| /* |
| * Copyright (C) 2017 - Cambridge Greys Ltd |
| * Copyright (C) 2011 - 2014 Cisco Systems Inc |
| * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) |
| * Licensed under the GPL |
| * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: |
| * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar |
| */ |
| |
| #include <linux/cpumask.h> |
| #include <linux/hardirq.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <as-layout.h> |
| #include <kern_util.h> |
| #include <os.h> |
| #include <irq_user.h> |
| |
| |
| extern void free_irqs(void); |
| |
| /* When epoll triggers we do not know why it did so |
| * we can also have different IRQs for read and write. |
| * This is why we keep a small irq_fd array for each fd - |
| * one entry per IRQ type |
| */ |
| |
| struct irq_entry { |
| struct irq_entry *next; |
| int fd; |
| struct irq_fd *irq_array[MAX_IRQ_TYPE + 1]; |
| }; |
| |
| static struct irq_entry *active_fds; |
| |
| static DEFINE_SPINLOCK(irq_lock); |
| |
| static void irq_io_loop(struct irq_fd *irq, struct uml_pt_regs *regs) |
| { |
| /* |
| * irq->active guards against reentry |
| * irq->pending accumulates pending requests |
| * if pending is raised the irq_handler is re-run |
| * until pending is cleared |
| */ |
| if (irq->active) { |
| irq->active = false; |
| do { |
| irq->pending = false; |
| do_IRQ(irq->irq, regs); |
| } while (irq->pending && (!irq->purge)); |
| if (!irq->purge) |
| irq->active = true; |
| } else { |
| irq->pending = true; |
| } |
| } |
| |
| void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs) |
| { |
| struct irq_entry *irq_entry; |
| struct irq_fd *irq; |
| |
| int n, i, j; |
| |
| while (1) { |
| /* This is now lockless - epoll keeps back-referencesto the irqs |
| * which have trigger it so there is no need to walk the irq |
| * list and lock it every time. We avoid locking by turning off |
| * IO for a specific fd by executing os_del_epoll_fd(fd) before |
| * we do any changes to the actual data structures |
| */ |
| n = os_waiting_for_events_epoll(); |
| |
| if (n <= 0) { |
| if (n == -EINTR) |
| continue; |
| else |
| break; |
| } |
| |
| for (i = 0; i < n ; i++) { |
| /* Epoll back reference is the entry with 3 irq_fd |
| * leaves - one for each irq type. |
| */ |
| irq_entry = (struct irq_entry *) |
| os_epoll_get_data_pointer(i); |
| for (j = 0; j < MAX_IRQ_TYPE ; j++) { |
| irq = irq_entry->irq_array[j]; |
| if (irq == NULL) |
| continue; |
| if (os_epoll_triggered(i, irq->events) > 0) |
| irq_io_loop(irq, regs); |
| if (irq->purge) { |
| irq_entry->irq_array[j] = NULL; |
| kfree(irq); |
| } |
| } |
| } |
| } |
| |
| free_irqs(); |
| } |
| |
| static int assign_epoll_events_to_irq(struct irq_entry *irq_entry) |
| { |
| int i; |
| int events = 0; |
| struct irq_fd *irq; |
| |
| for (i = 0; i < MAX_IRQ_TYPE ; i++) { |
| irq = irq_entry->irq_array[i]; |
| if (irq != NULL) |
| events = irq->events | events; |
| } |
| if (events > 0) { |
| /* os_add_epoll will call os_mod_epoll if this already exists */ |
| return os_add_epoll_fd(events, irq_entry->fd, irq_entry); |
| } |
| /* No events - delete */ |
| return os_del_epoll_fd(irq_entry->fd); |
| } |
| |
| |
| |
| static int activate_fd(int irq, int fd, int type, void *dev_id) |
| { |
| struct irq_fd *new_fd; |
| struct irq_entry *irq_entry; |
| int i, err, events; |
| unsigned long flags; |
| |
| err = os_set_fd_async(fd); |
| if (err < 0) |
| goto out; |
| |
| spin_lock_irqsave(&irq_lock, flags); |
| |
| /* Check if we have an entry for this fd */ |
| |
| err = -EBUSY; |
| for (irq_entry = active_fds; |
| irq_entry != NULL; irq_entry = irq_entry->next) { |
| if (irq_entry->fd == fd) |
| break; |
| } |
| |
| if (irq_entry == NULL) { |
| /* This needs to be atomic as it may be called from an |
| * IRQ context. |
