| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * linux/arch/unicore32/include/asm/pgtable.h |
| * |
| * Code specific to PKUnity SoC and UniCore ISA |
| * |
| * Copyright (C) 2001-2010 GUAN Xue-tao |
| */ |
| #ifndef __UNICORE_PGTABLE_H__ |
| #define __UNICORE_PGTABLE_H__ |
| |
| #define __ARCH_USE_5LEVEL_HACK |
| #include <asm-generic/pgtable-nopmd.h> |
| #include <asm/cpu-single.h> |
| |
| #include <asm/memory.h> |
| #include <asm/pgtable-hwdef.h> |
| |
| /* |
| * Just any arbitrary offset to the start of the vmalloc VM area: the |
| * current 8MB value just means that there will be a 8MB "hole" after the |
| * physical memory until the kernel virtual memory starts. That means that |
| * any out-of-bounds memory accesses will hopefully be caught. |
| * The vmalloc() routines leaves a hole of 4kB between each vmalloced |
| * area for the same reason. ;) |
| * |
| * Note that platforms may override VMALLOC_START, but they must provide |
| * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space, |
| * which may not overlap IO space. |
| */ |
| #ifndef VMALLOC_START |
| #define VMALLOC_OFFSET SZ_8M |
| #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) \ |
| & ~(VMALLOC_OFFSET-1)) |
| #define VMALLOC_END (0xff000000UL) |
| #endif |
| |
| #define PTRS_PER_PTE 1024 |
| #define PTRS_PER_PGD 1024 |
| |
| /* |
| * PGDIR_SHIFT determines what a third-level page table entry can map |
| */ |
| #define PGDIR_SHIFT 22 |
| |
| #ifndef __ASSEMBLY__ |
| extern void __pte_error(const char *file, int line, unsigned long val); |
| extern void __pgd_error(const char *file, int line, unsigned long val); |
| |
| #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) |
| #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) |
| #endif /* !__ASSEMBLY__ */ |
| |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * This is the lowest virtual address we can permit any user space |
| * mapping to be mapped at. This is particularly important for |
| * non-high vector CPUs. |
| */ |
| #define FIRST_USER_ADDRESS PAGE_SIZE |
| |
| #define FIRST_USER_PGD_NR 1 |
| #define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) |
| |
| /* |
| * section address mask and size definitions. |
| */ |
| #define SECTION_SHIFT 22 |
| #define SECTION_SIZE (1UL << SECTION_SHIFT) |
| #define SECTION_MASK (~(SECTION_SIZE-1)) |
| |
| #ifndef __ASSEMBLY__ |
| |
| /* |
| * The pgprot_* and protection_map entries will be fixed up in runtime |
| * to include the cachable bits based on memory policy, as well as any |
| * architecture dependent bits. |
| */ |
| #define _PTE_DEFAULT (PTE_PRESENT | PTE_YOUNG | PTE_CACHEABLE) |
| |
| extern pgprot_t pgprot_user; |
| extern pgprot_t pgprot_kernel; |
| |
| #define PAGE_NONE pgprot_user |
| #define PAGE_SHARED __pgprot(pgprot_val(pgprot_user | PTE_READ \ |
| | PTE_WRITE)) |
| #define PAGE_SHARED_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \ |
| | PTE_WRITE \ |
| | PTE_EXEC)) |
| #define PAGE_COPY __pgprot(pgprot_val(pgprot_user | PTE_READ) |
| #define PAGE_COPY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \ |
| | PTE_EXEC)) |
| #define PAGE_READONLY __pgprot(pgprot_val(pgprot_user | PTE_READ)) |
| #define PAGE_READONLY_EXEC __pgprot(pgprot_val(pgprot_user | PTE_READ \ |
| | PTE_EXEC)) |
| #define PAGE_KERNEL pgprot_kernel |
| #define PAGE_KERNEL_EXEC __pgprot(pgprot_val(pgprot_kernel | PTE_EXEC)) |
| |
| #define __PAGE_NONE __pgprot(_PTE_DEFAULT) |
| #define __PAGE_SHARED __pgprot(_PTE_DEFAULT | PTE_READ \ |
| | PTE_WRITE) |
| #define __PAGE_SHARED_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \ |
| | PTE_WRITE \ |
| | PTE_EXEC) |
| #define __PAGE_COPY __pgprot(_PTE_DEFAULT | PTE_READ) |
| #define __PAGE_COPY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \ |
| | PTE_EXEC) |
| #define __PAGE_READONLY __pgprot(_PTE_DEFAULT | PTE_READ) |
| #define __PAGE_READONLY_EXEC __pgprot(_PTE_DEFAULT | PTE_READ \ |
| | PTE_EXEC) |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * The table below defines the page protection levels that we insert into our |
| * Linux page table version. These get translated into the best that the |
| * architecture can perform. Note that on UniCore hardware: |
| * 1) We cannot do execute protection |
| * 2) If we could do execute protection, then read is implied |
| * 3) write implies read permissions |
| */ |
| #define __P000 __PAGE_NONE |
| #define __P001 __PAGE_READONLY |
| #define __P010 __PAGE_COPY |
| #define __P011 __PAGE_COPY |
| #define __P100 __PAGE_READONLY_EXEC |
| #define __P101 __PAGE_READONLY_EXEC |
| #define __P110 __PAGE_COPY_EXEC |
| #define __P111 __PAGE_COPY_EXEC |
| |
| #define __S000 __PAGE_NONE |
| #define __S001 __PAGE_READONLY |
| #define __S010 __PAGE_SHARED |
| #define __S011 __PAGE_SHARED |
| #define __S100 __PAGE_READONLY_EXEC |
| #define __S101 __PAGE_READONLY_EXEC |
