| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Based on arch/arm/kernel/setup.c |
| * |
| * Copyright (C) 1995-2001 Russell King |
| * Copyright (C) 2012 ARM Ltd. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/stddef.h> |
| #include <linux/ioport.h> |
| #include <linux/delay.h> |
| #include <linux/initrd.h> |
| #include <linux/console.h> |
| #include <linux/cache.h> |
| #include <linux/screen_info.h> |
| #include <linux/init.h> |
| #include <linux/kexec.h> |
| #include <linux/root_dev.h> |
| #include <linux/cpu.h> |
| #include <linux/interrupt.h> |
| #include <linux/smp.h> |
| #include <linux/fs.h> |
| #include <linux/proc_fs.h> |
| #include <linux/memblock.h> |
| #include <linux/of_fdt.h> |
| #include <linux/efi.h> |
| #include <linux/psci.h> |
| #include <linux/sched/task.h> |
| #include <linux/mm.h> |
| |
| #include <asm/acpi.h> |
| #include <asm/fixmap.h> |
| #include <asm/cpu.h> |
| #include <asm/cputype.h> |
| #include <asm/daifflags.h> |
| #include <asm/elf.h> |
| #include <asm/cpufeature.h> |
| #include <asm/cpu_ops.h> |
| #include <asm/kasan.h> |
| #include <asm/numa.h> |
| #include <asm/sections.h> |
| #include <asm/setup.h> |
| #include <asm/smp_plat.h> |
| #include <asm/cacheflush.h> |
| #include <asm/tlbflush.h> |
| #include <asm/traps.h> |
| #include <asm/efi.h> |
| #include <asm/xen/hypervisor.h> |
| #include <asm/mmu_context.h> |
| |
| static int num_standard_resources; |
| static struct resource *standard_resources; |
| |
| phys_addr_t __fdt_pointer __initdata; |
| |
| /* |
| * Standard memory resources |
| */ |
| static struct resource mem_res[] = { |
| { |
| .name = "Kernel code", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_SYSTEM_RAM |
| }, |
| { |
| .name = "Kernel data", |
| .start = 0, |
| .end = 0, |
| .flags = IORESOURCE_SYSTEM_RAM |
| } |
| }; |
| |
| #define kernel_code mem_res[0] |
| #define kernel_data mem_res[1] |
| |
| /* |
| * The recorded values of x0 .. x3 upon kernel entry. |
| */ |
| u64 __cacheline_aligned boot_args[4]; |
| |
| void __init smp_setup_processor_id(void) |
| { |
| u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; |
| cpu_logical_map(0) = mpidr; |
| |
| /* |
| * clear __my_cpu_offset on boot CPU to avoid hang caused by |
| * using percpu variable early, for example, lockdep will |
| * access percpu variable inside lock_release |
| */ |
| set_my_cpu_offset(0); |
| pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n", |
| (unsigned long)mpidr, read_cpuid_id()); |
| } |
| |
| bool arch_match_cpu_phys_id(int cpu, u64 phys_id) |
| { |
| return phys_id == cpu_logical_map(cpu); |
| } |
| |
| struct mpidr_hash mpidr_hash; |
| /** |
| * smp_build_mpidr_hash - Pre-compute shifts required at each affinity |
| * level in order to build a linear index from an |
| * MPIDR value. Resulting algorithm is a collision |
| * free hash carried out through shifting and ORing |
| */ |
| static void __init smp_build_mpidr_hash(void) |
| { |
| u32 i, affinity, fs[4], bits[4], ls; |
| u64 mask = 0; |
| /* |
| * Pre-scan the list of MPIDRS and filter out bits that do |
| * not contribute to affinity levels, ie they never toggle. |
| */ |
| for_each_possible_cpu(i) |
| mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); |
| pr_debug("mask of set bits %#llx\n", mask); |
| /* |
| * Find and stash the last and first bit set at all affinity levels to |
| * check how many bits are required to represent them. |
| */ |
| for (i = 0; i < 4; i++) { |
| affinity = MPIDR_AFFINITY_LEVEL(mask, i); |
| /* |
| * Find the MSB bit and LSB bits position |
| * to determine how many bits are required |
| * to express the affinity level. |
| */ |
| ls = fls(affinity); |
| fs[i] = affinity ? ffs(affinity) - 1 : 0; |
| bits[i] = ls - fs[i]; |
| } |
| /* |
| * An index can be created from the MPIDR_EL1 by isolating the |
| * significant bits at each affinity level and by shifting |
| * them in order to compress the 32 bits values space to a |
| * compressed set of values. This is equivalent to hashing |
| * the MPIDR_EL1 through shifting and ORing. It is a collision free |
