| /* |
| * Copyright 2013 Red Hat Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| * Authors: Ben Skeggs |
| */ |
| #include "nv50.h" |
| #include "ramseq.h" |
| |
| #include <core/device.h> |
| #include <core/option.h> |
| #include <subdev/bios.h> |
| #include <subdev/bios/perf.h> |
| #include <subdev/bios/pll.h> |
| #include <subdev/bios/timing.h> |
| #include <subdev/clk/pll.h> |
| |
| struct nv50_ramseq { |
| struct hwsq base; |
| struct hwsq_reg r_0x002504; |
| struct hwsq_reg r_0x004008; |
| struct hwsq_reg r_0x00400c; |
| struct hwsq_reg r_0x00c040; |
| struct hwsq_reg r_0x100210; |
| struct hwsq_reg r_0x1002d0; |
| struct hwsq_reg r_0x1002d4; |
| struct hwsq_reg r_0x1002dc; |
| struct hwsq_reg r_0x100da0[8]; |
| struct hwsq_reg r_0x100e20; |
| struct hwsq_reg r_0x100e24; |
| struct hwsq_reg r_0x611200; |
| struct hwsq_reg r_timing[9]; |
| struct hwsq_reg r_mr[4]; |
| }; |
| |
| struct nv50_ram { |
| struct nvkm_ram base; |
| struct nv50_ramseq hwsq; |
| }; |
| |
| #define QFX5800NVA0 1 |
| |
| static int |
| nv50_ram_calc(struct nvkm_fb *pfb, u32 freq) |
| { |
| struct nvkm_bios *bios = nvkm_bios(pfb); |
| struct nv50_ram *ram = (void *)pfb->ram; |
| struct nv50_ramseq *hwsq = &ram->hwsq; |
| struct nvbios_perfE perfE; |
| struct nvbios_pll mpll; |
| struct { |
| u32 data; |
| u8 size; |
| } ramcfg, timing; |
| u8 ver, hdr, cnt, len, strap; |
| int N1, M1, N2, M2, P; |
| int ret, i; |
| |
| /* lookup closest matching performance table entry for frequency */ |
| i = 0; |
| do { |
| ramcfg.data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt, |
| &ramcfg.size, &perfE); |
| if (!ramcfg.data || (ver < 0x25 || ver >= 0x40) || |
| (ramcfg.size < 2)) { |
| nv_error(pfb, "invalid/missing perftab entry\n"); |
| return -EINVAL; |
| } |
| } while (perfE.memory < freq); |
| |
| /* locate specific data set for the attached memory */ |
| strap = nvbios_ramcfg_index(nv_subdev(pfb)); |
| if (strap >= cnt) { |
| nv_error(pfb, "invalid ramcfg strap\n"); |
| return -EINVAL; |
| } |
| |
| ramcfg.data += hdr + (strap * ramcfg.size); |
| |
| /* lookup memory timings, if bios says they're present */ |
| strap = nv_ro08(bios, ramcfg.data + 0x01); |
| if (strap != 0xff) { |
| timing.data = nvbios_timingEe(bios, strap, &ver, &hdr, |
| &cnt, &len); |
| if (!timing.data || ver != 0x10 || hdr < 0x12) { |
| nv_error(pfb, "invalid/missing timing entry " |
| "%02x %04x %02x %02x\n", |
| strap, timing.data, ver, hdr); |
| return -EINVAL; |
| } |
| } else { |
| timing.data = 0; |
| } |
| |
| ret = ram_init(hwsq, nv_subdev(pfb)); |
| if (ret) |
| return ret; |
| |
| ram_wait(hwsq, 0x01, 0x00); /* wait for !vblank */ |
| ram_wait(hwsq, 0x01, 0x01); /* wait for vblank */ |
| ram_wr32(hwsq, 0x611200, 0x00003300); |
| ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */ |
| ram_nsec(hwsq, 8000); |
| ram_setf(hwsq, 0x10, 0x00); /* disable fb */ |
| ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */ |
| |
| ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */ |
| ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ |
| ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */ |
| ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */ |
| ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */ |
| |
| ret = nvbios_pll_parse(bios, 0x004008, &mpll); |
