| // SPDX-License-Identifier: GPL-2.0 |
| #ifdef HAVE_EVENTFD |
| /* |
| * Copyright (C) 2018 Davidlohr Bueso. |
| * |
| * This program benchmarks concurrent epoll_wait(2) monitoring multiple |
| * file descriptors under one or two load balancing models. The first, |
| * and default, is the single/combined queueing (which refers to a single |
| * epoll instance for N worker threads): |
| * |
| * |---> [worker A] |
| * |---> [worker B] |
| * [combined queue] .---> [worker C] |
| * |---> [worker D] |
| * |---> [worker E] |
| * |
| * While the second model, enabled via --multiq option, uses multiple |
| * queueing (which refers to one epoll instance per worker). For example, |
| * short lived tcp connections in a high throughput httpd server will |
| * ditribute the accept()'ing connections across CPUs. In this case each |
| * worker does a limited amount of processing. |
| * |
| * [queue A] ---> [worker] |
| * [queue B] ---> [worker] |
| * [queue C] ---> [worker] |
| * [queue D] ---> [worker] |
| * [queue E] ---> [worker] |
| * |
| * Naturally, the single queue will enforce more concurrency on the epoll |
| * instance, and can therefore scale poorly compared to multiple queues. |
| * However, this is a benchmark raw data and must be taken with a grain of |
| * salt when choosing how to make use of sys_epoll. |
| |
| * Each thread has a number of private, nonblocking file descriptors, |
| * referred to as fdmap. A writer thread will constantly be writing to |
| * the fdmaps of all threads, minimizing each threads's chances of |
| * epoll_wait not finding any ready read events and blocking as this |
| * is not what we want to stress. The size of the fdmap can be adjusted |
| * by the user; enlarging the value will increase the chances of |
| * epoll_wait(2) blocking as the lineal writer thread will take "longer", |
| * at least at a high level. |
| * |
| * Note that because fds are private to each thread, this workload does |
| * not stress scenarios where multiple tasks are awoken per ready IO; ie: |
| * EPOLLEXCLUSIVE semantics. |
| * |
| * The end result/metric is throughput: number of ops/second where an |
| * operation consists of: |
| * |
| * epoll_wait(2) + [others] |
| * |
| * ... where [others] is the cost of re-adding the fd (EPOLLET), |
| * or rearming it (EPOLLONESHOT). |
| * |
| * |
| * The purpose of this is program is that it be useful for measuring |
| * kernel related changes to the sys_epoll, and not comparing different |
| * IO polling methods, for example. Hence everything is very adhoc and |
| * outputs raw microbenchmark numbers. Also this uses eventfd, similar |
| * tools tend to use pipes or sockets, but the result is the same. |
| */ |
| |
| /* For the CLR_() macros */ |
| #include <string.h> |
| #include <pthread.h> |
| #include <unistd.h> |
| |
| #include <errno.h> |
| #include <inttypes.h> |
| #include <signal.h> |
| #include <stdlib.h> |
| #include <linux/compiler.h> |
| #include <linux/kernel.h> |
| #include <sys/time.h> |
| #include <sys/resource.h> |
| #include <sys/epoll.h> |
| #include <sys/eventfd.h> |
| #include <sys/types.h> |
