| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018 Intel Corporation */ |
| |
| #include <linux/delay.h> |
| |
| #include "igc_hw.h" |
| |
| /** |
| * igc_get_hw_semaphore_i225 - Acquire hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the necessary semaphores for exclusive access to the EEPROM. |
| * Set the EEPROM access request bit and wait for EEPROM access grant bit. |
| * Return successful if access grant bit set, else clear the request for |
| * EEPROM access and return -IGC_ERR_NVM (-1). |
| */ |
| static s32 igc_acquire_nvm_i225(struct igc_hw *hw) |
| { |
| return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); |
| } |
| |
| /** |
| * igc_release_nvm_i225 - Release exclusive access to EEPROM |
| * @hw: pointer to the HW structure |
| * |
| * Stop any current commands to the EEPROM and clear the EEPROM request bit, |
| * then release the semaphores acquired. |
| */ |
| static void igc_release_nvm_i225(struct igc_hw *hw) |
| { |
| igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM); |
| } |
| |
| /** |
| * igc_get_hw_semaphore_i225 - Acquire hardware semaphore |
| * @hw: pointer to the HW structure |
| * |
| * Acquire the HW semaphore to access the PHY or NVM |
| */ |
| static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw) |
| { |
| s32 timeout = hw->nvm.word_size + 1; |
| s32 i = 0; |
| u32 swsm; |
| |
| /* Get the SW semaphore */ |
| while (i < timeout) { |
| swsm = rd32(IGC_SWSM); |
| if (!(swsm & IGC_SWSM_SMBI)) |
| break; |
| |
| usleep_range(500, 600); |
| i++; |
| } |
| |
| if (i == timeout) { |
| /* In rare circumstances, the SW semaphore may already be held |
| * unintentionally. Clear the semaphore once before giving up. |
| */ |
| if (hw->dev_spec._base.clear_semaphore_once) { |
| hw->dev_spec._base.clear_semaphore_once = false; |
| igc_put_hw_semaphore(hw); |
| for (i = 0; i < timeout; i++) { |
| swsm = rd32(IGC_SWSM); |
| if (!(swsm & IGC_SWSM_SMBI)) |
| break; |
| |
| usleep_range(500, 600); |
| } |
| } |
| |
| /* If we do not have the semaphore here, we have to give up. */ |
| if (i == timeout) { |
| hw_dbg("Driver can't access device - SMBI bit is set.\n"); |
| return -IGC_ERR_NVM; |
| } |
| } |
| |
| /* Get the FW semaphore. */ |
| for (i = 0; i < timeout; i++) { |
| swsm = rd32(IGC_SWSM); |
| wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI); |
| |
| /* Semaphore acquired if bit latched */ |
| if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI) |
| break; |
| |
| usleep_range(500, 600); |
| } |
| |
| if (i == timeout) { |
| /* Release semaphores */ |
| igc_put_hw_semaphore(hw); |
| hw_dbg("Driver can't access the NVM\n"); |
| return -IGC_ERR_NVM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Acquire the SW/FW semaphore to access the PHY or NVM. The mask |
| * will also specify which port we're acquiring the lock for. |
| */ |
| s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask) |
| { |
| s32 i = 0, timeout = 200; |
| u32 fwmask = mask << 16; |
| u32 swmask = mask; |
| s32 ret_val = 0; |
| u32 swfw_sync; |
| |
| while (i < timeout) { |
| if (igc_get_hw_semaphore_i225(hw)) { |
| ret_val = -IGC_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync = rd32(IGC_SW_FW_SYNC); |
| if (!(swfw_sync & (fwmask | swmask))) |
| break; |
| |
| /* Firmware currently using resource (fwmask) */ |
| igc_put_hw_semaphore(hw); |
| mdelay(5); |
| i++; |
| } |
| |
| if (i == timeout) { |
| hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); |
| ret_val = -IGC_ERR_SWFW_SYNC; |