| mpll.vco2.max_freq = 0; |
| if (ret == 0) { |
| ret = nv04_pll_calc(nv_subdev(pfb), &mpll, freq, |
| &N1, &M1, &N2, &M2, &P); |
| if (ret == 0) |
| ret = -EINVAL; |
| } |
| |
| if (ret < 0) |
| return ret; |
| |
| ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000); |
| ram_mask(hwsq, 0x004008, 0x00000200, 0x00000200); |
| ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1); |
| ram_mask(hwsq, 0x004008, 0x81ff0000, 0x80000000 | (mpll.bias_p << 19) | |
| (P << 22) | (P << 16)); |
| #if QFX5800NVA0 |
| for (i = 0; i < 8; i++) |
| ram_mask(hwsq, 0x100da0[i], 0x00000000, 0x00000000); /*XXX*/ |
| #endif |
| ram_nsec(hwsq, 96000); /*XXX*/ |
| ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000); |
| |
| ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */ |
| ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */ |
| |
| ram_nsec(hwsq, 12000); |
| |
| switch (ram->base.type) { |
| case NV_MEM_TYPE_DDR2: |
| ram_nuke(hwsq, mr[0]); /* force update */ |
| ram_mask(hwsq, mr[0], 0x000, 0x000); |
| break; |
| case NV_MEM_TYPE_GDDR3: |
| ram_mask(hwsq, mr[2], 0x000, 0x000); |
| ram_nuke(hwsq, mr[0]); /* force update */ |
| ram_mask(hwsq, mr[0], 0x000, 0x000); |
| break; |
| default: |
| break; |
| } |
| |
| ram_mask(hwsq, timing[3], 0x00000000, 0x00000000); /*XXX*/ |
| ram_mask(hwsq, timing[1], 0x00000000, 0x00000000); /*XXX*/ |
| ram_mask(hwsq, timing[6], 0x00000000, 0x00000000); /*XXX*/ |
| ram_mask(hwsq, timing[7], 0x00000000, 0x00000000); /*XXX*/ |
| ram_mask(hwsq, timing[8], 0x00000000, 0x00000000); /*XXX*/ |
| ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/ |
| ram_mask(hwsq, timing[2], 0x00000000, 0x00000000); /*XXX*/ |
| ram_mask(hwsq, timing[4], 0x00000000, 0x00000000); /*XXX*/ |
| ram_mask(hwsq, timing[5], 0x00000000, 0x00000000); /*XXX*/ |
| |
| ram_mask(hwsq, timing[0], 0x00000000, 0x00000000); /*XXX*/ |
| |
| #if QFX5800NVA0 |
| ram_nuke(hwsq, 0x100e24); |
| ram_mask(hwsq, 0x100e24, 0x00000000, 0x00000000); |
| ram_nuke(hwsq, 0x100e20); |
| ram_mask(hwsq, 0x100e20, 0x00000000, 0x00000000); |
| #endif |
| |
| ram_mask(hwsq, mr[0], 0x100, 0x100); |
| ram_mask(hwsq, mr[0], 0x100, 0x000); |
| |
| ram_setf(hwsq, 0x10, 0x01); /* enable fb */ |
| ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */ |
| ram_wr32(hwsq, 0x611200, 0x00003330); |
| ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */ |
| return 0; |
| } |
| |
| static int |
| nv50_ram_prog(struct nvkm_fb *pfb) |
| { |
| struct nvkm_device *device = nv_device(pfb); |
| struct nv50_ram *ram = (void *)pfb->ram; |
| struct nv50_ramseq *hwsq = &ram->hwsq; |
| |
| ram_exec(hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true)); |
| return 0; |
| } |
| |
| static void |
| nv50_ram_tidy(struct nvkm_fb *pfb) |
| { |
| struct nv50_ram *ram = (void *)pfb->ram; |
| struct nv50_ramseq *hwsq = &ram->hwsq; |
| ram_exec(hwsq, false); |
| } |
| |
| void |
| __nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem *mem) |
| { |
| struct nvkm_mm_node *this; |
| |
| while (!list_empty(&mem->regions)) { |
| this = list_first_entry(&mem->regions, typeof(*this), rl_entry); |
| |
| list_del(&this->rl_entry); |
| nvkm_mm_free(&pfb->vram, &this); |
| } |
| |
| nvkm_mm_free(&pfb->tags, &mem->tag); |
| } |
| |
| void |
| nv50_ram_put(struct nvkm_fb *pfb, struct nvkm_mem **pmem) |
