blob: e1840f3db5b583984e53bcc7d11787706dbbed26 [file] [log] [blame]
#define pr_fmt(fmt) "kasan: " fmt
#include <linux/bootmem.h>
#include <linux/kasan.h>
#include <linux/kdebug.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <asm/tlbflush.h>
#include <asm/sections.h>
extern pgd_t early_level4_pgt[PTRS_PER_PGD];
extern struct range pfn_mapped[E820_X_MAX];
static pud_t kasan_zero_pud[PTRS_PER_PUD] __page_aligned_bss;
static pmd_t kasan_zero_pmd[PTRS_PER_PMD] __page_aligned_bss;
static pte_t kasan_zero_pte[PTRS_PER_PTE] __page_aligned_bss;
/*
* This page used as early shadow. We don't use empty_zero_page
* at early stages, stack instrumentation could write some garbage
* to this page.
* Latter we reuse it as zero shadow for large ranges of memory
* that allowed to access, but not instrumented by kasan
* (vmalloc/vmemmap ...).
*/
static unsigned char kasan_zero_page[PAGE_SIZE] __page_aligned_bss;
static int __init map_range(struct range *range)
{
unsigned long start;
unsigned long end;
start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
/*
* end + 1 here is intentional. We check several shadow bytes in advance
* to slightly speed up fastpath. In some rare cases we could cross
* boundary of mapped shadow, so we just map some more here.
*/
return vmemmap_populate(start, end + 1, NUMA_NO_NODE);
}
static void __init clear_pgds(unsigned long start,
unsigned long end)
{
for (; start < end; start += PGDIR_SIZE)
pgd_clear(pgd_offset_k(start));
}
static void __init kasan_map_early_shadow(pgd_t *pgd)
{
int i;
unsigned long start = KASAN_SHADOW_START;
unsigned long end = KASAN_SHADOW_END;
for (i = pgd_index(start); start < end; i++) {
pgd[i] = __pgd(__pa_nodebug(kasan_zero_pud)
| _KERNPG_TABLE);
start += PGDIR_SIZE;
}
}
static int __init zero_pte_populate(pmd_t *pmd, unsigned long addr,
unsigned long end)
{
pte_t *pte = pte_offset_kernel(pmd, addr);
while (addr + PAGE_SIZE <= end) {
WARN_ON(!pte_none(*pte));
set_pte(pte, __pte(__pa_nodebug(kasan_zero_page)
| __PAGE_KERNEL_RO));
addr += PAGE_SIZE;
pte = pte_offset_kernel(pmd, addr);
}
return 0;
}
static int __init zero_pmd_populate(pud_t *pud, unsigned long addr,
unsigned long end)
{
int ret = 0;
pmd_t *pmd = pmd_offset(pud, addr);
while (IS_ALIGNED(addr, PMD_SIZE) && addr + PMD_SIZE <= end) {
WARN_ON(!pmd_none(*pmd));
set_pmd(pmd, __pmd(__pa_nodebug(kasan_zero_pte)
| _KERNPG_TABLE));
addr += PMD_SIZE;
pmd = pmd_offset(pud, addr);
}
if (addr < end) {
if (pmd_none(*pmd)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
if (!p)
return -ENOMEM;
set_pmd(pmd, __pmd(__pa_nodebug(p) | _KERNPG_TABLE));
}
ret = zero_pte_populate(pmd, addr, end);
}
return ret;
}
static int __init zero_pud_populate(pgd_t *pgd, unsigned long addr,
unsigned long end)
{
int ret = 0;
pud_t *pud = pud_offset(pgd, addr);
while (IS_ALIGNED(addr, PUD_SIZE) && addr + PUD_SIZE <= end) {
WARN_ON(!pud_none(*pud));
set_pud(pud, __pud(__pa_nodebug(kasan_zero_pmd)
| _KERNPG_TABLE));
addr += PUD_SIZE;