| goto out; |
| } |
| |
| swfw_sync |= swmask; |
| wr32(IGC_SW_FW_SYNC, swfw_sync); |
| |
| igc_put_hw_semaphore(hw); |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_release_swfw_sync_i225 - Release SW/FW semaphore |
| * @hw: pointer to the HW structure |
| * @mask: specifies which semaphore to acquire |
| * |
| * Release the SW/FW semaphore used to access the PHY or NVM. The mask |
| * will also specify which port we're releasing the lock for. |
| */ |
| void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask) |
| { |
| u32 swfw_sync; |
| |
| while (igc_get_hw_semaphore_i225(hw)) |
| ; /* Empty */ |
| |
| swfw_sync = rd32(IGC_SW_FW_SYNC); |
| swfw_sync &= ~mask; |
| wr32(IGC_SW_FW_SYNC, swfw_sync); |
| |
| igc_put_hw_semaphore(hw); |
| } |
| |
| /** |
| * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register |
| * @hw: pointer to the HW structure |
| * @offset: offset of word in the Shadow Ram to read |
| * @words: number of words to read |
| * @data: word read from the Shadow Ram |
| * |
| * Reads a 16 bit word from the Shadow Ram using the EERD register. |
| * Uses necessary synchronization semaphores. |
| */ |
| static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| s32 status = 0; |
| u16 i, count; |
| |
| /* We cannot hold synchronization semaphores for too long, |
| * because of forceful takeover procedure. However it is more efficient |
| * to read in bursts than synchronizing access for each word. |
| */ |
| for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { |
| count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? |
| IGC_EERD_EEWR_MAX_COUNT : (words - i); |
| |
| status = hw->nvm.ops.acquire(hw); |
| if (status) |
| break; |
| |
| status = igc_read_nvm_eerd(hw, offset, count, data + i); |
| hw->nvm.ops.release(hw); |
| if (status) |
| break; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * igc_write_nvm_srwr - Write to Shadow Ram using EEWR |
| * @hw: pointer to the HW structure |
| * @offset: offset within the Shadow Ram to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the Shadow Ram |
| * |
| * Writes data to Shadow Ram at offset using EEWR register. |
| * |
| * If igc_update_nvm_checksum is not called after this function , the |
| * Shadow Ram will most likely contain an invalid checksum. |
| */ |
| static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct igc_nvm_info *nvm = &hw->nvm; |
| u32 attempts = 100000; |
| u32 i, k, eewr = 0; |
| s32 ret_val = 0; |
| |
| /* A check for invalid values: offset too large, too many words, |
| * too many words for the offset, and not enough words. |
| */ |
| if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) || |
| words == 0) { |
| hw_dbg("nvm parameter(s) out of bounds\n"); |
| ret_val = -IGC_ERR_NVM; |
| goto out; |
| } |
| |
| for (i = 0; i < words; i++) { |
| eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) | |
| (data[i] << IGC_NVM_RW_REG_DATA) | |
| IGC_NVM_RW_REG_START; |
| |
| wr32(IGC_SRWR, eewr); |
| |
| for (k = 0; k < attempts; k++) { |
| if (IGC_NVM_RW_REG_DONE & |
| rd32(IGC_SRWR)) { |
| ret_val = 0; |
| break; |
| } |
| udelay(5); |
| } |
| |
| if (ret_val) { |
| hw_dbg("Shadow RAM write EEWR timed out\n"); |
| break; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR |
| * @hw: pointer to the HW structure |
| * @offset: offset within the Shadow RAM to be written to |
| * @words: number of words to write |
| * @data: 16 bit word(s) to be written to the Shadow RAM |
| * |
| * Writes data to Shadow RAM at offset using EEWR register. |