| */ |
| irq_entry = kmalloc(sizeof(struct irq_entry), GFP_ATOMIC); |
| if (irq_entry == NULL) { |
| printk(KERN_ERR |
| "Failed to allocate new IRQ entry\n"); |
| goto out_unlock; |
| } |
| irq_entry->fd = fd; |
| for (i = 0; i < MAX_IRQ_TYPE; i++) |
| irq_entry->irq_array[i] = NULL; |
| irq_entry->next = active_fds; |
| active_fds = irq_entry; |
| } |
| |
| /* Check if we are trying to re-register an interrupt for a |
| * particular fd |
| */ |
| |
| if (irq_entry->irq_array[type] != NULL) { |
| printk(KERN_ERR |
| "Trying to reregister IRQ %d FD %d TYPE %d ID %p\n", |
| irq, fd, type, dev_id |
| ); |
| goto out_unlock; |
| } else { |
| /* New entry for this fd */ |
| |
| err = -ENOMEM; |
| new_fd = kmalloc(sizeof(struct irq_fd), GFP_ATOMIC); |
| if (new_fd == NULL) |
| goto out_unlock; |
| |
| events = os_event_mask(type); |
| |
| *new_fd = ((struct irq_fd) { |
| .id = dev_id, |
| .irq = irq, |
| .type = type, |
| .events = events, |
| .active = true, |
| .pending = false, |
| .purge = false |
| }); |
| /* Turn off any IO on this fd - allows us to |
| * avoid locking the IRQ loop |
| */ |
| os_del_epoll_fd(irq_entry->fd); |
| irq_entry->irq_array[type] = new_fd; |
| } |
| |
| /* Turn back IO on with the correct (new) IO event mask */ |
| assign_epoll_events_to_irq(irq_entry); |
| spin_unlock_irqrestore(&irq_lock, flags); |
| maybe_sigio_broken(fd, (type != IRQ_NONE)); |
| |
| return 0; |
| out_unlock: |
| spin_unlock_irqrestore(&irq_lock, flags); |
| out: |
| return err; |
| } |
| |
| /* |
| * Walk the IRQ list and dispose of any unused entries. |
| * Should be done under irq_lock. |
| */ |
| |
| static void garbage_collect_irq_entries(void) |
| { |
| int i; |
| bool reap; |
| struct irq_entry *walk; |
| struct irq_entry *previous = NULL; |
| struct irq_entry *to_free; |
| |
| if (active_fds == NULL) |
| return; |
| walk = active_fds; |
| while (walk != NULL) { |
| reap = true; |
| for (i = 0; i < MAX_IRQ_TYPE ; i++) { |
| if (walk->irq_array[i] != NULL) { |
| reap = false; |
| break; |
| } |
| } |
| if (reap) { |
| if (previous == NULL) |
| active_fds = walk->next; |
| else |
| previous->next = walk->next; |
| to_free = walk; |
| } else { |
| to_free = NULL; |
| } |
| walk = walk->next; |
| kfree(to_free); |
| } |
| } |
| |
| /* |
| * Walk the IRQ list and get the descriptor for our FD |
| */ |
| |
| static struct irq_entry *get_irq_entry_by_fd(int fd) |
| { |
| struct irq_entry *walk = active_fds; |
| |
| while (walk != NULL) { |
| if (walk->fd == fd) |
| return walk; |
| walk = walk->next; |
| } |
| return NULL; |
| } |
| |
| |
| /* |
| * Walk the IRQ list and dispose of an entry for a specific |
| * device, fd and number. Note - if sharing an IRQ for read |
| * and writefor the same FD it will be disposed in either case. |
| * If this behaviour is undesirable use different IRQ ids. |
| */ |
| |
| #define IGNORE_IRQ 1 |
| #define IGNORE_DEV (1<<1) |
| |
| static void do_free_by_irq_and_dev( |
| struct irq_entry *irq_entry, |
| unsigned int irq, |
| void *dev, |
| int flags |
| ) |
| { |
| int i; |
| struct irq_fd *to_free; |
| |
| for (i = 0; i < MAX_IRQ_TYPE ; i++) { |
| if (irq_entry->irq_array[i] != NULL) { |
| if ( |
| ((flags & IGNORE_IRQ) || |
| (irq_entry->irq_array[i]->irq == irq)) && |
| ((flags & IGNORE_DEV) || |
| (irq_entry->irq_array[i]->id == dev)) |
| ) { |
| /* Turn off any IO on this fd - allows us to |
| * avoid locking the IRQ loop |
| */ |
| os_del_epoll_fd(irq_entry->fd); |
| to_free = irq_entry->irq_array[i]; |
| irq_entry->irq_array[i] = NULL; |
| assign_epoll_events_to_irq(irq_entry); |
| if (to_free->active) |
| to_free->purge = true; |
| else |
| kfree(to_free); |
| } |
| } |
| } |
| } |
| |
| void free_irq_by_fd(int fd) |
| { |
| struct irq_entry *to_free; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irq_lock, flags); |
