| #ifndef _ASM_X86_CACHEFLUSH_H |
| #define _ASM_X86_CACHEFLUSH_H |
| |
| /* Caches aren't brain-dead on the intel. */ |
| #include <asm-generic/cacheflush.h> |
| #include <asm/special_insns.h> |
| #include <asm/uaccess.h> |
| |
| /* |
| * The set_memory_* API can be used to change various attributes of a virtual |
| * address range. The attributes include: |
| * Cachability : UnCached, WriteCombining, WriteThrough, WriteBack |
| * Executability : eXeutable, NoteXecutable |
| * Read/Write : ReadOnly, ReadWrite |
| * Presence : NotPresent |
| * |
| * Within a category, the attributes are mutually exclusive. |
| * |
| * The implementation of this API will take care of various aspects that |
| * are associated with changing such attributes, such as: |
| * - Flushing TLBs |
| * - Flushing CPU caches |
| * - Making sure aliases of the memory behind the mapping don't violate |
| * coherency rules as defined by the CPU in the system. |
| * |
| * What this API does not do: |
| * - Provide exclusion between various callers - including callers that |
| * operation on other mappings of the same physical page |
| * - Restore default attributes when a page is freed |
| * - Guarantee that mappings other than the requested one are |
| * in any state, other than that these do not violate rules for |
| * the CPU you have. Do not depend on any effects on other mappings, |
| * CPUs other than the one you have may have more relaxed rules. |
| * The caller is required to take care of these. |
| */ |
| |
| int _set_memory_uc(unsigned long addr, int numpages); |
| int _set_memory_wc(unsigned long addr, int numpages); |
| int _set_memory_wt(unsigned long addr, int numpages); |
| int _set_memory_wb(unsigned long addr, int numpages); |
| int set_memory_uc(unsigned long addr, int numpages); |
| int set_memory_wc(unsigned long addr, int numpages); |
| int set_memory_wt(unsigned long addr, int numpages); |
| int set_memory_wb(unsigned long addr, int numpages); |
| int set_memory_x(unsigned long addr, int numpages); |
| int set_memory_nx(unsigned long addr, int numpages); |
| int set_memory_ro(unsigned long addr, int numpages); |
| int set_memory_rw(unsigned long addr, int numpages); |
| int set_memory_np(unsigned long addr, int numpages); |
| int set_memory_4k(unsigned long addr, int numpages); |
| |
| int set_memory_array_uc(unsigned long *addr, int addrinarray); |
| int set_memory_array_wc(unsigned long *addr, int addrinarray); |
| int set_memory_array_wt(unsigned long *addr, int addrinarray); |
| int set_memory_array_wb(unsigned long *addr, int addrinarray); |
| |
| int set_pages_array_uc(struct page **pages, int addrinarray); |
| int set_pages_array_wc(struct page **pages, int addrinarray); |
| int set_pages_array_wt(struct page **pages, int addrinarray); |
| int set_pages_array_wb(struct page **pages, int addrinarray); |
| |
| /* |
| * For legacy compatibility with the old APIs, a few functions |
| * are provided that work on a "struct page". |
| * These functions operate ONLY on the 1:1 kernel mapping of the |
| * memory that the struct page represents, and internally just |
| * call the set_memory_* function. See the description of the |
| * set_memory_* function for more details on conventions. |
| * |
| * These APIs should be considered *deprecated* and are likely going to |
| * be removed in the future. |
| * The reason for this is the implicit operation on the 1:1 mapping only, |
| * making this not a generally useful API. |
| * |
| * Specifically, many users of the old APIs had a virtual address, |
| * called virt_to_page() or vmalloc_to_page() on that address to |
| * get a struct page* that the old API required. |
| * To convert these cases, use set_memory_*() on the original |
| * virtual address, do not use these functions. |
| */ |
| |
| int set_pages_uc(struct page *page, int numpages); |
| int set_pages_wb(struct page *page, int numpages); |
| int set_pages_x(struct page *page, int numpages); |
| int set_pages_nx(struct page *page, int numpages); |
| int set_pages_ro(struct page *page, int numpages); |
| int set_pages_rw(struct page *page, int numpages); |
| |
| |
| void clflush_cache_range(void *addr, unsigned int size); |
| |
| #ifdef CONFIG_DEBUG_RODATA |
| void mark_rodata_ro(void); |
| extern const int rodata_test_data; |
| extern int kernel_set_to_readonly; |
| void set_kernel_text_rw(void); |
| void set_kernel_text_ro(void); |
| #else |
| static inline void set_kernel_text_rw(void) { } |
| static inline void set_kernel_text_ro(void) { } |
| #endif |
| |
| #ifdef CONFIG_DEBUG_RODATA_TEST |
| int rodata_test(void); |
| #else |
| static inline int rodata_test(void) |
| { |
| return 0; |
| } |
| #endif |
| |
| #ifdef ARCH_HAS_NOCACHE_UACCESS |
| |
| /** |
| * arch_memcpy_to_pmem - copy data to persistent memory |
| * @dst: destination buffer for the copy |
| * @src: source buffer for the copy |
| * @n: length of the copy in bytes |
| * |
| * Copy data to persistent memory media via non-temporal stores so that |
| * a subsequent arch_wmb_pmem() can flush cpu and memory controller |
| * write buffers to guarantee durability. |
| */ |
| static inline void arch_memcpy_to_pmem(void __pmem *dst, const void *src, |
| size_t n) |
| { |
| int unwritten; |
| |
| /* |
| * We are copying between two kernel buffers, if |
| * __copy_from_user_inatomic_nocache() returns an error (page |
| * fault) we would have already reported a general protection fault |
| * before the WARN+BUG. |
| */ |
| unwritten = __copy_from_user_inatomic_nocache((void __force *) dst, |
| (void __user *) src, n); |
| if (WARN(unwritten, "%s: fault copying %p <- %p unwritten: %d\n", |
| __func__, dst, src, unwritten)) |
| BUG(); |
| } |
| |
| /** |
| * arch_wmb_pmem - synchronize writes to persistent memory |
| * |
| * After a series of arch_memcpy_to_pmem() operations this drains data |
| * from cpu write buffers and any platform (memory controller) buffers |
| * to ensure that written data is durable on persistent memory media. |
| */ |
| static inline void arch_wmb_pmem(void) |
| { |
| /* |
| * wmb() to 'sfence' all previous writes such that they are |
| * architecturally visible to 'pcommit'. Note, that we've |
| * already arranged for pmem writes to avoid the cache via |
| * arch_memcpy_to_pmem(). |
| */ |
| wmb(); |
| pcommit_sfence(); |
| } |
| |
| static inline bool __arch_has_wmb_pmem(void) |
| { |
| #ifdef CONFIG_X86_64 |
| /* |
| * We require that wmb() be an 'sfence', that is only guaranteed on |
| * 64-bit builds |
| */ |
| return static_cpu_has(X86_FEATURE_PCOMMIT); |
| #else |
| return false; |
| #endif |
| } |
| #else /* ARCH_HAS_NOCACHE_UACCESS i.e. ARCH=um */ |
| extern void arch_memcpy_to_pmem(void __pmem *dst, const void *src, size_t n); |
| extern void arch_wmb_pmem(void); |
| |
| static inline bool __arch_has_wmb_pmem(void) |
| { |
| return false; |
| } |
| #endif |
| |
| #endif /* _ASM_X86_CACHEFLUSH_H */ |