| * |
| * If igc_update_nvm_checksum is not called after this function , the |
| * data will not be committed to FLASH and also Shadow RAM will most likely |
| * contain an invalid checksum. |
| * |
| * If error code is returned, data and Shadow RAM may be inconsistent - buffer |
| * partially written. |
| */ |
| static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| s32 status = 0; |
| u16 i, count; |
| |
| /* We cannot hold synchronization semaphores for too long, |
| * because of forceful takeover procedure. However it is more efficient |
| * to write in bursts than synchronizing access for each word. |
| */ |
| for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) { |
| count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ? |
| IGC_EERD_EEWR_MAX_COUNT : (words - i); |
| |
| status = hw->nvm.ops.acquire(hw); |
| if (status) |
| break; |
| |
| status = igc_write_nvm_srwr(hw, offset, count, data + i); |
| hw->nvm.ops.release(hw); |
| if (status) |
| break; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Calculates the EEPROM checksum by reading/adding each word of the EEPROM |
| * and then verifies that the sum of the EEPROM is equal to 0xBABA. |
| */ |
| static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw) |
| { |
| s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count, |
| u16 *data); |
| s32 status = 0; |
| |
| status = hw->nvm.ops.acquire(hw); |
| if (status) |
| goto out; |
| |
| /* Replace the read function with semaphore grabbing with |
| * the one that skips this for a while. |
| * We have semaphore taken already here. |
| */ |
| read_op_ptr = hw->nvm.ops.read; |
| hw->nvm.ops.read = igc_read_nvm_eerd; |
| |
| status = igc_validate_nvm_checksum(hw); |
| |
| /* Revert original read operation. */ |
| hw->nvm.ops.read = read_op_ptr; |
| |
| hw->nvm.ops.release(hw); |
| |
| out: |
| return status; |
| } |
| |
| /** |
| * igc_pool_flash_update_done_i225 - Pool FLUDONE status |
| * @hw: pointer to the HW structure |
| */ |
| static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw) |
| { |
| s32 ret_val = -IGC_ERR_NVM; |
| u32 i, reg; |
| |
| for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) { |
| reg = rd32(IGC_EECD); |
| if (reg & IGC_EECD_FLUDONE_I225) { |
| ret_val = 0; |
| break; |
| } |
| udelay(5); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * igc_update_flash_i225 - Commit EEPROM to the flash |
| * @hw: pointer to the HW structure |
| */ |
| static s32 igc_update_flash_i225(struct igc_hw *hw) |
| { |
| s32 ret_val = 0; |
| u32 flup; |
| |
| ret_val = igc_pool_flash_update_done_i225(hw); |
| if (ret_val == -IGC_ERR_NVM) { |
| hw_dbg("Flash update time out\n"); |
| goto out; |
| } |
| |
| flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225; |
| wr32(IGC_EECD, flup); |
| |
| ret_val = igc_pool_flash_update_done_i225(hw); |
| if (ret_val) |
| hw_dbg("Flash update time out\n"); |
| else |
| hw_dbg("Flash update complete\n"); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_update_nvm_checksum_i225 - Update EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Updates the EEPROM checksum by reading/adding each word of the EEPROM |
| * up to the checksum. Then calculates the EEPROM checksum and writes the |
| * value to the EEPROM. Next commit EEPROM data onto the Flash. |
| */ |
| static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw) |
| { |
| u16 checksum = 0; |
| s32 ret_val = 0; |
| u16 i, nvm_data; |
| |
| /* Read the first word from the EEPROM. If this times out or fails, do |
