blob: 99228bf46c1202170ef8eb934624e15d99a257d9 [file] [log] [blame]
/* Intel Ethernet Switch Host Interface Driver
* Copyright(c) 2013 - 2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*/
#include "fm10k.h"
#include <linux/vmalloc.h>
#if IS_ENABLED(CONFIG_FM10K_VXLAN)
#include <net/vxlan.h>
#endif /* CONFIG_FM10K_VXLAN */
/**
* fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int size;
size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
tx_ring->tx_buffer = vzalloc(size);
if (!tx_ring->tx_buffer)
goto err;
u64_stats_init(&tx_ring->syncp);
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
return 0;
err:
vfree(tx_ring->tx_buffer);
tx_ring->tx_buffer = NULL;
return -ENOMEM;
}
/**
* fm10k_setup_all_tx_resources - allocate all queues Tx resources
* @interface: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
{
int i, err = 0;
for (i = 0; i < interface->num_tx_queues; i++) {
err = fm10k_setup_tx_resources(interface->tx_ring[i]);
if (!err)
continue;
netif_err(interface, probe, interface->netdev,
"Allocation for Tx Queue %u failed\n", i);
goto err_setup_tx;
}
return 0;
err_setup_tx:
/* rewind the index freeing the rings as we go */
while (i--)
fm10k_free_tx_resources(interface->tx_ring[i]);
return err;
}
/**
* fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
int size;
size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
rx_ring->rx_buffer = vzalloc(size);
if (!rx_ring->rx_buffer)
goto err;
u64_stats_init(&rx_ring->syncp);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
return 0;
err:
vfree(rx_ring->rx_buffer);
rx_ring->rx_buffer = NULL;
return -ENOMEM;
}
/**
* fm10k_setup_all_rx_resources - allocate all queues Rx resources
* @interface: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
{
int i, err = 0;
for (i = 0; i < interface->num_rx_queues; i++) {
err = fm10k_setup_rx_resources(interface->rx_ring[i]);
if (!err)
continue;
netif_err(interface, probe, interface->netdev,
"Allocation for Rx Queue %u failed\n", i);
goto err_setup_rx;
}
return 0;
err_setup_rx:
/* rewind the index freeing the rings as we go */
while (i--)
fm10k_free_rx_resources(interface->rx_ring[i]);
return err;
}
void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
struct fm10k_tx_buffer *tx_buffer)
{
if (tx_buffer->skb) {
dev_kfree_skb_any(tx_buffer->skb);
if (dma_unmap_len(tx_buffer, len))
dma_unmap_single(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
} else if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
tx_buffer->next_to_watch = NULL;
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* tx_buffer must be completely set up in the transmit path */
}
/**
* fm10k_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
{
struct fm10k_tx_buffer *tx_buffer;
unsigned long size;
u16 i;
/* ring already cleared, nothing to do */
if (!tx_ring->tx_buffer)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++) {
tx_buffer = &tx_ring->tx_buffer[i];
fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
}
/* reset BQL values */
netdev_tx_reset_queue(txring_txq(tx_ring));
size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
memset(tx_ring->tx_buffer, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
}
/**
* fm10k_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
{
fm10k_clean_tx_ring(tx_ring);
vfree(tx_ring->tx_buffer);
tx_ring->tx_buffer = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
* @interface: board private structure
**/
void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
{
int i;
for (i = 0; i < interface->num_tx_queues; i++)
fm10k_clean_tx_ring(interface->tx_ring[i]);
/* remove any stale timestamp buffers and free them */
skb_queue_purge(&interface->ts_tx_skb_queue);
}
/**
* fm10k_free_all_tx_resources - Free Tx Resources for All Queues
* @interface: board private structure
*
* Free all transmit software resources
**/
static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
{
int i = interface->num_tx_queues;
while (i--)
fm10k_free_tx_resources(interface->tx_ring[i]);
}
/**