| #include <perf/cpumap.h> |
| |
| #include "../util/stat.h" |
| #include <subcmd/parse-options.h> |
| #include "bench.h" |
| #include "cpumap.h" |
| |
| #include <err.h> |
| |
| #define printinfo(fmt, arg...) \ |
| do { if (__verbose) { printf(fmt, ## arg); fflush(stdout); } } while (0) |
| |
| static unsigned int nthreads = 0; |
| static unsigned int nsecs = 8; |
| struct timeval start, end, runtime; |
| static bool wdone, done, __verbose, randomize, nonblocking; |
| |
| /* |
| * epoll related shared variables. |
| */ |
| |
| /* Maximum number of nesting allowed inside epoll sets */ |
| #define EPOLL_MAXNESTS 4 |
| |
| static int epollfd; |
| static int *epollfdp; |
| static bool noaffinity; |
| static unsigned int nested = 0; |
| static bool et; /* edge-trigger */ |
| static bool oneshot; |
| static bool multiq; /* use an epoll instance per thread */ |
| |
| /* amount of fds to monitor, per thread */ |
| static unsigned int nfds = 64; |
| |
| static pthread_mutex_t thread_lock; |
| static unsigned int threads_starting; |
| static struct stats throughput_stats; |
| static pthread_cond_t thread_parent, thread_worker; |
| |
| struct worker { |
| int tid; |
| int epollfd; /* for --multiq */ |
| pthread_t thread; |
| unsigned long ops; |
| int *fdmap; |
| }; |
| |
| static const struct option options[] = { |
| /* general benchmark options */ |
| OPT_UINTEGER('t', "threads", &nthreads, "Specify amount of threads"), |
| OPT_UINTEGER('r', "runtime", &nsecs, "Specify runtime (in seconds)"), |
| OPT_UINTEGER('f', "nfds", &nfds, "Specify amount of file descriptors to monitor for each thread"), |
| OPT_BOOLEAN( 'n', "noaffinity", &noaffinity, "Disables CPU affinity"), |
| OPT_BOOLEAN('R', "randomize", &randomize, "Enable random write behaviour (default is lineal)"), |
| OPT_BOOLEAN( 'v', "verbose", &__verbose, "Verbose mode"), |
| |
| /* epoll specific options */ |
| OPT_BOOLEAN( 'm', "multiq", &multiq, "Use multiple epoll instances (one per thread)"), |
| OPT_BOOLEAN( 'B', "nonblocking", &nonblocking, "Nonblocking epoll_wait(2) behaviour"), |
| OPT_UINTEGER( 'N', "nested", &nested, "Nesting level epoll hierarchy (default is 0, no nesting)"), |
| OPT_BOOLEAN( 'S', "oneshot", &oneshot, "Use EPOLLONESHOT semantics"), |
| OPT_BOOLEAN( 'E', "edge", &et, "Use Edge-triggered interface (default is LT)"), |
| |
| OPT_END() |
| }; |
| |
| static const char * const bench_epoll_wait_usage[] = { |
| "perf bench epoll wait <options>", |
| NULL |
| }; |
| |
| |
| /* |
| * Arrange the N elements of ARRAY in random order. |
| * Only effective if N is much smaller than RAND_MAX; |
| * if this may not be the case, use a better random |
| * number generator. -- Ben Pfaff. |
| */ |
| static void shuffle(void *array, size_t n, size_t size) |
| { |
| char *carray = array; |
| void *aux; |
| size_t i; |
| |
| if (n <= 1) |
| return; |
| |
| aux = calloc(1, size); |
| if (!aux) |
| err(EXIT_FAILURE, "calloc"); |
| |
| for (i = 1; i < n; ++i) { |
| size_t j = i + rand() / (RAND_MAX / (n - i) + 1); |
| j *= size; |
| |
| memcpy(aux, &carray[j], size); |
| memcpy(&carray[j], &carray[i*size], size); |