| * hash though not minimal since some levels might contain a number |
| * of CPUs that is not an exact power of 2 and their bit |
| * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}. |
| */ |
| mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0]; |
| mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0]; |
| mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] - |
| (bits[1] + bits[0]); |
| mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) + |
| fs[3] - (bits[2] + bits[1] + bits[0]); |
| mpidr_hash.mask = mask; |
| mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0]; |
| pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n", |
| mpidr_hash.shift_aff[0], |
| mpidr_hash.shift_aff[1], |
| mpidr_hash.shift_aff[2], |
| mpidr_hash.shift_aff[3], |
| mpidr_hash.mask, |
| mpidr_hash.bits); |
| /* |
| * 4x is an arbitrary value used to warn on a hash table much bigger |
| * than expected on most systems. |
| */ |
| if (mpidr_hash_size() > 4 * num_possible_cpus()) |
| pr_warn("Large number of MPIDR hash buckets detected\n"); |
| } |
| |
| static void __init setup_machine_fdt(phys_addr_t dt_phys) |
| { |
| int size; |
| void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL); |
| const char *name; |
| |
| if (dt_virt) |
| memblock_reserve(dt_phys, size); |
| |
| if (!dt_virt || !early_init_dt_scan(dt_virt)) { |
| pr_crit("\n" |
| "Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n" |
| "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n" |
| "\nPlease check your bootloader.", |
| &dt_phys, dt_virt); |
| |
| while (true) |
| cpu_relax(); |
| } |
| |
| /* Early fixups are done, map the FDT as read-only now */ |
| fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO); |
| |
| name = of_flat_dt_get_machine_name(); |
| if (!name) |
| return; |
| |
| pr_info("Machine model: %s\n", name); |
| dump_stack_set_arch_desc("%s (DT)", name); |
| } |
| |
| static void __init request_standard_resources(void) |
| { |
| struct memblock_region *region; |
| struct resource *res; |
| unsigned long i = 0; |
| size_t res_size; |
| |
| kernel_code.start = __pa_symbol(_text); |
| kernel_code.end = __pa_symbol(__init_begin - 1); |
| kernel_data.start = __pa_symbol(_sdata); |
| kernel_data.end = __pa_symbol(_end - 1); |
| |
| num_standard_resources = memblock.memory.cnt; |
| res_size = num_standard_resources * sizeof(*standard_resources); |
| standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES); |
| if (!standard_resources) |
| panic("%s: Failed to allocate %zu bytes\n", __func__, res_size); |
| |
| for_each_memblock(memory, region) { |
| res = &standard_resources[i++]; |
| if (memblock_is_nomap(region)) { |
| res->name = "reserved"; |
| res->flags = IORESOURCE_MEM; |
| } else { |
| res->name = "System RAM"; |
| res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; |
| } |
| res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region)); |
| res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1; |
| |
| request_resource(&iomem_resource, res); |
| |
| if (kernel_code.start >= res->start && |
| kernel_code.end <= res->end) |
| request_resource(res, &kernel_code); |
| if (kernel_data.start >= res->start && |
| kernel_data.end <= res->end) |
| request_resource(res, &kernel_data); |
| #ifdef CONFIG_KEXEC_CORE |
| /* Userspace will find "Crash kernel" region in /proc/iomem. */ |
| if (crashk_res.end && crashk_res.start >= res->start && |
| crashk_res.end <= res->end) |
| request_resource(res, &crashk_res); |
| #endif |
| } |
| } |
| |
| static int __init reserve_memblock_reserved_regions(void) |
| { |
| u64 i, j; |
| |
| for (i = 0; i < num_standard_resources; ++i) { |
| struct resource *mem = &standard_resources[i]; |
| phys_addr_t r_start, r_end, mem_size = resource_size(mem); |
| |
| if (!memblock_is_region_reserved(mem->start, mem_size)) |
| continue; |
| |
| for_each_reserved_mem_region(j, &r_start, &r_end) { |
| resource_size_t start, end; |
| |
| start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start); |