* fm10k_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: ring to free buffers from
**/
static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
{
unsigned long size;
u16 i;
if (!rx_ring->rx_buffer)
return;
if (rx_ring->skb)
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
/* clean-up will only set page pointer to NULL */
if (!buffer->page)
continue;
dma_unmap_page(rx_ring->dev, buffer->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
__free_page(buffer->page);
buffer->page = NULL;
}
size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
memset(rx_ring->rx_buffer, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* fm10k_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
{
fm10k_clean_rx_ring(rx_ring);
vfree(rx_ring->rx_buffer);
rx_ring->rx_buffer = NULL;
/* if not set, then don't free */
if (!rx_ring->desc)
return;
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
* @interface: board private structure
**/
void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
{
int i;
for (i = 0; i < interface->num_rx_queues; i++)
fm10k_clean_rx_ring(interface->rx_ring[i]);
}
/**
* fm10k_free_all_rx_resources - Free Rx Resources for All Queues
* @interface: board private structure
*
* Free all receive software resources
**/
static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
{
int i = interface->num_rx_queues;
while (i--)
fm10k_free_rx_resources(interface->rx_ring[i]);
}
/**
* fm10k_request_glort_range - Request GLORTs for use in configuring rules
* @interface: board private structure
*
* This function allocates a range of glorts for this interface to use.
**/
static void fm10k_request_glort_range(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
/* establish GLORT base */
interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
interface->glort_count = 0;
/* nothing we can do until mask is allocated */
if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
return;
/* we support 3 possible GLORT configurations.
* 1: VFs consume all but the last 1
* 2: VFs and PF split glorts with possible gap between
* 3: VFs allocated first 64, all others belong to PF
*/
if (mask <= hw->iov.total_vfs) {
interface->glort_count = 1;
interface->glort += mask;
} else if (mask < 64) {
interface->glort_count = (mask + 1) / 2;
interface->glort += interface->glort_count;
} else {
interface->glort_count = mask - 63;
interface->glort += 64;
}
}
/**
* fm10k_del_vxlan_port_all
* @interface: board private structure
*
* This function frees the entire vxlan_port list
**/
static void fm10k_del_vxlan_port_all(struct fm10k_intfc *interface)
{
struct fm10k_vxlan_port *vxlan_port;
/* flush all entries from list */
vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
struct fm10k_vxlan_port, list);
while (vxlan_port) {
list_del(&vxlan_port->list);
kfree(vxlan_port);
vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
struct fm10k_vxlan_port,
list);
}
}
/**
* fm10k_restore_vxlan_port
* @interface: board private structure
*
* This function restores the value in the tunnel_cfg register after reset
**/
static void fm10k_restore_vxlan_port(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
struct fm10k_vxlan_port *vxlan_port;
/* only the PF supports configuring tunnels */
if (hw->mac.type != fm10k_mac_pf)
return;
vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
struct fm10k_vxlan_port, list);
/* restore tunnel configuration register */
fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
(vxlan_port ? ntohs(vxlan_port->port) : 0) |
(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
}
/**
* fm10k_add_vxlan_port
* @netdev: network interface device structure
* @sa_family: Address family of new port
* @port: port number used for VXLAN
*
* This funciton is called when a new VXLAN interface has added a new port
* number to the range that is currently in use for VXLAN. The new port
* number is always added to the tail so that the port number list should
* match the order in which the ports were allocated. The head of the list
* is always used as the VXLAN port number for offloads.