| { |
| struct nvkm_mem *mem = *pmem; |
| |
| *pmem = NULL; |
| if (unlikely(mem == NULL)) |
| return; |
| |
| mutex_lock(&pfb->base.mutex); |
| __nv50_ram_put(pfb, mem); |
| mutex_unlock(&pfb->base.mutex); |
| |
| kfree(mem); |
| } |
| |
| int |
| nv50_ram_get(struct nvkm_fb *pfb, u64 size, u32 align, u32 ncmin, |
| u32 memtype, struct nvkm_mem **pmem) |
| { |
| struct nvkm_mm *heap = &pfb->vram; |
| struct nvkm_mm *tags = &pfb->tags; |
| struct nvkm_mm_node *r; |
| struct nvkm_mem *mem; |
| int comp = (memtype & 0x300) >> 8; |
| int type = (memtype & 0x07f); |
| int back = (memtype & 0x800); |
| int min, max, ret; |
| |
| max = (size >> 12); |
| min = ncmin ? (ncmin >> 12) : max; |
| align >>= 12; |
| |
| mem = kzalloc(sizeof(*mem), GFP_KERNEL); |
| if (!mem) |
| return -ENOMEM; |
| |
| mutex_lock(&pfb->base.mutex); |
| if (comp) { |
| if (align == 16) { |
| int n = (max >> 4) * comp; |
| |
| ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag); |
| if (ret) |
| mem->tag = NULL; |
| } |
| |
| if (unlikely(!mem->tag)) |
| comp = 0; |
| } |
| |
| INIT_LIST_HEAD(&mem->regions); |
| mem->memtype = (comp << 7) | type; |
| mem->size = max; |
| |
| type = nv50_fb_memtype[type]; |
| do { |
| if (back) |
| ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r); |
| else |
| ret = nvkm_mm_head(heap, 0, type, max, min, align, &r); |
| if (ret) { |
| mutex_unlock(&pfb->base.mutex); |
| pfb->ram->put(pfb, &mem); |
| return ret; |
| } |
| |
| list_add_tail(&r->rl_entry, &mem->regions); |
| max -= r->length; |
| } while (max); |
| mutex_unlock(&pfb->base.mutex); |
| |
| r = list_first_entry(&mem->regions, struct nvkm_mm_node, rl_entry); |
| mem->offset = (u64)r->offset << 12; |
| *pmem = mem; |
| return 0; |
| } |
| |
| static u32 |
| nv50_fb_vram_rblock(struct nvkm_fb *pfb, struct nvkm_ram *ram) |
| { |
| int colbits, rowbitsa, rowbitsb, banks; |
| u64 rowsize, predicted; |
| u32 r0, r4, rt, rblock_size; |
| |
| r0 = nv_rd32(pfb, 0x100200); |
| r4 = nv_rd32(pfb, 0x100204); |
| rt = nv_rd32(pfb, 0x100250); |
| nv_debug(pfb, "memcfg 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| r0, r4, rt, nv_rd32(pfb, 0x001540)); |
| |
| colbits = (r4 & 0x0000f000) >> 12; |
| rowbitsa = ((r4 & 0x000f0000) >> 16) + 8; |
| rowbitsb = ((r4 & 0x00f00000) >> 20) + 8; |
| banks = 1 << (((r4 & 0x03000000) >> 24) + 2); |
| |
| rowsize = ram->parts * banks * (1 << colbits) * 8; |
| predicted = rowsize << rowbitsa; |
| if (r0 & 0x00000004) |
| predicted += rowsize << rowbitsb; |
| |
| if (predicted != ram->size) { |
| nv_warn(pfb, "memory controller reports %d MiB VRAM\n", |
| (u32)(ram->size >> 20)); |
| } |
| |
| rblock_size = rowsize; |
| if (rt & 1) |
| rblock_size *= 3; |
| |
| nv_debug(pfb, "rblock %d bytes\n", rblock_size); |
| return rblock_size; |
| } |
| |
| int |
| nv50_ram_create_(struct nvkm_object *parent, struct nvkm_object *engine, |
| struct nvkm_oclass *oclass, int length, void **pobject) |
| { |
| const u32 rsvd_head = ( 256 * 1024) >> 12; /* vga memory */ |
| const u32 rsvd_tail = (1024 * 1024) >> 12; /* vbios etc */ |
| struct nvkm_bios *bios = nvkm_bios(parent); |
| struct nvkm_fb *pfb = nvkm_fb(parent); |
| struct nvkm_ram *ram; |
| int ret; |
| |
| ret = nvkm_ram_create_(parent, engine, oclass, length, pobject); |
