| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "bcachefs_ioctl.h" |
| #include "btree_cache.h" |
| #include "btree_journal_iter.h" |
| #include "btree_update.h" |
| #include "btree_write_buffer.h" |
| #include "buckets.h" |
| #include "compress.h" |
| #include "disk_accounting.h" |
| #include "error.h" |
| #include "journal_io.h" |
| #include "replicas.h" |
| |
| /* |
| * Notes on disk accounting: |
| * |
| * We have two parallel sets of counters to be concerned with, and both must be |
| * kept in sync. |
| * |
| * - Persistent/on disk accounting, stored in the accounting btree and updated |
| * via btree write buffer updates that treat new accounting keys as deltas to |
| * apply to existing values. But reading from a write buffer btree is |
| * expensive, so we also have |
| * |
| * - In memory accounting, where accounting is stored as an array of percpu |
| * counters, indexed by an eytzinger array of disk acounting keys/bpos (which |
| * are the same thing, excepting byte swabbing on big endian). |
| * |
| * Cheap to read, but non persistent. |
| * |
| * Disk accounting updates are generated by transactional triggers; these run as |
| * keys enter and leave the btree, and can compare old and new versions of keys; |
| * the output of these triggers are deltas to the various counters. |
| * |
| * Disk accounting updates are done as btree write buffer updates, where the |
| * counters in the disk accounting key are deltas that will be applied to the |
| * counter in the btree when the key is flushed by the write buffer (or journal |
| * replay). |
| * |
| * To do a disk accounting update: |
| * - initialize a disk_accounting_pos, to specify which counter is being update |
| * - initialize counter deltas, as an array of 1-3 s64s |
| * - call bch2_disk_accounting_mod() |
| * |
| * This queues up the accounting update to be done at transaction commit time. |
| * Underneath, it's a normal btree write buffer update. |
| * |
| * The transaction commit path is responsible for propagating updates to the in |
| * memory counters, with bch2_accounting_mem_mod(). |
| * |
| * The commit path also assigns every disk accounting update a unique version |
| * number, based on the journal sequence number and offset within that journal |
| * buffer; this is used by journal replay to determine which updates have been |
| * done. |
| * |
| * The transaction commit path also ensures that replicas entry accounting |
| * updates are properly marked in the superblock (so that we know whether we can |
| * mount without data being unavailable); it will update the superblock if |
| * bch2_accounting_mem_mod() tells it to. |
| */ |
| |
| static const char * const disk_accounting_type_strs[] = { |
| #define x(t, n, ...) [n] = #t, |
| BCH_DISK_ACCOUNTING_TYPES() |
| #undef x |
| NULL |
| }; |
| |
| static inline void accounting_key_init(struct bkey_i *k, struct disk_accounting_pos *pos, |
| s64 *d, unsigned nr) |
| { |
| struct bkey_i_accounting *acc = bkey_accounting_init(k); |
| |
| acc->k.p = disk_accounting_pos_to_bpos(pos); |
| set_bkey_val_u64s(&acc->k, sizeof(struct bch_accounting) / sizeof(u64) + nr); |
| |
| memcpy_u64s_small(acc->v.d, d, nr); |
| } |
| |