**/
static void fm10k_add_vxlan_port(struct net_device *dev,
sa_family_t sa_family, __be16 port) {
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_vxlan_port *vxlan_port;
/* only the PF supports configuring tunnels */
if (interface->hw.mac.type != fm10k_mac_pf)
return;
/* existing ports are pulled out so our new entry is always last */
fm10k_vxlan_port_for_each(vxlan_port, interface) {
if ((vxlan_port->port == port) &&
(vxlan_port->sa_family == sa_family)) {
list_del(&vxlan_port->list);
goto insert_tail;
}
}
/* allocate memory to track ports */
vxlan_port = kmalloc(sizeof(*vxlan_port), GFP_ATOMIC);
if (!vxlan_port)
return;
vxlan_port->port = port;
vxlan_port->sa_family = sa_family;
insert_tail:
/* add new port value to list */
list_add_tail(&vxlan_port->list, &interface->vxlan_port);
fm10k_restore_vxlan_port(interface);
}
/**
* fm10k_del_vxlan_port
* @netdev: network interface device structure
* @sa_family: Address family of freed port
* @port: port number used for VXLAN
*
* This funciton is called when a new VXLAN interface has freed a port
* number from the range that is currently in use for VXLAN. The freed
* port is removed from the list and the new head is used to determine
* the port number for offloads.
**/
static void fm10k_del_vxlan_port(struct net_device *dev,
sa_family_t sa_family, __be16 port) {
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_vxlan_port *vxlan_port;
if (interface->hw.mac.type != fm10k_mac_pf)
return;
/* find the port in the list and free it */
fm10k_vxlan_port_for_each(vxlan_port, interface) {
if ((vxlan_port->port == port) &&
(vxlan_port->sa_family == sa_family)) {
list_del(&vxlan_port->list);
kfree(vxlan_port);
break;
}
}
fm10k_restore_vxlan_port(interface);
}
/**
* fm10k_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
int fm10k_open(struct net_device *netdev)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
int err;
/* allocate transmit descriptors */
err = fm10k_setup_all_tx_resources(interface);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = fm10k_setup_all_rx_resources(interface);
if (err)
goto err_setup_rx;
/* allocate interrupt resources */
err = fm10k_qv_request_irq(interface);
if (err)
goto err_req_irq;
/* setup GLORT assignment for this port */
fm10k_request_glort_range(interface);
/* Notify the stack of the actual queue counts */
err = netif_set_real_num_tx_queues(netdev,
interface->num_tx_queues);
if (err)
goto err_set_queues;
err = netif_set_real_num_rx_queues(netdev,
interface->num_rx_queues);
if (err)
goto err_set_queues;
#if IS_ENABLED(CONFIG_FM10K_VXLAN)
/* update VXLAN port configuration */
vxlan_get_rx_port(netdev);
#endif
fm10k_up(interface);
return 0;
err_set_queues:
fm10k_qv_free_irq(interface);
err_req_irq:
fm10k_free_all_rx_resources(interface);
err_setup_rx:
fm10k_free_all_tx_resources(interface);
err_setup_tx:
return err;
}
/**
* fm10k_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
int fm10k_close(struct net_device *netdev)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
fm10k_down(interface);
fm10k_qv_free_irq(interface);
fm10k_del_vxlan_port_all(interface);
fm10k_free_all_tx_resources(interface);
fm10k_free_all_rx_resources(interface);
return 0;
}
static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
struct fm10k_intfc *interface = netdev_priv(dev);
unsigned int r_idx = skb->queue_mapping;
int err;
if ((skb->protocol == htons(ETH_P_8021Q)) &&
!skb_vlan_tag_present(skb)) {
/* FM10K only supports hardware tagging, any tags in frame
* are considered 2nd level or "outer" tags
*/
struct vlan_hdr *vhdr;
__be16 proto;
/* make sure skb is not shared */
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
return NETDEV_TX_OK;
/* make sure there is enough room to move the ethernet header */
if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
return NETDEV_TX_OK;
/* verify the skb head is not shared */
err = skb_cow_head(skb, 0);
if (err)
return NETDEV_TX_OK;
/* locate vlan header */
vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
/* pull the 2 key pieces of data out of it */
__vlan_hwaccel_put_tag(skb,
htons(ETH_P_8021Q),
ntohs(vhdr->h_vlan_TCI));
proto = vhdr->h_vlan_encapsulated_proto;
skb->protocol = (ntohs(proto) >= 1536) ? proto :
htons(ETH_P_802_2);
/* squash it by moving the ethernet addresses up 4 bytes */
memmove(skb->data + VLAN_HLEN, skb->data, 12);
__skb_pull(skb, VLAN_HLEN);
skb_reset_mac_header(skb);
}
/* The minimum packet size for a single buffer is 17B so pad the skb
* in order to meet this minimum size requirement.