| end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end); |
| |
| if (start > mem->end || end < mem->start) |
| continue; |
| |
| reserve_region_with_split(mem, start, end, "reserved"); |
| } |
| } |
| |
| return 0; |
| } |
| arch_initcall(reserve_memblock_reserved_regions); |
| |
| u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID }; |
| |
| void __init setup_arch(char **cmdline_p) |
| { |
| init_mm.start_code = (unsigned long) _text; |
| init_mm.end_code = (unsigned long) _etext; |
| init_mm.end_data = (unsigned long) _edata; |
| init_mm.brk = (unsigned long) _end; |
| |
| *cmdline_p = boot_command_line; |
| |
| early_fixmap_init(); |
| early_ioremap_init(); |
| |
| setup_machine_fdt(__fdt_pointer); |
| |
| /* |
| * Initialise the static keys early as they may be enabled by the |
| * cpufeature code and early parameters. |
| */ |
| jump_label_init(); |
| parse_early_param(); |
| |
| /* |
| * Unmask asynchronous aborts and fiq after bringing up possible |
| * earlycon. (Report possible System Errors once we can report this |
| * occurred). |
| */ |
| local_daif_restore(DAIF_PROCCTX_NOIRQ); |
| |
| /* |
| * TTBR0 is only used for the identity mapping at this stage. Make it |
| * point to zero page to avoid speculatively fetching new entries. |
| */ |
| cpu_uninstall_idmap(); |
| |
| xen_early_init(); |
| efi_init(); |
| arm64_memblock_init(); |
| |
| paging_init(); |
| |
| acpi_table_upgrade(); |
| |
| /* Parse the ACPI tables for possible boot-time configuration */ |
| acpi_boot_table_init(); |
| |
| if (acpi_disabled) |
| unflatten_device_tree(); |
| |
| bootmem_init(); |
| |
| kasan_init(); |
| |
| request_standard_resources(); |
| |
| early_ioremap_reset(); |
| |
| if (acpi_disabled) |
| psci_dt_init(); |
| else |
| psci_acpi_init(); |
| |
| cpu_read_bootcpu_ops(); |
| smp_init_cpus(); |
| smp_build_mpidr_hash(); |
| |
| /* Init percpu seeds for random tags after cpus are set up. */ |
| kasan_init_tags(); |
| |
| #ifdef CONFIG_ARM64_SW_TTBR0_PAN |
| /* |
| * Make sure init_thread_info.ttbr0 always generates translation |
| * faults in case uaccess_enable() is inadvertently called by the init |
| * thread. |
| */ |
| init_task.thread_info.ttbr0 = __pa_symbol(empty_zero_page); |
| #endif |
| |
| #ifdef CONFIG_VT |
| conswitchp = &dummy_con; |
| #endif |
| if (boot_args[1] || boot_args[2] || boot_args[3]) { |
| pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n" |
| "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n" |
| "This indicates a broken bootloader or old kernel\n", |
| boot_args[1], boot_args[2], boot_args[3]); |
| } |
| } |
| |
| static inline bool cpu_can_disable(unsigned int cpu) |
| { |
| #ifdef CONFIG_HOTPLUG_CPU |
| if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_can_disable) |
| return cpu_ops[cpu]->cpu_can_disable(cpu); |
| #endif |
| return false; |
| } |
| |
| static int __init topology_init(void) |
| { |
| int i; |
| |
| for_each_online_node(i) |
| register_one_node(i); |
| |
| for_each_possible_cpu(i) { |
| struct cpu *cpu = &per_cpu(cpu_data.cpu, i); |
| cpu->hotpluggable = cpu_can_disable(i); |
| register_cpu(cpu, i); |
| } |
| |
| return 0; |
| } |
| subsys_initcall(topology_init); |
| |
| /* |
| * Dump out kernel offset information on panic. |
| */ |
| static int dump_kernel_offset(struct notifier_block *self, unsigned long v, |
| void *p) |
| { |
| const unsigned long offset = kaslr_offset(); |
| |
| if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) { |
| pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n", |
| offset, KIMAGE_VADDR); |
| pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET); |
| } else { |
| pr_emerg("Kernel Offset: disabled\n"); |
| } |
| return 0; |
| } |
| |
| static struct notifier_block kernel_offset_notifier = { |
| .notifier_call = dump_kernel_offset |
| }; |
| |
| static int __init register_kernel_offset_dumper(void) |
| { |
| atomic_notifier_chain_register(&panic_notifier_list, |
| &kernel_offset_notifier); |
| return 0; |
| } |
| __initcall(register_kernel_offset_dumper); |