| int bch2_disk_accounting_mod(struct btree_trans *trans, |
| struct disk_accounting_pos *k, |
| s64 *d, unsigned nr, bool gc) |
| { |
| /* Normalize: */ |
| switch (k->type) { |
| case BCH_DISK_ACCOUNTING_replicas: |
| bubble_sort(k->replicas.devs, k->replicas.nr_devs, u8_cmp); |
| break; |
| } |
| |
| BUG_ON(nr > BCH_ACCOUNTING_MAX_COUNTERS); |
| |
| struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; |
| |
| accounting_key_init(&k_i.k, k, d, nr); |
| |
| return likely(!gc) |
| ? bch2_trans_update_buffered(trans, BTREE_ID_accounting, &k_i.k) |
| : bch2_accounting_mem_add(trans, bkey_i_to_s_c_accounting(&k_i.k), true); |
| } |
| |
| int bch2_mod_dev_cached_sectors(struct btree_trans *trans, |
| unsigned dev, s64 sectors, |
| bool gc) |
| { |
| struct disk_accounting_pos acc = { |
| .type = BCH_DISK_ACCOUNTING_replicas, |
| }; |
| |
| bch2_replicas_entry_cached(&acc.replicas, dev); |
| |
| return bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc); |
| } |
| |
| int bch2_accounting_invalid(struct bch_fs *c, struct bkey_s_c k, |
| enum bch_validate_flags flags, |
| struct printbuf *err) |
| { |
| return 0; |
| } |
| |
| void bch2_accounting_key_to_text(struct printbuf *out, struct disk_accounting_pos *k) |
| { |
| if (k->type >= BCH_DISK_ACCOUNTING_TYPE_NR) { |
| prt_printf(out, "unknown type %u", k->type); |
| return; |
| } |
| |
| prt_str(out, disk_accounting_type_strs[k->type]); |
| prt_str(out, " "); |
| |
| switch (k->type) { |
| case BCH_DISK_ACCOUNTING_nr_inodes: |
| break; |
| case BCH_DISK_ACCOUNTING_persistent_reserved: |
| prt_printf(out, "replicas=%u", k->persistent_reserved.nr_replicas); |
| break; |
| case BCH_DISK_ACCOUNTING_replicas: |
| bch2_replicas_entry_to_text(out, &k->replicas); |
| break; |
| case BCH_DISK_ACCOUNTING_dev_data_type: |
| prt_printf(out, "dev=%u data_type=", k->dev_data_type.dev); |
| bch2_prt_data_type(out, k->dev_data_type.data_type); |
| break; |
| case BCH_DISK_ACCOUNTING_compression: |
| bch2_prt_compression_type(out, k->compression.type); |
| break; |
| case BCH_DISK_ACCOUNTING_snapshot: |
| prt_printf(out, "id=%u", k->snapshot.id); |
| break; |
| case BCH_DISK_ACCOUNTING_btree: |
| prt_printf(out, "btree=%s", bch2_btree_id_str(k->btree.id)); |
| break; |
| } |
| } |
| |
| void bch2_accounting_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) |
| { |
| struct bkey_s_c_accounting acc = bkey_s_c_to_accounting(k); |
| struct disk_accounting_pos acc_k; |
| bpos_to_disk_accounting_pos(&acc_k, k.k->p); |
| |
| bch2_accounting_key_to_text(out, &acc_k); |
| |
| for (unsigned i = 0; i < bch2_accounting_counters(k.k); i++) |
| prt_printf(out, " %lli", acc.v->d[i]); |
| } |
| |
| void bch2_accounting_swab(struct bkey_s k) |
| { |
| for (u64 *p = (u64 *) k.v; |
| p < (u64 *) bkey_val_end(k); |
| p++) |
| *p = swab64(*p); |
| } |
| |
| static inline bool accounting_to_replicas(struct bch_replicas_entry_v1 *r, struct bpos p) |
| { |
| struct disk_accounting_pos acc_k; |
| bpos_to_disk_accounting_pos(&acc_k, p); |
| |
| switch (acc_k.type) { |
| case BCH_DISK_ACCOUNTING_replicas: |
| unsafe_memcpy(r, &acc_k.replicas, |
| replicas_entry_bytes(&acc_k.replicas), |