*/
if (unlikely(skb->len < 17)) {
int pad_len = 17 - skb->len;
if (skb_pad(skb, pad_len))
return NETDEV_TX_OK;
__skb_put(skb, pad_len);
}
/* prepare packet for hardware time stamping */
if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
fm10k_ts_tx_enqueue(interface, skb);
if (r_idx >= interface->num_tx_queues)
r_idx %= interface->num_tx_queues;
err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
return err;
}
static int fm10k_change_mtu(struct net_device *dev, int new_mtu)
{
if (new_mtu < 68 || new_mtu > FM10K_MAX_JUMBO_FRAME_SIZE)
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
/**
* fm10k_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void fm10k_tx_timeout(struct net_device *netdev)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
bool real_tx_hang = false;
int i;
#define TX_TIMEO_LIMIT 16000
for (i = 0; i < interface->num_tx_queues; i++) {
struct fm10k_ring *tx_ring = interface->tx_ring[i];
if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
real_tx_hang = true;
}
if (real_tx_hang) {
fm10k_tx_timeout_reset(interface);
} else {
netif_info(interface, drv, netdev,
"Fake Tx hang detected with timeout of %d seconds\n",
netdev->watchdog_timeo/HZ);
/* fake Tx hang - increase the kernel timeout */
if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
netdev->watchdog_timeo *= 2;
}
}
static int fm10k_uc_vlan_unsync(struct net_device *netdev,
const unsigned char *uc_addr)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_hw *hw = &interface->hw;
u16 glort = interface->glort;
u16 vid = interface->vid;
bool set = !!(vid / VLAN_N_VID);
int err;
/* drop any leading bits on the VLAN ID */
vid &= VLAN_N_VID - 1;
err = hw->mac.ops.update_uc_addr(hw, glort, uc_addr, vid, set, 0);
if (err)
return err;
/* return non-zero value as we are only doing a partial sync/unsync */
return 1;
}
static int fm10k_mc_vlan_unsync(struct net_device *netdev,
const unsigned char *mc_addr)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_hw *hw = &interface->hw;
u16 glort = interface->glort;
u16 vid = interface->vid;
bool set = !!(vid / VLAN_N_VID);
int err;
/* drop any leading bits on the VLAN ID */
vid &= VLAN_N_VID - 1;
err = hw->mac.ops.update_mc_addr(hw, glort, mc_addr, vid, set);
if (err)
return err;
/* return non-zero value as we are only doing a partial sync/unsync */
return 1;
}
static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_hw *hw = &interface->hw;
s32 err;
/* updates do not apply to VLAN 0 */
if (!vid)
return 0;
if (vid >= VLAN_N_VID)
return -EINVAL;
/* Verify we have permission to add VLANs */
if (hw->mac.vlan_override)
return -EACCES;
/* update active_vlans bitmask */
set_bit(vid, interface->active_vlans);
if (!set)
clear_bit(vid, interface->active_vlans);
/* if default VLAN is already present do nothing */
if (vid == hw->mac.default_vid)
return 0;
fm10k_mbx_lock(interface);
/* only need to update the VLAN if not in promiscuous mode */
if (!(netdev->flags & IFF_PROMISC)) {
err = hw->mac.ops.update_vlan(hw, vid, 0, set);
if (err)
goto err_out;
}
/* update our base MAC address */
err = hw->mac.ops.update_uc_addr(hw, interface->glort, hw->mac.addr,
vid, set, 0);
if (err)
goto err_out;
/* set vid prior to syncing/unsyncing the VLAN */
interface->vid = vid + (set ? VLAN_N_VID : 0);
/* Update the unicast and multicast address list to add/drop VLAN */
__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
err_out:
fm10k_mbx_unlock(interface);
return err;
}
static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
/* update VLAN and address table based on changes */
return fm10k_update_vid(netdev, vid, true);
}
static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
/* update VLAN and address table based on changes */
return fm10k_update_vid(netdev, vid, false);
}
static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
{
struct fm10k_hw *hw = &interface->hw;