| ram = *pobject; |
| if (ret) |
| return ret; |
| |
| ram->size = nv_rd32(pfb, 0x10020c); |
| ram->size = (ram->size & 0xffffff00) | ((ram->size & 0x000000ff) << 32); |
| |
| ram->part_mask = (nv_rd32(pfb, 0x001540) & 0x00ff0000) >> 16; |
| ram->parts = hweight8(ram->part_mask); |
| |
| switch (nv_rd32(pfb, 0x100714) & 0x00000007) { |
| case 0: ram->type = NV_MEM_TYPE_DDR1; break; |
| case 1: |
| if (nvkm_fb_bios_memtype(bios) == NV_MEM_TYPE_DDR3) |
| ram->type = NV_MEM_TYPE_DDR3; |
| else |
| ram->type = NV_MEM_TYPE_DDR2; |
| break; |
| case 2: ram->type = NV_MEM_TYPE_GDDR3; break; |
| case 3: ram->type = NV_MEM_TYPE_GDDR4; break; |
| case 4: ram->type = NV_MEM_TYPE_GDDR5; break; |
| default: |
| break; |
| } |
| |
| ret = nvkm_mm_init(&pfb->vram, rsvd_head, (ram->size >> 12) - |
| (rsvd_head + rsvd_tail), |
| nv50_fb_vram_rblock(pfb, ram) >> 12); |
| if (ret) |
| return ret; |
| |
| ram->ranks = (nv_rd32(pfb, 0x100200) & 0x4) ? 2 : 1; |
| ram->tags = nv_rd32(pfb, 0x100320); |
| ram->get = nv50_ram_get; |
| ram->put = nv50_ram_put; |
| return 0; |
| } |
| |
| static int |
| nv50_ram_ctor(struct nvkm_object *parent, struct nvkm_object *engine, |
| struct nvkm_oclass *oclass, void *data, u32 datasize, |
| struct nvkm_object **pobject) |
| { |
| struct nv50_ram *ram; |
| int ret, i; |
| |
| ret = nv50_ram_create(parent, engine, oclass, &ram); |
| *pobject = nv_object(ram); |
| if (ret) |
| return ret; |
| |
| switch (ram->base.type) { |
| case NV_MEM_TYPE_DDR2: |
| case NV_MEM_TYPE_GDDR3: |
| ram->base.calc = nv50_ram_calc; |
| ram->base.prog = nv50_ram_prog; |
| ram->base.tidy = nv50_ram_tidy; |
| break; |
| default: |
| nv_warn(ram, "reclocking of this ram type unsupported\n"); |
| return 0; |
| } |
| |
| ram->hwsq.r_0x002504 = hwsq_reg(0x002504); |
| ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040); |
| ram->hwsq.r_0x004008 = hwsq_reg(0x004008); |
| ram->hwsq.r_0x00400c = hwsq_reg(0x00400c); |
| ram->hwsq.r_0x100210 = hwsq_reg(0x100210); |
| ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0); |
| ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4); |
| ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc); |
| for (i = 0; i < 8; i++) |
| ram->hwsq.r_0x100da0[i] = hwsq_reg(0x100da0 + (i * 0x04)); |
| ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20); |
| ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24); |
| ram->hwsq.r_0x611200 = hwsq_reg(0x611200); |
| |
| for (i = 0; i < 9; i++) |
| ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04)); |
| |
| if (ram->base.ranks > 1) { |
| ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8); |
| ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc); |
| ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8); |
| ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec); |
| } else { |
| ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0); |
| ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4); |
| ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0); |
| ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4); |
| } |
| |
| return 0; |
| } |
| |
| struct nvkm_oclass |
| nv50_ram_oclass = { |
| .ofuncs = &(struct nvkm_ofuncs) { |
| .ctor = nv50_ram_ctor, |
| .dtor = _nvkm_ram_dtor, |
| .init = _nvkm_ram_init, |
| .fini = _nvkm_ram_fini, |
| } |
| }; |