| "variable length struct"); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static int bch2_accounting_update_sb_one(struct bch_fs *c, struct bpos p) |
| { |
| struct bch_replicas_padded r; |
| return accounting_to_replicas(&r.e, p) |
| ? bch2_mark_replicas(c, &r.e) |
| : 0; |
| } |
| |
| /* |
| * Ensure accounting keys being updated are present in the superblock, when |
| * applicable (i.e. replicas updates) |
| */ |
| int bch2_accounting_update_sb(struct btree_trans *trans) |
| { |
| for (struct jset_entry *i = trans->journal_entries; |
| i != (void *) ((u64 *) trans->journal_entries + trans->journal_entries_u64s); |
| i = vstruct_next(i)) |
| if (jset_entry_is_key(i) && i->start->k.type == KEY_TYPE_accounting) { |
| int ret = bch2_accounting_update_sb_one(trans->c, i->start->k.p); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int __bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a) |
| { |
| struct bch_accounting_mem *acc = &c->accounting; |
| |
| /* raced with another insert, already present: */ |
| if (eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), |
| accounting_pos_cmp, &a.k->p) < acc->k.nr) |
| return 0; |
| |
| struct accounting_mem_entry n = { |
| .pos = a.k->p, |
| .version = a.k->version, |
| .nr_counters = bch2_accounting_counters(a.k), |
| .v[0] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), |
| sizeof(u64), GFP_KERNEL), |
| }; |
| |
| if (!n.v[0]) |
| goto err; |
| |
| if (acc->gc_running) { |
| n.v[1] = __alloc_percpu_gfp(n.nr_counters * sizeof(u64), |
| sizeof(u64), GFP_KERNEL); |
| if (!n.v[1]) |
| goto err; |
| } |
| |
| if (darray_push(&acc->k, n)) |
| goto err; |
| |
| eytzinger0_sort(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]), |
| accounting_pos_cmp, NULL); |
| return 0; |
| err: |
| free_percpu(n.v[1]); |
| free_percpu(n.v[0]); |
| return -BCH_ERR_ENOMEM_disk_accounting; |
| } |
| |
| int bch2_accounting_mem_insert(struct bch_fs *c, struct bkey_s_c_accounting a, bool gc) |
| { |
| struct bch_replicas_padded r; |
| |
| if (accounting_to_replicas(&r.e, a.k->p) && |
| !bch2_replicas_marked_locked(c, &r.e)) |
| return -BCH_ERR_btree_insert_need_mark_replicas; |
| |
| percpu_up_read(&c->mark_lock); |
| percpu_down_write(&c->mark_lock); |
| int ret = __bch2_accounting_mem_insert(c, a); |
| percpu_up_write(&c->mark_lock); |
| percpu_down_read(&c->mark_lock); |
| return ret; |
| } |
| |
| /* |
| * Read out accounting keys for replicas entries, as an array of |
| * bch_replicas_usage entries. |
| * |
| * Note: this may be deprecated/removed at smoe point in the future and replaced |
| * with something more general, it exists to support the ioctl used by the |
| * 'bcachefs fs usage' command. |
| */ |
| int bch2_fs_replicas_usage_read(struct bch_fs *c, darray_char *usage) |
| { |
| struct bch_accounting_mem *acc = &c->accounting; |
| int ret = 0; |
| |
| darray_init(usage); |
| |
| percpu_down_read(&c->mark_lock); |
| darray_for_each(acc->k, i) { |
| struct { |
| struct bch_replicas_usage r; |
| u8 pad[BCH_BKEY_PTRS_MAX]; |
| } u; |
| |
| if (!accounting_to_replicas(&u.r.r, i->pos)) |
| continue; |
| |
| u64 sectors; |
| bch2_accounting_mem_read_counters(acc, i - acc->k.data, §ors, 1, false); |
| u.r.sectors = sectors; |
| |