u16 default_vid = hw->mac.default_vid;
u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
return vid;
}
static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
u32 vid, prev_vid;
/* loop through and find any gaps in the table */
for (vid = 0, prev_vid = 0;
prev_vid < VLAN_N_VID;
prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
if (prev_vid == vid)
continue;
/* send request to clear multiple bits at a time */
prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
hw->mac.ops.update_vlan(hw, prev_vid, 0, false);
}
}
static int __fm10k_uc_sync(struct net_device *dev,
const unsigned char *addr, bool sync)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_hw *hw = &interface->hw;
u16 vid, glort = interface->glort;
s32 err;
if (!is_valid_ether_addr(addr))
return -EADDRNOTAVAIL;
/* update table with current entries */
for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
vid < VLAN_N_VID;
vid = fm10k_find_next_vlan(interface, vid)) {
err = hw->mac.ops.update_uc_addr(hw, glort, addr,
vid, sync, 0);
if (err)
return err;
}
return 0;
}
static int fm10k_uc_sync(struct net_device *dev,
const unsigned char *addr)
{
return __fm10k_uc_sync(dev, addr, true);
}
static int fm10k_uc_unsync(struct net_device *dev,
const unsigned char *addr)
{
return __fm10k_uc_sync(dev, addr, false);
}
static int fm10k_set_mac(struct net_device *dev, void *p)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_hw *hw = &interface->hw;
struct sockaddr *addr = p;
s32 err = 0;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (dev->flags & IFF_UP) {
/* setting MAC address requires mailbox */
fm10k_mbx_lock(interface);
err = fm10k_uc_sync(dev, addr->sa_data);
if (!err)
fm10k_uc_unsync(dev, hw->mac.addr);
fm10k_mbx_unlock(interface);
}
if (!err) {
ether_addr_copy(dev->dev_addr, addr->sa_data);
ether_addr_copy(hw->mac.addr, addr->sa_data);
dev->addr_assign_type &= ~NET_ADDR_RANDOM;
}
/* if we had a mailbox error suggest trying again */
return err ? -EAGAIN : 0;
}
static int __fm10k_mc_sync(struct net_device *dev,
const unsigned char *addr, bool sync)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_hw *hw = &interface->hw;
u16 vid, glort = interface->glort;
/* update table with current entries */
for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
vid < VLAN_N_VID;
vid = fm10k_find_next_vlan(interface, vid)) {
hw->mac.ops.update_mc_addr(hw, glort, addr, vid, sync);
}
return 0;
}
static int fm10k_mc_sync(struct net_device *dev,
const unsigned char *addr)
{
return __fm10k_mc_sync(dev, addr, true);
}
static int fm10k_mc_unsync(struct net_device *dev,
const unsigned char *addr)
{
return __fm10k_mc_sync(dev, addr, false);
}
static void fm10k_set_rx_mode(struct net_device *dev)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_hw *hw = &interface->hw;
int xcast_mode;
/* no need to update the harwdare if we are not running */
if (!(dev->flags & IFF_UP))
return;
/* determine new mode based on flags */
xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
(dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
(dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
fm10k_mbx_lock(interface);
/* update xcast mode first, but only if it changed */
if (interface->xcast_mode != xcast_mode) {
/* update VLAN table */
if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, true);
if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
fm10k_clear_unused_vlans(interface);
/* update xcast mode */
hw->mac.ops.update_xcast_mode(hw, interface->glort, xcast_mode);
/* record updated xcast mode state */
interface->xcast_mode = xcast_mode;
}
/* synchronize all of the addresses */
if (xcast_mode != FM10K_XCAST_MODE_PROMISC) {
__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI)
__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
}
fm10k_mbx_unlock(interface);
}
