blob: 73d63d72575b0ae998903a144ff1c820dcd1ff1d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014 The Linux Foundation. All rights reserved.
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <drm/drm_irq.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
static const struct debugfs_reg32 v3d_regs[] = {
VC4_REG32(V3D_IDENT0),
VC4_REG32(V3D_IDENT1),
VC4_REG32(V3D_IDENT2),
VC4_REG32(V3D_SCRATCH),
VC4_REG32(V3D_L2CACTL),
VC4_REG32(V3D_SLCACTL),
VC4_REG32(V3D_INTCTL),
VC4_REG32(V3D_INTENA),
VC4_REG32(V3D_INTDIS),
VC4_REG32(V3D_CT0CS),
VC4_REG32(V3D_CT1CS),
VC4_REG32(V3D_CT0EA),
VC4_REG32(V3D_CT1EA),
VC4_REG32(V3D_CT0CA),
VC4_REG32(V3D_CT1CA),
VC4_REG32(V3D_CT00RA0),
VC4_REG32(V3D_CT01RA0),
VC4_REG32(V3D_CT0LC),
VC4_REG32(V3D_CT1LC),
VC4_REG32(V3D_CT0PC),
VC4_REG32(V3D_CT1PC),
VC4_REG32(V3D_PCS),
VC4_REG32(V3D_BFC),
VC4_REG32(V3D_RFC),
VC4_REG32(V3D_BPCA),
VC4_REG32(V3D_BPCS),
VC4_REG32(V3D_BPOA),
VC4_REG32(V3D_BPOS),
VC4_REG32(V3D_BXCF),
VC4_REG32(V3D_SQRSV0),
VC4_REG32(V3D_SQRSV1),
VC4_REG32(V3D_SQCNTL),
VC4_REG32(V3D_SRQPC),
VC4_REG32(V3D_SRQUA),
VC4_REG32(V3D_SRQUL),
VC4_REG32(V3D_SRQCS),
VC4_REG32(V3D_VPACNTL),
VC4_REG32(V3D_VPMBASE),
VC4_REG32(V3D_PCTRC),
VC4_REG32(V3D_PCTRE),
VC4_REG32(V3D_PCTR(0)),
VC4_REG32(V3D_PCTRS(0)),
VC4_REG32(V3D_PCTR(1)),
VC4_REG32(V3D_PCTRS(1)),
VC4_REG32(V3D_PCTR(2)),
VC4_REG32(V3D_PCTRS(2)),
VC4_REG32(V3D_PCTR(3)),
VC4_REG32(V3D_PCTRS(3)),
VC4_REG32(V3D_PCTR(4)),
VC4_REG32(V3D_PCTRS(4)),
VC4_REG32(V3D_PCTR(5)),
VC4_REG32(V3D_PCTRS(5)),
VC4_REG32(V3D_PCTR(6)),
VC4_REG32(V3D_PCTRS(6)),
VC4_REG32(V3D_PCTR(7)),
VC4_REG32(V3D_PCTRS(7)),
VC4_REG32(V3D_PCTR(8)),
VC4_REG32(V3D_PCTRS(8)),
VC4_REG32(V3D_PCTR(9)),
VC4_REG32(V3D_PCTRS(9)),
VC4_REG32(V3D_PCTR(10)),
VC4_REG32(V3D_PCTRS(10)),
VC4_REG32(V3D_PCTR(11)),
VC4_REG32(V3D_PCTRS(11)),
VC4_REG32(V3D_PCTR(12)),
VC4_REG32(V3D_PCTRS(12)),
VC4_REG32(V3D_PCTR(13)),
VC4_REG32(V3D_PCTRS(13)),
VC4_REG32(V3D_PCTR(14)),
VC4_REG32(V3D_PCTRS(14)),
VC4_REG32(V3D_PCTR(15)),
VC4_REG32(V3D_PCTRS(15)),
VC4_REG32(V3D_DBGE),
VC4_REG32(V3D_FDBGO),
VC4_REG32(V3D_FDBGB),
VC4_REG32(V3D_FDBGR),
VC4_REG32(V3D_FDBGS),
VC4_REG32(V3D_ERRSTAT),
};
static int vc4_v3d_debugfs_ident(struct seq_file *m, void *unused)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *dev = node->minor->dev;
struct vc4_dev *vc4 = to_vc4_dev(dev);
int ret = vc4_v3d_pm_get(vc4);
if (ret == 0) {
uint32_t ident1 = V3D_READ(V3D_IDENT1);
uint32_t nslc = VC4_GET_FIELD(ident1, V3D_IDENT1_NSLC);
uint32_t tups = VC4_GET_FIELD(ident1, V3D_IDENT1_TUPS);
uint32_t qups = VC4_GET_FIELD(ident1, V3D_IDENT1_QUPS);
seq_printf(m, "Revision: %d\n",
VC4_GET_FIELD(ident1, V3D_IDENT1_REV));
seq_printf(m, "Slices: %d\n", nslc);
seq_printf(m, "TMUs: %d\n", nslc * tups);
seq_printf(m, "QPUs: %d\n", nslc * qups);
seq_printf(m, "Semaphores: %d\n",
VC4_GET_FIELD(ident1, V3D_IDENT1_NSEM));
vc4_v3d_pm_put(vc4);
}
return 0;
}
/*
* Wraps pm_runtime_get_sync() in a refcount, so that we can reliably
* get the pm_runtime refcount to 0 in vc4_reset().