| ret = darray_make_room(usage, replicas_usage_bytes(&u.r)); |
| if (ret) |
| break; |
| |
| memcpy(&darray_top(*usage), &u.r, replicas_usage_bytes(&u.r)); |
| usage->nr += replicas_usage_bytes(&u.r); |
| } |
| percpu_up_read(&c->mark_lock); |
| |
| if (ret) |
| darray_exit(usage); |
| return ret; |
| } |
| |
| int bch2_fs_accounting_read(struct bch_fs *c, darray_char *out_buf, unsigned accounting_types_mask) |
| { |
| |
| struct bch_accounting_mem *acc = &c->accounting; |
| int ret = 0; |
| |
| darray_init(out_buf); |
| |
| percpu_down_read(&c->mark_lock); |
| darray_for_each(acc->k, i) { |
| struct disk_accounting_pos a_p; |
| bpos_to_disk_accounting_pos(&a_p, i->pos); |
| |
| if (!(accounting_types_mask & BIT(a_p.type))) |
| continue; |
| |
| ret = darray_make_room(out_buf, sizeof(struct bkey_i_accounting) + |
| sizeof(u64) * i->nr_counters); |
| if (ret) |
| break; |
| |
| struct bkey_i_accounting *a_out = |
| bkey_accounting_init((void *) &darray_top(*out_buf)); |
| set_bkey_val_u64s(&a_out->k, i->nr_counters); |
| a_out->k.p = i->pos; |
| bch2_accounting_mem_read_counters(acc, i - acc->k.data, |
| a_out->v.d, i->nr_counters, false); |
| |
| if (!bch2_accounting_key_is_zero(accounting_i_to_s_c(a_out))) |
| out_buf->nr += bkey_bytes(&a_out->k); |
| } |
| |
| percpu_up_read(&c->mark_lock); |
| |
| if (ret) |
| darray_exit(out_buf); |
| return ret; |
| } |
| |
| void bch2_fs_accounting_to_text(struct printbuf *out, struct bch_fs *c) |
| { |
| struct bch_accounting_mem *acc = &c->accounting; |
| |
| percpu_down_read(&c->mark_lock); |
| out->atomic++; |
| |
| eytzinger0_for_each(i, acc->k.nr) { |
| struct disk_accounting_pos acc_k; |
| bpos_to_disk_accounting_pos(&acc_k, acc->k.data[i].pos); |
| |
| bch2_accounting_key_to_text(out, &acc_k); |
| |
| u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; |
| bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); |
| |
| prt_str(out, ":"); |
| for (unsigned j = 0; j < acc->k.data[i].nr_counters; j++) |
| prt_printf(out, " %llu", v[j]); |
| prt_newline(out); |
| } |
| |
| --out->atomic; |
| percpu_up_read(&c->mark_lock); |
| } |
| |
| static void bch2_accounting_free_counters(struct bch_accounting_mem *acc, bool gc) |
| { |
| darray_for_each(acc->k, e) { |
| free_percpu(e->v[gc]); |
| e->v[gc] = NULL; |
| } |
| } |
| |
| int bch2_gc_accounting_start(struct bch_fs *c) |
| { |
| struct bch_accounting_mem *acc = &c->accounting; |
| int ret = 0; |
| |
| percpu_down_write(&c->mark_lock); |
| darray_for_each(acc->k, e) { |
| e->v[1] = __alloc_percpu_gfp(e->nr_counters * sizeof(u64), |
| sizeof(u64), GFP_KERNEL); |
| if (!e->v[1]) { |
| bch2_accounting_free_counters(acc, true); |
| ret = -BCH_ERR_ENOMEM_disk_accounting; |
| break; |
| } |
| } |
| |
| acc->gc_running = !ret; |
| percpu_up_write(&c->mark_lock); |
| |
| return ret; |
| } |
| |
| int bch2_gc_accounting_done(struct bch_fs *c) |
| { |
| struct bch_accounting_mem *acc = &c->accounting; |
| struct btree_trans *trans = bch2_trans_get(c); |
| struct printbuf buf = PRINTBUF; |
| int ret = 0; |
| |
| percpu_down_read(&c->mark_lock); |
| |
| darray_for_each(acc->k, e) { |
| struct disk_accounting_pos acc_k; |
| bpos_to_disk_accounting_pos(&acc_k, e->pos); |