void fm10k_restore_rx_state(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int xcast_mode;
u16 vid, glort;
/* restore our address if perm_addr is set */
if (hw->mac.type == fm10k_mac_vf) {
if (is_valid_ether_addr(hw->mac.perm_addr)) {
ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
}
if (hw->mac.vlan_override)
netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
else
netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
}
/* record glort for this interface */
glort = interface->glort;
/* convert interface flags to xcast mode */
if (netdev->flags & IFF_PROMISC)
xcast_mode = FM10K_XCAST_MODE_PROMISC;
else if (netdev->flags & IFF_ALLMULTI)
xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
xcast_mode = FM10K_XCAST_MODE_MULTI;
else
xcast_mode = FM10K_XCAST_MODE_NONE;
fm10k_mbx_lock(interface);
/* Enable logical port */
hw->mac.ops.update_lport_state(hw, glort, interface->glort_count, true);
/* update VLAN table */
hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0,
xcast_mode == FM10K_XCAST_MODE_PROMISC);
/* Add filter for VLAN 0 */
hw->mac.ops.update_vlan(hw, 0, 0, true);
/* update table with current entries */
for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0;
vid < VLAN_N_VID;
vid = fm10k_find_next_vlan(interface, vid)) {
hw->mac.ops.update_vlan(hw, vid, 0, true);
hw->mac.ops.update_uc_addr(hw, glort, hw->mac.addr,
vid, true, 0);
}
/* update xcast mode before syncronizing addresses */
hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
/* synchronize all of the addresses */
if (xcast_mode != FM10K_XCAST_MODE_PROMISC) {
__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI)
__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
}
fm10k_mbx_unlock(interface);
/* record updated xcast mode state */
interface->xcast_mode = xcast_mode;
/* Restore tunnel configuration */
fm10k_restore_vxlan_port(interface);
}
void fm10k_reset_rx_state(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
fm10k_mbx_lock(interface);
/* clear the logical port state on lower device */
hw->mac.ops.update_lport_state(hw, interface->glort,
interface->glort_count, false);
fm10k_mbx_unlock(interface);
/* reset flags to default state */
interface->xcast_mode = FM10K_XCAST_MODE_NONE;
/* clear the sync flag since the lport has been dropped */
__dev_uc_unsync(netdev, NULL);
__dev_mc_unsync(netdev, NULL);
}
/**
* fm10k_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: storage space for 64bit statistics
*
* Returns 64bit statistics, for use in the ndo_get_stats64 callback. This
* function replaces fm10k_get_stats for kernels which support it.
*/
static struct rtnl_link_stats64 *fm10k_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_ring *ring;
unsigned int start, i;
u64 bytes, packets;
rcu_read_lock();
for (i = 0; i < interface->num_rx_queues; i++) {
ring = ACCESS_ONCE(interface->rx_ring[i]);
if (!ring)
continue;
do {
start = u64_stats_fetch_begin_irq(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
stats->rx_packets += packets;
stats->rx_bytes += bytes;
}
for (i = 0; i < interface->num_tx_queues; i++) {
ring = ACCESS_ONCE(interface->tx_ring[i]);
if (!ring)
continue;
do {
start = u64_stats_fetch_begin_irq(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
stats->tx_packets += packets;
stats->tx_bytes += bytes;
}
rcu_read_unlock();
/* following stats updated by fm10k_service_task() */
stats->rx_missed_errors = netdev->stats.rx_missed_errors;
return stats;
}
int fm10k_setup_tc(struct net_device *dev, u8 tc)
{
struct fm10k_intfc *interface = netdev_priv(dev);
/* Currently only the PF supports priority classes */
if (tc && (interface->hw.mac.type != fm10k_mac_pf))
return -EINVAL;
/* Hardware supports up to 8 traffic classes */
if (tc > 8)
return -EINVAL;
/* Hardware has to reinitialize queues to match packet
* buffer alignment. Unfortunately, the hardware is not
* flexible enough to do this dynamically.