*/
int
vc4_v3d_pm_get(struct vc4_dev *vc4)
{
mutex_lock(&vc4->power_lock);
if (vc4->power_refcount++ == 0) {
int ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
if (ret < 0) {
vc4->power_refcount--;
mutex_unlock(&vc4->power_lock);
return ret;
}
}
mutex_unlock(&vc4->power_lock);
return 0;
}
void
vc4_v3d_pm_put(struct vc4_dev *vc4)
{
mutex_lock(&vc4->power_lock);
if (--vc4->power_refcount == 0) {
pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
}
mutex_unlock(&vc4->power_lock);
}
static void vc4_v3d_init_hw(struct drm_device *dev)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
/* Take all the memory that would have been reserved for user
* QPU programs, since we don't have an interface for running
* them, anyway.
*/
V3D_WRITE(V3D_VPMBASE, 0);
}
int vc4_v3d_get_bin_slot(struct vc4_dev *vc4)
{
struct drm_device *dev = &vc4->base;
unsigned long irqflags;
int slot;
uint64_t seqno = 0;
struct vc4_exec_info *exec;
try_again:
spin_lock_irqsave(&vc4->job_lock, irqflags);
slot = ffs(~vc4->bin_alloc_used);
if (slot != 0) {
/* Switch from ffs() bit index to a 0-based index. */
slot--;
vc4->bin_alloc_used |= BIT(slot);
spin_unlock_irqrestore(&vc4->job_lock, irqflags);
return slot;
}
/* Couldn't find an open slot. Wait for render to complete
* and try again.
*/
exec = vc4_last_render_job(vc4);
if (exec)
seqno = exec->seqno;
spin_unlock_irqrestore(&vc4->job_lock, irqflags);
if (seqno) {
int ret = vc4_wait_for_seqno(dev, seqno, ~0ull, true);
if (ret == 0)
goto try_again;
return ret;
}
return -ENOMEM;
}
/*
* bin_bo_alloc() - allocates the memory that will be used for
* tile binning.
*
* The binner has a limitation that the addresses in the tile state
* buffer that point into the tile alloc buffer or binner overflow
* memory only have 28 bits (256MB), and the top 4 on the bus for
* tile alloc references end up coming from the tile state buffer's
* address.
*
* To work around this, we allocate a single large buffer while V3D is
* in use, make sure that it has the top 4 bits constant across its
* entire extent, and then put the tile state, tile alloc, and binner
* overflow memory inside that buffer.
*
* This creates a limitation where we may not be able to execute a job
* if it doesn't fit within the buffer that we allocated up front.
* However, it turns out that 16MB is "enough for anybody", and
* real-world applications run into allocation failures from the
* overall CMA pool before they make scenes complicated enough to run
* out of bin space.
*/
static int bin_bo_alloc(struct vc4_dev *vc4)
{
struct vc4_v3d *v3d = vc4->v3d;
uint32_t size = 16 * 1024 * 1024;
int ret = 0;
struct list_head list;
if (!v3d)
return -ENODEV;
/* We may need to try allocating more than once to get a BO
* that doesn't cross 256MB. Track the ones we've allocated
* that failed so far, so that we can free them when we've got
* one that succeeded (if we freed them right away, our next
* allocation would probably be the same chunk of memory).