| |
| u64 src_v[BCH_ACCOUNTING_MAX_COUNTERS]; |
| u64 dst_v[BCH_ACCOUNTING_MAX_COUNTERS]; |
| |
| unsigned idx = e - acc->k.data; |
| unsigned nr = e->nr_counters; |
| bch2_accounting_mem_read_counters(acc, idx, dst_v, nr, false); |
| bch2_accounting_mem_read_counters(acc, idx, src_v, nr, true); |
| |
| if (memcmp(dst_v, src_v, nr * sizeof(u64))) { |
| printbuf_reset(&buf); |
| prt_str(&buf, "accounting mismatch for "); |
| bch2_accounting_key_to_text(&buf, &acc_k); |
| |
| prt_str(&buf, ": got"); |
| for (unsigned j = 0; j < nr; j++) |
| prt_printf(&buf, " %llu", dst_v[j]); |
| |
| prt_str(&buf, " should be"); |
| for (unsigned j = 0; j < nr; j++) |
| prt_printf(&buf, " %llu", src_v[j]); |
| |
| for (unsigned j = 0; j < nr; j++) |
| src_v[j] -= dst_v[j]; |
| |
| if (fsck_err(trans, accounting_mismatch, "%s", buf.buf)) { |
| ret = commit_do(trans, NULL, NULL, 0, |
| bch2_disk_accounting_mod(trans, &acc_k, src_v, nr, false)); |
| if (ret) |
| goto err; |
| |
| if (!test_bit(BCH_FS_may_go_rw, &c->flags)) { |
| memset(&trans->fs_usage_delta, 0, sizeof(trans->fs_usage_delta)); |
| struct { __BKEY_PADDED(k, BCH_ACCOUNTING_MAX_COUNTERS); } k_i; |
| |
| accounting_key_init(&k_i.k, &acc_k, src_v, nr); |
| bch2_accounting_mem_mod_locked(trans, bkey_i_to_s_c_accounting(&k_i.k), false); |
| |
| preempt_disable(); |
| struct bch_fs_usage_base *dst = this_cpu_ptr(c->usage); |
| struct bch_fs_usage_base *src = &trans->fs_usage_delta; |
| acc_u64s((u64 *) dst, (u64 *) src, sizeof(*src) / sizeof(u64)); |
| preempt_enable(); |
| } |
| } |
| } |
| } |
| err: |
| fsck_err: |
| percpu_up_read(&c->mark_lock); |
| printbuf_exit(&buf); |
| bch2_trans_put(trans); |
| bch_err_fn(c, ret); |
| return ret; |
| } |
| |
| static int accounting_read_key(struct btree_trans *trans, struct bkey_s_c k) |
| { |
| struct bch_fs *c = trans->c; |
| struct printbuf buf = PRINTBUF; |
| |
| if (k.k->type != KEY_TYPE_accounting) |
| return 0; |
| |
| percpu_down_read(&c->mark_lock); |
| int ret = __bch2_accounting_mem_mod(c, bkey_s_c_to_accounting(k), false); |
| percpu_up_read(&c->mark_lock); |
| |
| if (bch2_accounting_key_is_zero(bkey_s_c_to_accounting(k)) && |
| ret == -BCH_ERR_btree_insert_need_mark_replicas) |
| ret = 0; |
| |
| struct disk_accounting_pos acc; |
| bpos_to_disk_accounting_pos(&acc, k.k->p); |
| |
| if (fsck_err_on(ret == -BCH_ERR_btree_insert_need_mark_replicas, |
| trans, accounting_replicas_not_marked, |
| "accounting not marked in superblock replicas\n %s", |
| (bch2_accounting_key_to_text(&buf, &acc), |
| buf.buf))) |
| ret = bch2_accounting_update_sb_one(c, k.k->p); |
| fsck_err: |
| printbuf_exit(&buf); |
| return ret; |
| } |
| |
| /* |
| * At startup time, initialize the in memory accounting from the btree (and |
| * journal) |
| */ |
| int bch2_accounting_read(struct bch_fs *c) |
| { |
| struct bch_accounting_mem *acc = &c->accounting; |
| struct btree_trans *trans = bch2_trans_get(c); |
| |
| int ret = for_each_btree_key(trans, iter, |
| BTREE_ID_accounting, POS_MIN, |
| BTREE_ITER_prefetch|BTREE_ITER_all_snapshots, k, ({ |
| struct bkey u; |
| struct bkey_s_c k = bch2_btree_path_peek_slot_exact(btree_iter_path(trans, &iter), &u); |