*/
if (netif_running(dev))
fm10k_close(dev);
fm10k_mbx_free_irq(interface);
fm10k_clear_queueing_scheme(interface);
/* we expect the prio_tc map to be repopulated later */
netdev_reset_tc(dev);
netdev_set_num_tc(dev, tc);
fm10k_init_queueing_scheme(interface);
fm10k_mbx_request_irq(interface);
if (netif_running(dev))
fm10k_open(dev);
/* flag to indicate SWPRI has yet to be updated */
interface->flags |= FM10K_FLAG_SWPRI_CONFIG;
return 0;
}
static int fm10k_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGHWTSTAMP:
return fm10k_get_ts_config(netdev, ifr);
case SIOCSHWTSTAMP:
return fm10k_set_ts_config(netdev, ifr);
default:
return -EOPNOTSUPP;
}
}
static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
struct fm10k_l2_accel *l2_accel)
{
struct fm10k_ring *ring;
int i;
for (i = 0; i < interface->num_rx_queues; i++) {
ring = interface->rx_ring[i];
rcu_assign_pointer(ring->l2_accel, l2_accel);
}
interface->l2_accel = l2_accel;
}
static void *fm10k_dfwd_add_station(struct net_device *dev,
struct net_device *sdev)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_l2_accel *l2_accel = interface->l2_accel;
struct fm10k_l2_accel *old_l2_accel = NULL;
struct fm10k_dglort_cfg dglort = { 0 };
struct fm10k_hw *hw = &interface->hw;
int size = 0, i;
u16 glort;
/* allocate l2 accel structure if it is not available */
if (!l2_accel) {
/* verify there is enough free GLORTs to support l2_accel */
if (interface->glort_count < 7)
return ERR_PTR(-EBUSY);
size = offsetof(struct fm10k_l2_accel, macvlan[7]);
l2_accel = kzalloc(size, GFP_KERNEL);
if (!l2_accel)
return ERR_PTR(-ENOMEM);
l2_accel->size = 7;
l2_accel->dglort = interface->glort;
/* update pointers */
fm10k_assign_l2_accel(interface, l2_accel);
/* do not expand if we are at our limit */
} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
(l2_accel->count == (interface->glort_count - 1))) {
return ERR_PTR(-EBUSY);
/* expand if we have hit the size limit */
} else if (l2_accel->count == l2_accel->size) {
old_l2_accel = l2_accel;
size = offsetof(struct fm10k_l2_accel,
macvlan[(l2_accel->size * 2) + 1]);
l2_accel = kzalloc(size, GFP_KERNEL);
if (!l2_accel)
return ERR_PTR(-ENOMEM);
memcpy(l2_accel, old_l2_accel,
offsetof(struct fm10k_l2_accel,
macvlan[old_l2_accel->size]));
l2_accel->size = (old_l2_accel->size * 2) + 1;
/* update pointers */
fm10k_assign_l2_accel(interface, l2_accel);
kfree_rcu(old_l2_accel, rcu);
}
/* add macvlan to accel table, and record GLORT for position */
for (i = 0; i < l2_accel->size; i++) {
if (!l2_accel->macvlan[i])
break;
}
/* record station */
l2_accel->macvlan[i] = sdev;
l2_accel->count++;
/* configure default DGLORT mapping for RSS/DCB */
dglort.idx = fm10k_dglort_pf_rss;
dglort.inner_rss = 1;
dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
dglort.glort = interface->glort;
dglort.shared_l = fls(l2_accel->size);
hw->mac.ops.configure_dglort_map(hw, &dglort);
/* Add rules for this specific dglort to the switch */
fm10k_mbx_lock(interface);
glort = l2_accel->dglort + 1 + i;
hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_MULTI);
hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, true, 0);
fm10k_mbx_unlock(interface);
return sdev;
}
static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_l2_accel *l2_accel = ACCESS_ONCE(interface->l2_accel);
struct fm10k_dglort_cfg dglort = { 0 };
struct fm10k_hw *hw = &interface->hw;
struct net_device *sdev = priv;
int i;
u16 glort;
if (!l2_accel)
return;
