autask = &utask->autask; |
| u32 insn = auprobe->ixol; |
| int rc = 0; |
| |
| if (utask->state == UTASK_SSTEP_ACK) { |
| regs->tnpc = relbranch_fixup(insn, utask, regs); |
| regs->tpc = autask->saved_tnpc; |
| rc = retpc_fixup(regs, insn, (unsigned long) utask->vaddr); |
| } else { |
| regs->tnpc = utask->vaddr+4; |
| regs->tpc = autask->saved_tnpc+4; |
| } |
| return rc; |
| } |
| |
| /* Handler for uprobe traps. This is called from the traps table and |
| * triggers the proper die notification. |
| */ |
| asmlinkage void uprobe_trap(struct pt_regs *regs, |
| unsigned long trap_level) |
| { |
| BUG_ON(trap_level != 0x173 && trap_level != 0x174); |
| |
| /* We are only interested in user-mode code. Uprobe traps |
| * shall not be present in kernel code. |
| */ |
| if (!user_mode(regs)) { |
| local_irq_enable(); |
| bad_trap(regs, trap_level); |
| return; |
| } |
| |
| /* trap_level == 0x173 --> ta 0x73 |
| * trap_level == 0x174 --> ta 0x74 |
| */ |
| if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP, |
| (trap_level == 0x173) ? "bpt" : "sstep", |
| regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP) |
| bad_trap(regs, trap_level); |
| } |
| |
| /* Callback routine for handling die notifications. |
| */ |
| int arch_uprobe_exception_notify(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| int ret = NOTIFY_DONE; |
| struct die_args *args = (struct die_args *)data; |
| |
| /* We are only interested in userspace traps */ |
| if (args->regs && !user_mode(args->regs)) |
| return NOTIFY_DONE; |
| |
| switch (val) { |
| case DIE_BPT: |
| if (uprobe_pre_sstep_notifier(args->regs)) |
| ret = NOTIFY_STOP; |
| break; |
| |
| case DIE_SSTEP: |
| if (uprobe_post_sstep_notifier(args->regs)) |
| ret = NOTIFY_STOP; |
| |
| default: |
| break; |
| } |
| |
| return ret; |
| } |
| |
| /* This function gets called when a XOL instruction either gets |
| * trapped or the thread has a fatal signal, so reset the instruction |
| * pointer to its probed address. |
| */ |
| void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs) |
| { |
| struct uprobe_task *utask = current->utask; |
| |
| instruction_pointer_set(regs, utask->vaddr); |
| } |
| |
| /* If xol insn itself traps and generates a signal(Say, |
| * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped |
| * instruction jumps back to its own address. |
| */ |
| bool arch_uprobe_xol_was_trapped(struct task_struct *t) |
| { |
| return false; |
| } |
| |
| unsigned long |
| arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, |
| struct pt_regs *regs) |
| { |
| unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7]; |
| |
| regs->u_regs[UREG_I7] = trampoline_vaddr-8; |
| |
| return orig_ret_vaddr + 8; |
| } |