| accounting_read_key(trans, k); |
| })); |
| if (ret) |
| goto err; |
| |
| struct journal_keys *keys = &c->journal_keys; |
| struct journal_key *dst = keys->data; |
| move_gap(keys, keys->nr); |
| |
| darray_for_each(*keys, i) { |
| if (i->k->k.type == KEY_TYPE_accounting) { |
| struct bkey_s_c k = bkey_i_to_s_c(i->k); |
| unsigned idx = eytzinger0_find(acc->k.data, acc->k.nr, |
| sizeof(acc->k.data[0]), |
| accounting_pos_cmp, &k.k->p); |
| |
| bool applied = idx < acc->k.nr && |
| bversion_cmp(acc->k.data[idx].version, k.k->version) >= 0; |
| |
| if (applied) |
| continue; |
| |
| if (i + 1 < &darray_top(*keys) && |
| i[1].k->k.type == KEY_TYPE_accounting && |
| !journal_key_cmp(i, i + 1)) { |
| BUG_ON(bversion_cmp(i[0].k->k.version, i[1].k->k.version) >= 0); |
| |
| i[1].journal_seq = i[0].journal_seq; |
| |
| bch2_accounting_accumulate(bkey_i_to_accounting(i[1].k), |
| bkey_s_c_to_accounting(k)); |
| continue; |
| } |
| |
| ret = accounting_read_key(trans, k); |
| if (ret) |
| goto err; |
| } |
| |
| *dst++ = *i; |
| } |
| keys->gap = keys->nr = dst - keys->data; |
| |
| percpu_down_read(&c->mark_lock); |
| preempt_disable(); |
| struct bch_fs_usage_base *usage = this_cpu_ptr(c->usage); |
| |
| for (unsigned i = 0; i < acc->k.nr; i++) { |
| struct disk_accounting_pos k; |
| bpos_to_disk_accounting_pos(&k, acc->k.data[i].pos); |
| |
| u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; |
| bch2_accounting_mem_read_counters(acc, i, v, ARRAY_SIZE(v), false); |
| |
| switch (k.type) { |
| case BCH_DISK_ACCOUNTING_persistent_reserved: |
| usage->reserved += v[0] * k.persistent_reserved.nr_replicas; |
| break; |
| case BCH_DISK_ACCOUNTING_replicas: |
| fs_usage_data_type_to_base(usage, k.replicas.data_type, v[0]); |
| break; |
| case BCH_DISK_ACCOUNTING_dev_data_type: |
| rcu_read_lock(); |
| struct bch_dev *ca = bch2_dev_rcu(c, k.dev_data_type.dev); |
| if (ca) { |
| struct bch_dev_usage_type __percpu *d = &ca->usage->d[k.dev_data_type.data_type]; |
| percpu_u64_set(&d->buckets, v[0]); |
| percpu_u64_set(&d->sectors, v[1]); |
| percpu_u64_set(&d->fragmented, v[2]); |
| |
| if (k.dev_data_type.data_type == BCH_DATA_sb || |
| k.dev_data_type.data_type == BCH_DATA_journal) |
| usage->hidden += v[0] * ca->mi.bucket_size; |
| } |
| rcu_read_unlock(); |
| break; |
| } |
| } |
| preempt_enable(); |
| percpu_up_read(&c->mark_lock); |
| err: |
| bch2_trans_put(trans); |
| bch_err_fn(c, ret); |
| return ret; |
| } |
| |
| int bch2_dev_usage_remove(struct bch_fs *c, unsigned dev) |
| { |
| return bch2_trans_run(c, |
| bch2_btree_write_buffer_flush_sync(trans) ?: |
| for_each_btree_key_commit(trans, iter, BTREE_ID_accounting, POS_MIN, |
| BTREE_ITER_all_snapshots, k, NULL, NULL, 0, ({ |
| struct disk_accounting_pos acc; |
| bpos_to_disk_accounting_pos(&acc, k.k->p); |
| |
| acc.type == BCH_DISK_ACCOUNTING_dev_data_type && |
| acc.dev_data_type.dev == dev |
| ? bch2_btree_bit_mod_buffered(trans, BTREE_ID_accounting, k.k->p, 0) |
| : 0; |
| })) ?: |
| bch2_btree_write_buffer_flush_sync(trans)); |
| } |
| |
| int bch2_dev_usage_init(struct bch_dev *ca, bool gc) |
| { |
| struct bch_fs *c = ca->fs; |
| struct disk_accounting_pos acc = { |
| .type = BCH_DISK_ACCOUNTING_dev_data_type, |