pud = pud_offset(pgd, addr);
}
if (addr < end) {
if (pud_none(*pud)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
if (!p)
return -ENOMEM;
set_pud(pud, __pud(__pa_nodebug(p) | _KERNPG_TABLE));
}
ret = zero_pmd_populate(pud, addr, end);
}
return ret;
}
static int __init zero_pgd_populate(unsigned long addr, unsigned long end)
{
int ret = 0;
pgd_t *pgd = pgd_offset_k(addr);
while (IS_ALIGNED(addr, PGDIR_SIZE) && addr + PGDIR_SIZE <= end) {
WARN_ON(!pgd_none(*pgd));
set_pgd(pgd, __pgd(__pa_nodebug(kasan_zero_pud)
| _KERNPG_TABLE));
addr += PGDIR_SIZE;
pgd = pgd_offset_k(addr);
}
if (addr < end) {
if (pgd_none(*pgd)) {
void *p = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
if (!p)
return -ENOMEM;
set_pgd(pgd, __pgd(__pa_nodebug(p) | _KERNPG_TABLE));
}
ret = zero_pud_populate(pgd, addr, end);
}
return ret;
}
static void __init populate_zero_shadow(const void *start, const void *end)
{
if (zero_pgd_populate((unsigned long)start, (unsigned long)end))
panic("kasan: unable to map zero shadow!");
}
#ifdef CONFIG_KASAN_INLINE
static int kasan_die_handler(struct notifier_block *self,
unsigned long val,
void *data)
{
if (val == DIE_GPF) {
pr_emerg("CONFIG_KASAN_INLINE enabled");
pr_emerg("GPF could be caused by NULL-ptr deref or user memory access");
}
return NOTIFY_OK;
}
static struct notifier_block kasan_die_notifier = {
.notifier_call = kasan_die_handler,
};
#endif
void __init kasan_early_init(void)
{
int i;
pteval_t pte_val = __pa_nodebug(kasan_zero_page) | __PAGE_KERNEL;
pmdval_t pmd_val = __pa_nodebug(kasan_zero_pte) | _KERNPG_TABLE;
pudval_t pud_val = __pa_nodebug(kasan_zero_pmd) | _KERNPG_TABLE;
for (i = 0; i < PTRS_PER_PTE; i++)
kasan_zero_pte[i] = __pte(pte_val);
for (i = 0; i < PTRS_PER_PMD; i++)
kasan_zero_pmd[i] = __pmd(pmd_val);
for (i = 0; i < PTRS_PER_PUD; i++)
kasan_zero_pud[i] = __pud(pud_val);
kasan_map_early_shadow(early_level4_pgt);
kasan_map_early_shadow(init_level4_pgt);
}
void __init kasan_init(void)
{
int i;
#ifdef CONFIG_KASAN_INLINE
register_die_notifier(&kasan_die_notifier);
#endif
memcpy(early_level4_pgt, init_level4_pgt, sizeof(early_level4_pgt));
load_cr3(early_level4_pgt);
__flush_tlb_all();
clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
populate_zero_shadow((void *)KASAN_SHADOW_START,
kasan_mem_to_shadow((void *)PAGE_OFFSET));
for (i = 0; i < E820_X_MAX; i++) {
if (pfn_mapped[i].end == 0)
break;
if (map_range(&pfn_mapped[i]))
panic("kasan: unable to allocate shadow!");
}
populate_zero_shadow(kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
kasan_mem_to_shadow((void *)__START_KERNEL_map));
vmemmap_populate((unsigned long)kasan_mem_to_shadow(_stext),
(unsigned long)kasan_mem_to_shadow(_end),
NUMA_NO_NODE);
populate_zero_shadow(kasan_mem_to_shadow((void *)MODULES_END),
(void *)KASAN_SHADOW_END);
memset(kasan_zero_page, 0, PAGE_SIZE);
load_cr3(init_level4_pgt);
__flush_tlb_all();
init_task.kasan_depth = 0;
pr_info("Kernel address sanitizer initialized\n");
}