| to_free = get_irq_entry_by_fd(fd); |
| if (to_free != NULL) { |
| do_free_by_irq_and_dev( |
| to_free, |
| -1, |
| NULL, |
| IGNORE_IRQ | IGNORE_DEV |
| ); |
| } |
| garbage_collect_irq_entries(); |
| spin_unlock_irqrestore(&irq_lock, flags); |
| } |
| EXPORT_SYMBOL(free_irq_by_fd); |
| |
| static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) |
| { |
| struct irq_entry *to_free; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&irq_lock, flags); |
| to_free = active_fds; |
| while (to_free != NULL) { |
| do_free_by_irq_and_dev( |
| to_free, |
| irq, |
| dev, |
| 0 |
| ); |
| to_free = to_free->next; |
| } |
| garbage_collect_irq_entries(); |
| spin_unlock_irqrestore(&irq_lock, flags); |
| } |
| |
| |
| void deactivate_fd(int fd, int irqnum) |
| { |
| struct irq_entry *to_free; |
| unsigned long flags; |
| |
| os_del_epoll_fd(fd); |
| spin_lock_irqsave(&irq_lock, flags); |
| to_free = get_irq_entry_by_fd(fd); |
| if (to_free != NULL) { |
| do_free_by_irq_and_dev( |
| to_free, |
| irqnum, |
| NULL, |
| IGNORE_DEV |
| ); |
| } |
| garbage_collect_irq_entries(); |
| spin_unlock_irqrestore(&irq_lock, flags); |
| ignore_sigio_fd(fd); |
| } |
| EXPORT_SYMBOL(deactivate_fd); |
| |
| /* |
| * Called just before shutdown in order to provide a clean exec |
| * environment in case the system is rebooting. No locking because |
| * that would cause a pointless shutdown hang if something hadn't |
| * released the lock. |
| */ |
| int deactivate_all_fds(void) |
| { |
| struct irq_entry *to_free; |
| |
| /* Stop IO. The IRQ loop has no lock so this is our |
| * only way of making sure we are safe to dispose |
| * of all IRQ handlers |
| */ |
| os_set_ioignore(); |
| to_free = active_fds; |
| while (to_free != NULL) { |
| do_free_by_irq_and_dev( |
| to_free, |
| -1, |
| NULL, |
| IGNORE_IRQ | IGNORE_DEV |
| ); |
| to_free = to_free->next; |
| } |
| /* don't garbage collect - we can no longer call kfree() here */ |
| os_close_epoll_fd(); |
| return 0; |
| } |
| |
| /* |
| * do_IRQ handles all normal device IRQs (the special |
| * SMP cross-CPU interrupts have their own specific |
| * handlers). |
| */ |
| unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); |
| irq_enter(); |
| generic_handle_irq(irq); |
| irq_exit(); |
| set_irq_regs(old_regs); |
| return 1; |
| } |
| |
| void um_free_irq(unsigned int irq, void *dev) |
| { |
| free_irq_by_irq_and_dev(irq, dev); |
| free_irq(irq, dev); |
| } |
| EXPORT_SYMBOL(um_free_irq); |
| |
| int um_request_irq(unsigned int irq, int fd, int type, |
| irq_handler_t handler, |
| unsigned long irqflags, const char * devname, |
| void *dev_id) |
| { |
| int err; |
| |
| if (fd != -1) { |
| err = activate_fd(irq, fd, type, dev_id); |
| if (err) |
| return err; |
| } |
| |
| return request_irq(irq, handler, irqflags, devname, dev_id); |
| } |
| |
| EXPORT_SYMBOL(um_request_irq); |
| |
| /* |
| * irq_chip must define at least enable/disable and ack when |
| * the edge handler is used. |
| */ |
| static void dummy(struct irq_data *d) |
| { |
| } |
| |
| /* This is used for everything else than the timer. */ |
| static struct irq_chip normal_irq_type = { |
| .name = "SIGIO", |
| .irq_disable = dummy, |
| .irq_enable = dummy, |
| .irq_ack = dummy, |
| .irq_mask = dummy, |
| .irq_unmask = dummy, |
| }; |
| |
| static struct irq_chip SIGVTALRM_irq_type = { |
| .name = "SIGVTALRM", |
| .irq_disable = dummy, |
| .irq_enable = dummy, |
| .irq_ack = dummy, |
| .irq_mask = dummy, |
| .irq_unmask = dummy, |
| }; |
| |
| void __init init_IRQ(void) |
| { |
| int i; |
| |
| irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); |
| |
| |
| for (i = 1; i < LAST_IRQ; i++) |
| irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq); |
| /* Initialize EPOLL Loop */ |