| memcpy(&carray[i*size], aux, size); |
| } |
| |
| free(aux); |
| } |
| |
| |
| static void *workerfn(void *arg) |
| { |
| int fd, ret, r; |
| struct worker *w = (struct worker *) arg; |
| unsigned long ops = w->ops; |
| struct epoll_event ev; |
| uint64_t val; |
| int to = nonblocking? 0 : -1; |
| int efd = multiq ? w->epollfd : epollfd; |
| |
| pthread_mutex_lock(&thread_lock); |
| threads_starting--; |
| if (!threads_starting) |
| pthread_cond_signal(&thread_parent); |
| pthread_cond_wait(&thread_worker, &thread_lock); |
| pthread_mutex_unlock(&thread_lock); |
| |
| do { |
| /* |
| * Block undefinitely waiting for the IN event. |
| * In order to stress the epoll_wait(2) syscall, |
| * call it event per event, instead of a larger |
| * batch (max)limit. |
| */ |
| do { |
| ret = epoll_wait(efd, &ev, 1, to); |
| } while (ret < 0 && errno == EINTR); |
| if (ret < 0) |
| err(EXIT_FAILURE, "epoll_wait"); |
| |
| fd = ev.data.fd; |
| |
| do { |
| r = read(fd, &val, sizeof(val)); |
| } while (!done && (r < 0 && errno == EAGAIN)); |
| |
| if (et) { |
| ev.events = EPOLLIN | EPOLLET; |
| ret = epoll_ctl(efd, EPOLL_CTL_ADD, fd, &ev); |
| } |
| |
| if (oneshot) { |
| /* rearm the file descriptor with a new event mask */ |
| ev.events |= EPOLLIN | EPOLLONESHOT; |
| ret = epoll_ctl(efd, EPOLL_CTL_MOD, fd, &ev); |
| } |
| |
| ops++; |
| } while (!done); |
| |
| if (multiq) |
| close(w->epollfd); |
| |
| w->ops = ops; |
| return NULL; |
| } |
| |
| static void nest_epollfd(struct worker *w) |
| { |
| unsigned int i; |
| struct epoll_event ev; |
| int efd = multiq ? w->epollfd : epollfd; |
| |
| if (nested > EPOLL_MAXNESTS) |
| nested = EPOLL_MAXNESTS; |
| |
| epollfdp = calloc(nested, sizeof(*epollfdp)); |
| if (!epollfdp) |
| err(EXIT_FAILURE, "calloc"); |
| |
| for (i = 0; i < nested; i++) { |
| epollfdp[i] = epoll_create(1); |
| if (epollfdp[i] < 0) |
| err(EXIT_FAILURE, "epoll_create"); |
| } |
| |
| ev.events = EPOLLHUP; /* anything */ |
| ev.data.u64 = i; /* any number */ |
| |
| for (i = nested - 1; i; i--) { |
| if (epoll_ctl(epollfdp[i - 1], EPOLL_CTL_ADD, |
| epollfdp[i], &ev) < 0) |
| err(EXIT_FAILURE, "epoll_ctl"); |
| } |
| |
| if (epoll_ctl(efd, EPOLL_CTL_ADD, *epollfdp, &ev) < 0) |
| err(EXIT_FAILURE, "epoll_ctl"); |
| } |
| |
| static void toggle_done(int sig __maybe_unused, |
| siginfo_t *info __maybe_unused, |
| void *uc __maybe_unused) |
| { |
| /* inform all threads that we're done for the day */ |
| done = true; |
| gettimeofday(&end, NULL); |
| timersub(&end, &start, &runtime); |
| } |
| |
| static void print_summary(void) |
| { |
| unsigned long avg = avg_stats(&throughput_stats); |
| double stddev = stddev_stats(&throughput_stats); |
| |
| printf("\nAveraged %ld operations/sec (+- %.2f%%), total secs = %d\n", |
| avg, rel_stddev_stats(stddev, avg), |
| (int) runtime.tv_sec); |
| } |
| |
| static int do_threads(struct worker *worker, struct perf_cpu_map *cpu) |
| { |
| pthread_attr_t thread_attr, *attrp = NULL; |
| cpu_set_t cpuset; |
| unsigned int i, j; |
| int ret = 0, events = EPOLLIN; |
| |
| if (oneshot) |
| events |= EPOLLONESHOT; |
| if (et) |