| #define __S110 __PAGE_SHARED_EXEC |
| #define __S111 __PAGE_SHARED_EXEC |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern struct page *empty_zero_page; |
| #define ZERO_PAGE(vaddr) (empty_zero_page) |
| |
| #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) |
| #define pfn_pte(pfn, prot) (__pte(((pfn) << PAGE_SHIFT) \ |
| | pgprot_val(prot))) |
| |
| #define pte_none(pte) (!pte_val(pte)) |
| #define pte_clear(mm, addr, ptep) set_pte(ptep, __pte(0)) |
| #define pte_page(pte) (pfn_to_page(pte_pfn(pte))) |
| #define pte_offset_kernel(dir, addr) (pmd_page_vaddr(*(dir)) \ |
| + __pte_index(addr)) |
| |
| #define pte_offset_map(dir, addr) (pmd_page_vaddr(*(dir)) \ |
| + __pte_index(addr)) |
| #define pte_unmap(pte) do { } while (0) |
| |
| #define set_pte(ptep, pte) cpu_set_pte(ptep, pte) |
| |
| #define set_pte_at(mm, addr, ptep, pteval) \ |
| do { \ |
| set_pte(ptep, pteval); \ |
| } while (0) |
| |
| /* |
| * The following only work if pte_present() is true. |
| * Undefined behaviour if not.. |
| */ |
| #define pte_present(pte) (pte_val(pte) & PTE_PRESENT) |
| #define pte_write(pte) (pte_val(pte) & PTE_WRITE) |
| #define pte_dirty(pte) (pte_val(pte) & PTE_DIRTY) |
| #define pte_young(pte) (pte_val(pte) & PTE_YOUNG) |
| #define pte_exec(pte) (pte_val(pte) & PTE_EXEC) |
| #define pte_special(pte) (0) |
| |
| #define PTE_BIT_FUNC(fn, op) \ |
| static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } |
| |
| PTE_BIT_FUNC(wrprotect, &= ~PTE_WRITE); |
| PTE_BIT_FUNC(mkwrite, |= PTE_WRITE); |
| PTE_BIT_FUNC(mkclean, &= ~PTE_DIRTY); |
| PTE_BIT_FUNC(mkdirty, |= PTE_DIRTY); |
| PTE_BIT_FUNC(mkold, &= ~PTE_YOUNG); |
| PTE_BIT_FUNC(mkyoung, |= PTE_YOUNG); |
| |
| static inline pte_t pte_mkspecial(pte_t pte) { return pte; } |
| |
| /* |
| * Mark the prot value as uncacheable. |
| */ |
| #define pgprot_noncached(prot) \ |
| __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE) |
| #define pgprot_writecombine(prot) \ |
| __pgprot(pgprot_val(prot) & ~PTE_CACHEABLE) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_present(pmd) (pmd_val(pmd) & PMD_PRESENT) |
| #define pmd_bad(pmd) (((pmd_val(pmd) & \ |
| (PMD_PRESENT | PMD_TYPE_MASK)) \ |
| != (PMD_PRESENT | PMD_TYPE_TABLE))) |
| |
| #define set_pmd(pmdpd, pmdval) \ |
| do { \ |
| *(pmdpd) = pmdval; \ |
| } while (0) |
| |
| #define pmd_clear(pmdp) \ |
| do { \ |
| set_pmd(pmdp, __pmd(0));\ |
| clean_pmd_entry(pmdp); \ |
| } while (0) |
| |
| #define pmd_page_vaddr(pmd) ((pte_t *)__va(pmd_val(pmd) & PAGE_MASK)) |
| #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd))) |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) |
| |
| /* to find an entry in a page-table-directory */ |
| #define pgd_index(addr) ((addr) >> PGDIR_SHIFT) |
| |
| #define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) |
| |
| /* to find an entry in a kernel page-table-directory */ |
| #define pgd_offset_k(addr) pgd_offset(&init_mm, addr) |
| |
| /* Find an entry in the third-level page table.. */ |
| #define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| const unsigned long mask = PTE_EXEC | PTE_WRITE | PTE_READ; |
| pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); |
| return pte; |
| } |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| |
| /* |
| * Encode and decode a swap entry. Swap entries are stored in the Linux |
| * page tables as follows: |
| * |
| * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 |
| * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 |
| * <--------------- offset --------------> <--- type --> 0 0 0 0 0 |
| * |
| * This gives us up to 127 swap files and 32GB per swap file. Note that |
| * the offset field is always non-zero. |
| */ |
| #define __SWP_TYPE_SHIFT 5 |
| #define __SWP_TYPE_BITS 7 |
| #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) |
| #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) |
| |
| #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) \ |
| & __SWP_TYPE_MASK) |
| #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) |
| #define __swp_entry(type, offset) ((swp_entry_t) { \ |
| ((type) << __SWP_TYPE_SHIFT) | \ |
| ((offset) << __SWP_OFFSET_SHIFT) }) |
| |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) |
| |
| /* |
| * It is an error for the kernel to have more swap files than we can |
| * encode in the PTEs. This ensures that we know when MAX_SWAPFILES |
| * is increased beyond what we presently support. |
| */ |
| #define MAX_SWAPFILES_CHECK() \ |
| BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) |
| |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ |
| /* FIXME: this is not correct */ |
| #define kern_addr_valid(addr) (1) |
| |
| #include <asm-generic/pgtable.h> |
| |
| #define pgtable_cache_init() do { } while (0) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* __UNICORE_PGTABLE_H__ */ |