| os_setup_epoll(); |
| } |
| |
| /* |
| * IRQ stack entry and exit: |
| * |
| * Unlike i386, UML doesn't receive IRQs on the normal kernel stack |
| * and switch over to the IRQ stack after some preparation. We use |
| * sigaltstack to receive signals on a separate stack from the start. |
| * These two functions make sure the rest of the kernel won't be too |
| * upset by being on a different stack. The IRQ stack has a |
| * thread_info structure at the bottom so that current et al continue |
| * to work. |
| * |
| * to_irq_stack copies the current task's thread_info to the IRQ stack |
| * thread_info and sets the tasks's stack to point to the IRQ stack. |
| * |
| * from_irq_stack copies the thread_info struct back (flags may have |
| * been modified) and resets the task's stack pointer. |
| * |
| * Tricky bits - |
| * |
| * What happens when two signals race each other? UML doesn't block |
| * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal |
| * could arrive while a previous one is still setting up the |
| * thread_info. |
| * |
| * There are three cases - |
| * The first interrupt on the stack - sets up the thread_info and |
| * handles the interrupt |
| * A nested interrupt interrupting the copying of the thread_info - |
| * can't handle the interrupt, as the stack is in an unknown state |
| * A nested interrupt not interrupting the copying of the |
| * thread_info - doesn't do any setup, just handles the interrupt |
| * |
| * The first job is to figure out whether we interrupted stack setup. |
| * This is done by xchging the signal mask with thread_info->pending. |
| * If the value that comes back is zero, then there is no setup in |
| * progress, and the interrupt can be handled. If the value is |
| * non-zero, then there is stack setup in progress. In order to have |
| * the interrupt handled, we leave our signal in the mask, and it will |
| * be handled by the upper handler after it has set up the stack. |
| * |
| * Next is to figure out whether we are the outer handler or a nested |
| * one. As part of setting up the stack, thread_info->real_thread is |
| * set to non-NULL (and is reset to NULL on exit). This is the |
| * nesting indicator. If it is non-NULL, then the stack is already |
| * set up and the handler can run. |
| */ |
| |
| static unsigned long pending_mask; |
| |
| unsigned long to_irq_stack(unsigned long *mask_out) |
| { |
| struct thread_info *ti; |
| unsigned long mask, old; |
| int nested; |
| |
| mask = xchg(&pending_mask, *mask_out); |
| if (mask != 0) { |
| /* |
| * If any interrupts come in at this point, we want to |
| * make sure that their bits aren't lost by our |
| * putting our bit in. So, this loop accumulates bits |
| * until xchg returns the same value that we put in. |
| * When that happens, there were no new interrupts, |
| * and pending_mask contains a bit for each interrupt |
| * that came in. |
| */ |
| old = *mask_out; |
| do { |
| old |= mask; |
| mask = xchg(&pending_mask, old); |
| } while (mask != old); |
| return 1; |
| } |
| |
| ti = current_thread_info(); |
| nested = (ti->real_thread != NULL); |
| if (!nested) { |
| struct task_struct *task; |
| struct thread_info *tti; |
| |
| task = cpu_tasks[ti->cpu].task; |
| tti = task_thread_info(task); |
| |
| *ti = *tti; |
| ti->real_thread = tti; |
| task->stack = ti; |
| } |
| |
| mask = xchg(&pending_mask, 0); |
| *mask_out |= mask | nested; |
| return 0; |
| } |
| |
| unsigned long from_irq_stack(int nested) |
| { |
| struct thread_info *ti, *to; |
| unsigned long mask; |
| |
| ti = current_thread_info(); |
| |
| pending_mask = 1; |
| |
| to = ti->real_thread; |
| current->stack = to; |
| ti->real_thread = NULL; |
| *to = *ti; |
| |
| mask = xchg(&pending_mask, 0); |
| return mask & ~1; |
| } |
| |