| * not continue or we could be in for a very long wait while every |
| * EEPROM read fails |
| */ |
| ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data); |
| if (ret_val) { |
| hw_dbg("EEPROM read failed\n"); |
| goto out; |
| } |
| |
| ret_val = hw->nvm.ops.acquire(hw); |
| if (ret_val) |
| goto out; |
| |
| /* Do not use hw->nvm.ops.write, hw->nvm.ops.read |
| * because we do not want to take the synchronization |
| * semaphores twice here. |
| */ |
| |
| for (i = 0; i < NVM_CHECKSUM_REG; i++) { |
| ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data); |
| if (ret_val) { |
| hw->nvm.ops.release(hw); |
| hw_dbg("NVM Read Error while updating checksum.\n"); |
| goto out; |
| } |
| checksum += nvm_data; |
| } |
| checksum = (u16)NVM_SUM - checksum; |
| ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1, |
| &checksum); |
| if (ret_val) { |
| hw->nvm.ops.release(hw); |
| hw_dbg("NVM Write Error while updating checksum.\n"); |
| goto out; |
| } |
| |
| hw->nvm.ops.release(hw); |
| |
| ret_val = igc_update_flash_i225(hw); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * igc_get_flash_presence_i225 - Check if flash device is detected |
| * @hw: pointer to the HW structure |
| */ |
| bool igc_get_flash_presence_i225(struct igc_hw *hw) |
| { |
| bool ret_val = false; |
| u32 eec = 0; |
| |
| eec = rd32(IGC_EECD); |
| if (eec & IGC_EECD_FLASH_DETECTED_I225) |
| ret_val = true; |
| |
| return ret_val; |
| } |
| |
| /** |
| * igc_init_nvm_params_i225 - Init NVM func ptrs. |
| * @hw: pointer to the HW structure |
| */ |
| s32 igc_init_nvm_params_i225(struct igc_hw *hw) |
| { |
| struct igc_nvm_info *nvm = &hw->nvm; |
| |
| nvm->ops.acquire = igc_acquire_nvm_i225; |
| nvm->ops.release = igc_release_nvm_i225; |
| |
| /* NVM Function Pointers */ |
| if (igc_get_flash_presence_i225(hw)) { |
| hw->nvm.type = igc_nvm_flash_hw; |
| nvm->ops.read = igc_read_nvm_srrd_i225; |
| nvm->ops.write = igc_write_nvm_srwr_i225; |
| nvm->ops.validate = igc_validate_nvm_checksum_i225; |
| nvm->ops.update = igc_update_nvm_checksum_i225; |
| } else { |
| hw->nvm.type = igc_nvm_invm; |
| nvm->ops.read = igc_read_nvm_eerd; |
| nvm->ops.write = NULL; |
| nvm->ops.validate = NULL; |
| nvm->ops.update = NULL; |
| } |
| return 0; |
| } |
| |
| /** |
| * igc_set_eee_i225 - Enable/disable EEE support |
| * @hw: pointer to the HW structure |
| * @adv2p5G: boolean flag enabling 2.5G EEE advertisement |
| * @adv1G: boolean flag enabling 1G EEE advertisement |
| * @adv100M: boolean flag enabling 100M EEE advertisement |
| * |
| * Enable/disable EEE based on setting in dev_spec structure. |
| **/ |
| s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G, |
| bool adv100M) |
| { |
| u32 ipcnfg, eeer; |
| |
| ipcnfg = rd32(IGC_IPCNFG); |
| eeer = rd32(IGC_EEER); |
| |
| /* enable or disable per user setting */ |
| if (hw->dev_spec._base.eee_enable) { |
| u32 eee_su = rd32(IGC_EEE_SU); |
| |
| if (adv100M) |
| ipcnfg |= IGC_IPCNFG_EEE_100M_AN; |
| else |
| ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN; |
| |
| if (adv1G) |
| ipcnfg |= IGC_IPCNFG_EEE_1G_AN; |
| else |
| ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN; |
| |
| if (adv2p5G) |
| ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN; |
| else |
| ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN; |
| |
| eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | |
| IGC_EEER_LPI_FC); |
| |
| /* This bit should not be set in normal operation. */ |