| events |= EPOLLET; |
| |
| printinfo("starting worker/consumer %sthreads%s\n", |
| noaffinity ? "":"CPU affinity ", |
| nonblocking ? " (nonblocking)":""); |
| if (!noaffinity) |
| pthread_attr_init(&thread_attr); |
| |
| for (i = 0; i < nthreads; i++) { |
| struct worker *w = &worker[i]; |
| |
| if (multiq) { |
| w->epollfd = epoll_create(1); |
| if (w->epollfd < 0) |
| err(EXIT_FAILURE, "epoll_create"); |
| |
| if (nested) |
| nest_epollfd(w); |
| } |
| |
| w->tid = i; |
| w->fdmap = calloc(nfds, sizeof(int)); |
| if (!w->fdmap) |
| return 1; |
| |
| for (j = 0; j < nfds; j++) { |
| int efd = multiq ? w->epollfd : epollfd; |
| struct epoll_event ev; |
| |
| w->fdmap[j] = eventfd(0, EFD_NONBLOCK); |
| if (w->fdmap[j] < 0) |
| err(EXIT_FAILURE, "eventfd"); |
| |
| ev.data.fd = w->fdmap[j]; |
| ev.events = events; |
| |
| ret = epoll_ctl(efd, EPOLL_CTL_ADD, |
| w->fdmap[j], &ev); |
| if (ret < 0) |
| err(EXIT_FAILURE, "epoll_ctl"); |
| } |
| |
| if (!noaffinity) { |
| CPU_ZERO(&cpuset); |
| CPU_SET(cpu->map[i % cpu->nr], &cpuset); |
| |
| ret = pthread_attr_setaffinity_np(&thread_attr, sizeof(cpu_set_t), &cpuset); |
| if (ret) |
| err(EXIT_FAILURE, "pthread_attr_setaffinity_np"); |
| |
| attrp = &thread_attr; |
| } |
| |
| ret = pthread_create(&w->thread, attrp, workerfn, |
| (void *)(struct worker *) w); |
| if (ret) |
| err(EXIT_FAILURE, "pthread_create"); |
| } |
| |
| if (!noaffinity) |
| pthread_attr_destroy(&thread_attr); |
| |
| return ret; |
| } |
| |
| static void *writerfn(void *p) |
| { |
| struct worker *worker = p; |
| size_t i, j, iter; |
| const uint64_t val = 1; |
| ssize_t sz; |
| struct timespec ts = { .tv_sec = 0, |
| .tv_nsec = 500 }; |
| |
| printinfo("starting writer-thread: doing %s writes ...\n", |
| randomize? "random":"lineal"); |
| |
| for (iter = 0; !wdone; iter++) { |
| if (randomize) { |
| shuffle((void *)worker, nthreads, sizeof(*worker)); |
| } |
| |
| for (i = 0; i < nthreads; i++) { |
| struct worker *w = &worker[i]; |
| |
| if (randomize) { |
| shuffle((void *)w->fdmap, nfds, sizeof(int)); |
| } |
| |
| for (j = 0; j < nfds; j++) { |
| do { |
| sz = write(w->fdmap[j], &val, sizeof(val)); |
| } while (!wdone && (sz < 0 && errno == EAGAIN)); |
| } |
| } |
| |
| nanosleep(&ts, NULL); |
| } |
| |
| printinfo("exiting writer-thread (total full-loops: %zd)\n", iter); |
| return NULL; |
| } |
| |
| static int cmpworker(const void *p1, const void *p2) |
| { |
| |
| struct worker *w1 = (struct worker *) p1; |
| struct worker *w2 = (struct worker *) p2; |
| return w1->tid > w2->tid; |
| } |
| |
| int bench_epoll_wait(int argc, const char **argv) |
| { |
| int ret = 0; |
| struct sigaction act; |
| unsigned int i; |
| struct worker *worker = NULL; |
| struct perf_cpu_map *cpu; |
| pthread_t wthread; |
| struct rlimit rl, prevrl; |
| |
| argc = parse_options(argc, argv, options, bench_epoll_wait_usage, 0); |
| if (argc) { |
| usage_with_options(bench_epoll_wait_usage, options); |
| exit(EXIT_FAILURE); |
| } |
| |
| sigfillset(&act.sa_mask); |
| act.sa_sigaction = toggle_done; |
| sigaction(SIGINT, &act, NULL); |
| |