| .dev_data_type.dev = ca->dev_idx, |
| .dev_data_type.data_type = BCH_DATA_free, |
| }; |
| u64 v[3] = { ca->mi.nbuckets - ca->mi.first_bucket, 0, 0 }; |
| |
| int ret = bch2_trans_do(c, NULL, NULL, 0, |
| bch2_disk_accounting_mod(trans, &acc, v, ARRAY_SIZE(v), gc)); |
| bch_err_fn(c, ret); |
| return ret; |
| } |
| |
| void bch2_verify_accounting_clean(struct bch_fs *c) |
| { |
| bool mismatch = false; |
| struct bch_fs_usage_base base = {}, base_inmem = {}; |
| |
| bch2_trans_run(c, |
| for_each_btree_key(trans, iter, |
| BTREE_ID_accounting, POS_MIN, |
| BTREE_ITER_all_snapshots, k, ({ |
| u64 v[BCH_ACCOUNTING_MAX_COUNTERS]; |
| struct bkey_s_c_accounting a = bkey_s_c_to_accounting(k); |
| unsigned nr = bch2_accounting_counters(k.k); |
| |
| bch2_accounting_mem_read(c, k.k->p, v, nr); |
| |
| if (memcmp(a.v->d, v, nr * sizeof(u64))) { |
| struct printbuf buf = PRINTBUF; |
| |
| bch2_bkey_val_to_text(&buf, c, k); |
| prt_str(&buf, " !="); |
| for (unsigned j = 0; j < nr; j++) |
| prt_printf(&buf, " %llu", v[j]); |
| |
| pr_err("%s", buf.buf); |
| printbuf_exit(&buf); |
| mismatch = true; |
| } |
| |
| struct disk_accounting_pos acc_k; |
| bpos_to_disk_accounting_pos(&acc_k, a.k->p); |
| |
| switch (acc_k.type) { |
| case BCH_DISK_ACCOUNTING_persistent_reserved: |
| base.reserved += acc_k.persistent_reserved.nr_replicas * a.v->d[0]; |
| break; |
| case BCH_DISK_ACCOUNTING_replicas: |
| fs_usage_data_type_to_base(&base, acc_k.replicas.data_type, a.v->d[0]); |
| break; |
| case BCH_DISK_ACCOUNTING_dev_data_type: { |
| rcu_read_lock(); |
| struct bch_dev *ca = bch2_dev_rcu(c, acc_k.dev_data_type.dev); |
| if (!ca) { |
| rcu_read_unlock(); |
| continue; |
| } |
| |
| v[0] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].buckets); |
| v[1] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].sectors); |
| v[2] = percpu_u64_get(&ca->usage->d[acc_k.dev_data_type.data_type].fragmented); |
| rcu_read_unlock(); |
| |
| if (memcmp(a.v->d, v, 3 * sizeof(u64))) { |
| struct printbuf buf = PRINTBUF; |
| |
| bch2_bkey_val_to_text(&buf, c, k); |
| prt_str(&buf, " in mem"); |
| for (unsigned j = 0; j < nr; j++) |
| prt_printf(&buf, " %llu", v[j]); |
| |
| pr_err("dev accounting mismatch: %s", buf.buf); |
| printbuf_exit(&buf); |
| mismatch = true; |
| } |
| } |
| } |
| |
| 0; |
| }))); |
| |
| acc_u64s_percpu(&base_inmem.hidden, &c->usage->hidden, sizeof(base_inmem) / sizeof(u64)); |
| |
| #define check(x) \ |
| if (base.x != base_inmem.x) { \ |
| pr_err("fs_usage_base.%s mismatch: %llu != %llu", #x, base.x, base_inmem.x); \ |
| mismatch = true; \ |
| } |
| |
| //check(hidden); |
| check(btree); |
| check(data); |
| check(cached); |
| check(reserved); |
| check(nr_inodes); |
| |
| WARN_ON(mismatch); |
| } |
| |
| void bch2_accounting_gc_free(struct bch_fs *c) |
| { |
| lockdep_assert_held(&c->mark_lock); |
| |
| struct bch_accounting_mem *acc = &c->accounting; |
| |
| bch2_accounting_free_counters(acc, true); |
| acc->gc_running = false; |
| } |
| |
| void bch2_fs_accounting_exit(struct bch_fs *c) |
| { |
| struct bch_accounting_mem *acc = &c->accounting; |
| |
| bch2_accounting_free_counters(acc, false); |
| darray_exit(&acc->k); |
| } |