| if (eee_su & IGC_EEE_SU_LPI_CLK_STP) |
| hw_dbg("LPI Clock Stop Bit should not be set!\n"); |
| } else { |
| ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN | |
| IGC_IPCNFG_EEE_100M_AN); |
| eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN | |
| IGC_EEER_LPI_FC); |
| } |
| wr32(IGC_IPCNFG, ipcnfg); |
| wr32(IGC_EEER, eeer); |
| rd32(IGC_IPCNFG); |
| rd32(IGC_EEER); |
| |
| return IGC_SUCCESS; |
| } |
| |
| /* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds |
| * @hw: pointer to the HW structure |
| * @link: bool indicating link status |
| * |
| * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC |
| * settings, otherwise specify that there is no LTR requirement. |
| */ |
| s32 igc_set_ltr_i225(struct igc_hw *hw, bool link) |
| { |
| u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max; |
| u16 speed, duplex; |
| s32 size; |
| |
| /* If we do not have link, LTR thresholds are zero. */ |
| if (link) { |
| hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex); |
| |
| /* Check if using copper interface with EEE enabled or if the |
| * link speed is 10 Mbps. |
| */ |
| if (hw->dev_spec._base.eee_enable && |
| speed != SPEED_10) { |
| /* EEE enabled, so send LTRMAX threshold. */ |
| ltrc = rd32(IGC_LTRC) | |
| IGC_LTRC_EEEMS_EN; |
| wr32(IGC_LTRC, ltrc); |
| |
| /* Calculate tw_system (nsec). */ |
| if (speed == SPEED_100) { |
| tw_system = ((rd32(IGC_EEE_SU) & |
| IGC_TW_SYSTEM_100_MASK) >> |
| IGC_TW_SYSTEM_100_SHIFT) * 500; |
| } else { |
| tw_system = (rd32(IGC_EEE_SU) & |
| IGC_TW_SYSTEM_1000_MASK) * 500; |
| } |
| } else { |
| tw_system = 0; |
| } |
| |
| /* Get the Rx packet buffer size. */ |
| size = rd32(IGC_RXPBS) & |
| IGC_RXPBS_SIZE_I225_MASK; |
| |
| /* Calculations vary based on DMAC settings. */ |
| if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) { |
| size -= (rd32(IGC_DMACR) & |
| IGC_DMACR_DMACTHR_MASK) >> |
| IGC_DMACR_DMACTHR_SHIFT; |
| /* Convert size to bits. */ |
| size *= 1024 * 8; |
| } else { |
| /* Convert size to bytes, subtract the MTU, and then |
| * convert the size to bits. |
| */ |
| size *= 1024; |
| size *= 8; |
| } |
| |
| if (size < 0) { |
| hw_dbg("Invalid effective Rx buffer size %d\n", |
| size); |
| return -IGC_ERR_CONFIG; |
| } |
| |
| /* Calculate the thresholds. Since speed is in Mbps, simplify |
| * the calculation by multiplying size/speed by 1000 for result |
| * to be in nsec before dividing by the scale in nsec. Set the |
| * scale such that the LTR threshold fits in the register. |
| */ |
| ltr_min = (1000 * size) / speed; |
| ltr_max = ltr_min + tw_system; |
| scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 : |
| IGC_LTRMINV_SCALE_32768; |
| scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 : |
| IGC_LTRMAXV_SCALE_32768; |
| ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768; |
| ltr_min -= 1; |
| ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768; |
| ltr_max -= 1; |
| |
| /* Only write the LTR thresholds if they differ from before. */ |
| ltrv = rd32(IGC_LTRMINV); |
| if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) { |
| ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min | |
| (scale_min << IGC_LTRMINV_SCALE_SHIFT); |
| wr32(IGC_LTRMINV, ltrv); |
| } |
| |
| ltrv = rd32(IGC_LTRMAXV); |
| if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) { |
| ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max | |
| (scale_min << IGC_LTRMAXV_SCALE_SHIFT); |
| wr32(IGC_LTRMAXV, ltrv); |
| } |
| } |
| |
| return IGC_SUCCESS; |
| } |