| cpu = perf_cpu_map__new(NULL); |
| if (!cpu) |
| goto errmem; |
| |
| /* a single, main epoll instance */ |
| if (!multiq) { |
| epollfd = epoll_create(1); |
| if (epollfd < 0) |
| err(EXIT_FAILURE, "epoll_create"); |
| |
| /* |
| * Deal with nested epolls, if any. |
| */ |
| if (nested) |
| nest_epollfd(NULL); |
| } |
| |
| printinfo("Using %s queue model\n", multiq ? "multi" : "single"); |
| printinfo("Nesting level(s): %d\n", nested); |
| |
| /* default to the number of CPUs and leave one for the writer pthread */ |
| if (!nthreads) |
| nthreads = cpu->nr - 1; |
| |
| worker = calloc(nthreads, sizeof(*worker)); |
| if (!worker) { |
| goto errmem; |
| } |
| |
| if (getrlimit(RLIMIT_NOFILE, &prevrl)) |
| err(EXIT_FAILURE, "getrlimit"); |
| rl.rlim_cur = rl.rlim_max = nfds * nthreads * 2 + 50; |
| printinfo("Setting RLIMIT_NOFILE rlimit from %" PRIu64 " to: %" PRIu64 "\n", |
| (uint64_t)prevrl.rlim_max, (uint64_t)rl.rlim_max); |
| if (setrlimit(RLIMIT_NOFILE, &rl) < 0) |
| err(EXIT_FAILURE, "setrlimit"); |
| |
| printf("Run summary [PID %d]: %d threads monitoring%s on " |
| "%d file-descriptors for %d secs.\n\n", |
| getpid(), nthreads, oneshot ? " (EPOLLONESHOT semantics)": "", nfds, nsecs); |
| |
| init_stats(&throughput_stats); |
| pthread_mutex_init(&thread_lock, NULL); |
| pthread_cond_init(&thread_parent, NULL); |
| pthread_cond_init(&thread_worker, NULL); |
| |
| threads_starting = nthreads; |
| |
| gettimeofday(&start, NULL); |
| |
| do_threads(worker, cpu); |
| |
| pthread_mutex_lock(&thread_lock); |
| while (threads_starting) |
| pthread_cond_wait(&thread_parent, &thread_lock); |
| pthread_cond_broadcast(&thread_worker); |
| pthread_mutex_unlock(&thread_lock); |
| |
| /* |
| * At this point the workers should be blocked waiting for read events |
| * to become ready. Launch the writer which will constantly be writing |
| * to each thread's fdmap. |
| */ |
| ret = pthread_create(&wthread, NULL, writerfn, |
| (void *)(struct worker *) worker); |
| if (ret) |
| err(EXIT_FAILURE, "pthread_create"); |
| |
| sleep(nsecs); |
| toggle_done(0, NULL, NULL); |
| printinfo("main thread: toggling done\n"); |
| |
| sleep(1); /* meh */ |
| wdone = true; |
| ret = pthread_join(wthread, NULL); |
| if (ret) |
| err(EXIT_FAILURE, "pthread_join"); |
| |
| /* cleanup & report results */ |
| pthread_cond_destroy(&thread_parent); |
| pthread_cond_destroy(&thread_worker); |
| pthread_mutex_destroy(&thread_lock); |
| |
| /* sort the array back before reporting */ |
| if (randomize) |
| qsort(worker, nthreads, sizeof(struct worker), cmpworker); |
| |
| for (i = 0; i < nthreads; i++) { |
| unsigned long t = worker[i].ops/runtime.tv_sec; |
| |
| update_stats(&throughput_stats, t); |
| |
| if (nfds == 1) |
| printf("[thread %2d] fdmap: %p [ %04ld ops/sec ]\n", |
| worker[i].tid, &worker[i].fdmap[0], t); |
| else |
| printf("[thread %2d] fdmap: %p ... %p [ %04ld ops/sec ]\n", |
| worker[i].tid, &worker[i].fdmap[0], |
| &worker[i].fdmap[nfds-1], t); |
| } |
| |
| print_summary(); |
| |
| close(epollfd); |
| return ret; |
| errmem: |
| err(EXIT_FAILURE, "calloc"); |
| } |
| #endif // HAVE_EVENTFD |