*/
INIT_LIST_HEAD(&list);
while (true) {
struct vc4_bo *bo = vc4_bo_create(&vc4->base, size, true,
VC4_BO_TYPE_BIN);
if (IS_ERR(bo)) {
ret = PTR_ERR(bo);
dev_err(&v3d->pdev->dev,
"Failed to allocate memory for tile binning: "
"%d. You may need to enable CMA or give it "
"more memory.",
ret);
break;
}
/* Check if this BO won't trigger the addressing bug. */
if ((bo->base.paddr & 0xf0000000) ==
((bo->base.paddr + bo->base.base.size - 1) & 0xf0000000)) {
vc4->bin_bo = bo;
/* Set up for allocating 512KB chunks of
* binner memory. The biggest allocation we
* need to do is for the initial tile alloc +
* tile state buffer. We can render to a
* maximum of ((2048*2048) / (32*32) = 4096
* tiles in a frame (until we do floating
* point rendering, at which point it would be
* 8192). Tile state is 48b/tile (rounded to
* a page), and tile alloc is 32b/tile
* (rounded to a page), plus a page of extra,
* for a total of 320kb for our worst-case.
* We choose 512kb so that it divides evenly
* into our 16MB, and the rest of the 512kb
* will be used as storage for the overflow
* from the initial 32b CL per bin.
*/
vc4->bin_alloc_size = 512 * 1024;
vc4->bin_alloc_used = 0;
vc4->bin_alloc_overflow = 0;
WARN_ON_ONCE(sizeof(vc4->bin_alloc_used) * 8 !=
bo->base.base.size / vc4->bin_alloc_size);
kref_init(&vc4->bin_bo_kref);
/* Enable the out-of-memory interrupt to set our
* newly-allocated binner BO, potentially from an
* already-pending-but-masked interrupt.
*/
V3D_WRITE(V3D_INTENA, V3D_INT_OUTOMEM);
break;
}
/* Put it on the list to free later, and try again. */
list_add(&bo->unref_head, &list);
}
/* Free all the BOs we allocated but didn't choose. */
while (!list_empty(&list)) {
struct vc4_bo *bo = list_last_entry(&list,
struct vc4_bo, unref_head);
list_del(&bo->unref_head);
drm_gem_object_put(&bo->base.base);
}
return ret;
}
int vc4_v3d_bin_bo_get(struct vc4_dev *vc4, bool *used)
{
int ret = 0;
mutex_lock(&vc4->bin_bo_lock);
if (used && *used)
goto complete;
if (vc4->bin_bo)
kref_get(&vc4->bin_bo_kref);
else
ret = bin_bo_alloc(vc4);
if (ret == 0 && used)
*used = true;
complete:
mutex_unlock(&vc4->bin_bo_lock);
return ret;
}
static void bin_bo_release(struct kref *ref)
{
struct vc4_dev *vc4 = container_of(ref, struct vc4_dev, bin_bo_kref);
if (WARN_ON_ONCE(!vc4->bin_bo))
return;
drm_gem_object_put(&vc4->bin_bo->base.base);
vc4->bin_bo = NULL;
}
void vc4_v3d_bin_bo_put(struct vc4_dev *vc4)
{
mutex_lock(&vc4->bin_bo_lock);
kref_put(&vc4->bin_bo_kref, bin_bo_release);
mutex_unlock(&vc4->bin_bo_lock);
}
#ifdef CONFIG_PM
static int vc4_v3d_runtime_suspend(struct device *dev)
{
struct vc4_v3d *v3d = dev_get_drvdata(dev);
struct vc4_dev *vc4 = v3d->vc4;
vc4_irq_uninstall(&vc4->base);
clk_disable_unprepare(v3d->clk);
return 0;
}
static int vc4_v3d_runtime_resume(struct device *dev)
{
struct vc4_v3d *v3d = dev_get_drvdata(dev);
struct vc4_dev *vc4 = v3d->vc4;
int ret;
ret = clk_prepare_enable(v3d->clk);
if (ret != 0)
return ret;
vc4_v3d_init_hw(&vc4->base);