/* search table for matching interface */
for (i = 0; i < l2_accel->size; i++) {
if (l2_accel->macvlan[i] == sdev)
break;
}
/* exit if macvlan not found */
if (i == l2_accel->size)
return;
/* Remove any rules specific to this dglort */
fm10k_mbx_lock(interface);
glort = l2_accel->dglort + 1 + i;
hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_NONE);
hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, false, 0);
fm10k_mbx_unlock(interface);
/* record removal */
l2_accel->macvlan[i] = NULL;
l2_accel->count--;
/* configure default DGLORT mapping for RSS/DCB */
dglort.idx = fm10k_dglort_pf_rss;
dglort.inner_rss = 1;
dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
dglort.glort = interface->glort;
dglort.shared_l = fls(l2_accel->size);
hw->mac.ops.configure_dglort_map(hw, &dglort);
/* If table is empty remove it */
if (l2_accel->count == 0) {
fm10k_assign_l2_accel(interface, NULL);
kfree_rcu(l2_accel, rcu);
}
}
static netdev_features_t fm10k_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
return features;
return features & ~(NETIF_F_ALL_CSUM | NETIF_F_GSO_MASK);
}
static const struct net_device_ops fm10k_netdev_ops = {
.ndo_open = fm10k_open,
.ndo_stop = fm10k_close,
.ndo_validate_addr = eth_validate_addr,
.ndo_start_xmit = fm10k_xmit_frame,
.ndo_set_mac_address = fm10k_set_mac,
.ndo_change_mtu = fm10k_change_mtu,
.ndo_tx_timeout = fm10k_tx_timeout,
.ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid,
.ndo_set_rx_mode = fm10k_set_rx_mode,
.ndo_get_stats64 = fm10k_get_stats64,
.ndo_setup_tc = fm10k_setup_tc,
.ndo_set_vf_mac = fm10k_ndo_set_vf_mac,
.ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan,
.ndo_set_vf_rate = fm10k_ndo_set_vf_bw,
.ndo_get_vf_config = fm10k_ndo_get_vf_config,
.ndo_add_vxlan_port = fm10k_add_vxlan_port,
.ndo_del_vxlan_port = fm10k_del_vxlan_port,
.ndo_do_ioctl = fm10k_ioctl,
.ndo_dfwd_add_station = fm10k_dfwd_add_station,
.ndo_dfwd_del_station = fm10k_dfwd_del_station,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = fm10k_netpoll,
#endif
.ndo_features_check = fm10k_features_check,
};
#define DEFAULT_DEBUG_LEVEL_SHIFT 3
struct net_device *fm10k_alloc_netdev(void)
{
struct fm10k_intfc *interface;
struct net_device *dev;
dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
if (!dev)
return NULL;
/* set net device and ethtool ops */
dev->netdev_ops = &fm10k_netdev_ops;
fm10k_set_ethtool_ops(dev);
/* configure default debug level */
interface = netdev_priv(dev);
interface->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
/* configure default features */
dev->features |= NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_TSO_ECN |
NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_RXHASH |
NETIF_F_RXCSUM;
/* all features defined to this point should be changeable */
dev->hw_features |= dev->features;
/* allow user to enable L2 forwarding acceleration */
dev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
/* configure VLAN features */
dev->vlan_features |= dev->features;
/* configure tunnel offloads */
dev->hw_enc_features |= NETIF_F_IP_CSUM |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_TSO_ECN |
NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_IPV6_CSUM;
/* we want to leave these both on as we cannot disable VLAN tag
* insertion or stripping on the hardware since it is contained
* in the FTAG and not in the frame itself.
*/
dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_FILTER;
dev->priv_flags |= IFF_UNICAST_FLT;
return dev;
}