/* We disabled the IRQ as part of vc4_irq_uninstall in suspend. */
enable_irq(vc4->base.irq);
vc4_irq_postinstall(&vc4->base);
return 0;
}
#endif
static int vc4_v3d_bind(struct device *dev, struct device *master, void *data)
{
struct platform_device *pdev = to_platform_device(dev);
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
struct vc4_v3d *v3d = NULL;
int ret;
v3d = devm_kzalloc(&pdev->dev, sizeof(*v3d), GFP_KERNEL);
if (!v3d)
return -ENOMEM;
dev_set_drvdata(dev, v3d);
v3d->pdev = pdev;
v3d->regs = vc4_ioremap_regs(pdev, 0);
if (IS_ERR(v3d->regs))
return PTR_ERR(v3d->regs);
v3d->regset.base = v3d->regs;
v3d->regset.regs = v3d_regs;
v3d->regset.nregs = ARRAY_SIZE(v3d_regs);
vc4->v3d = v3d;
v3d->vc4 = vc4;
v3d->clk = devm_clk_get(dev, NULL);
if (IS_ERR(v3d->clk)) {
int ret = PTR_ERR(v3d->clk);
if (ret == -ENOENT) {
/* bcm2835 didn't have a clock reference in the DT. */
ret = 0;
v3d->clk = NULL;
} else {
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get V3D clock: %d\n",
ret);
return ret;
}
}
if (V3D_READ(V3D_IDENT0) != V3D_EXPECTED_IDENT0) {
DRM_ERROR("V3D_IDENT0 read 0x%08x instead of 0x%08x\n",
V3D_READ(V3D_IDENT0), V3D_EXPECTED_IDENT0);
return -EINVAL;
}
ret = clk_prepare_enable(v3d->clk);
if (ret != 0)
return ret;
/* Reset the binner overflow address/size at setup, to be sure
* we don't reuse an old one.
*/
V3D_WRITE(V3D_BPOA, 0);
V3D_WRITE(V3D_BPOS, 0);
vc4_v3d_init_hw(drm);
ret = drm_irq_install(drm, platform_get_irq(pdev, 0));
if (ret) {
DRM_ERROR("Failed to install IRQ handler\n");
return ret;
}
pm_runtime_set_active(dev);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, 40); /* a little over 2 frames. */
pm_runtime_enable(dev);
vc4_debugfs_add_file(drm, "v3d_ident", vc4_v3d_debugfs_ident, NULL);
vc4_debugfs_add_regset32(drm, "v3d_regs", &v3d->regset);
return 0;
}
static void vc4_v3d_unbind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = dev_get_drvdata(master);
struct vc4_dev *vc4 = to_vc4_dev(drm);
pm_runtime_disable(dev);
drm_irq_uninstall(drm);
/* Disable the binner's overflow memory address, so the next
* driver probe (if any) doesn't try to reuse our old
* allocation.
*/
V3D_WRITE(V3D_BPOA, 0);
V3D_WRITE(V3D_BPOS, 0);
vc4->v3d = NULL;
}
static const struct dev_pm_ops vc4_v3d_pm_ops = {
SET_RUNTIME_PM_OPS(vc4_v3d_runtime_suspend, vc4_v3d_runtime_resume, NULL)
};
static const struct component_ops vc4_v3d_ops = {
.bind = vc4_v3d_bind,
.unbind = vc4_v3d_unbind,
};
static int vc4_v3d_dev_probe(struct platform_device *pdev)
{
return component_add(&pdev->dev, &vc4_v3d_ops);
}
static int vc4_v3d_dev_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &vc4_v3d_ops);
return 0;
}
const struct of_device_id vc4_v3d_dt_match[] = {
{ .compatible = "brcm,bcm2835-v3d" },
{ .compatible = "brcm,cygnus-v3d" },
{ .compatible = "brcm,vc4-v3d" },
{}
};
struct platform_driver vc4_v3d_driver = {
.probe = vc4_v3d_dev_probe,
.remove = vc4_v3d_dev_remove,
.driver = {
.name = "vc4_v3d",
.of_match_table = vc4_v3d_dt_match,
.pm = &vc4_v3d_pm_ops,
},
};