blob: 760e0ce4aa26941c1ebd8d96706ccdbe3b7d7154 [file] [log] [blame]
/* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
*/
/*
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/device.h>
#include <linux/acpi.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/console.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <drm/drm_crtc_helper.h>
static struct drm_driver driver;
#define GEN_DEFAULT_PIPEOFFSETS \
.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
#define GEN_CHV_PIPEOFFSETS \
.pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
CHV_PIPE_C_OFFSET }, \
.trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
CHV_TRANSCODER_C_OFFSET, }, \
.palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
CHV_PALETTE_C_OFFSET }
#define CURSOR_OFFSETS \
.cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
#define IVB_CURSOR_OFFSETS \
.cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
static const struct intel_device_info intel_i830_info = {
.gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
.has_overlay = 1, .overlay_needs_physical = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_845g_info = {
.gen = 2, .num_pipes = 1,
.has_overlay = 1, .overlay_needs_physical = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_i85x_info = {
.gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
.cursor_needs_physical = 1,
.has_overlay = 1, .overlay_needs_physical = 1,
.has_fbc = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_i865g_info = {
.gen = 2, .num_pipes = 1,
.has_overlay = 1, .overlay_needs_physical = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_i915g_info = {
.gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
.has_overlay = 1, .overlay_needs_physical = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_i915gm_info = {
.gen = 3, .is_mobile = 1, .num_pipes = 2,
.cursor_needs_physical = 1,
.has_overlay = 1, .overlay_needs_physical = 1,
.supports_tv = 1,
.has_fbc = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_i945g_info = {
.gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
.has_overlay = 1, .overlay_needs_physical = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_i945gm_info = {
.gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
.has_hotplug = 1, .cursor_needs_physical = 1,
.has_overlay = 1, .overlay_needs_physical = 1,
.supports_tv = 1,
.has_fbc = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_i965g_info = {
.gen = 4, .is_broadwater = 1, .num_pipes = 2,
.has_hotplug = 1,
.has_overlay = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_i965gm_info = {
.gen = 4, .is_crestline = 1, .num_pipes = 2,
.is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
.has_overlay = 1,
.supports_tv = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_g33_info = {
.gen = 3, .is_g33 = 1, .num_pipes = 2,
.need_gfx_hws = 1, .has_hotplug = 1,
.has_overlay = 1,
.ring_mask = RENDER_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_g45_info = {
.gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
.has_pipe_cxsr = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_gm45_info = {
.gen = 4, .is_g4x = 1, .num_pipes = 2,
.is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
.has_pipe_cxsr = 1, .has_hotplug = 1,
.supports_tv = 1,
.ring_mask = RENDER_RING | BSD_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_pineview_info = {
.gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
.need_gfx_hws = 1, .has_hotplug = 1,
.has_overlay = 1,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_ironlake_d_info = {
.gen = 5, .num_pipes = 2,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_ironlake_m_info = {
.gen = 5, .is_mobile = 1, .num_pipes = 2,
.need_gfx_hws = 1, .has_hotplug = 1,
.has_fbc = 1,
.ring_mask = RENDER_RING | BSD_RING,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_sandybridge_d_info = {
.gen = 6, .num_pipes = 2,
.need_gfx_hws = 1, .has_hotplug = 1,
.has_fbc = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
.has_llc = 1,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_sandybridge_m_info = {
.gen = 6, .is_mobile = 1, .num_pipes = 2,
.need_gfx_hws = 1, .has_hotplug = 1,
.has_fbc = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING,
.has_llc = 1,
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
#define GEN7_FEATURES \
.gen = 7, .num_pipes = 3, \
.need_gfx_hws = 1, .has_hotplug = 1, \
.has_fbc = 1, \
.ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
.has_llc = 1
static const struct intel_device_info intel_ivybridge_d_info = {
GEN7_FEATURES,
.is_ivybridge = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_ivybridge_m_info = {
GEN7_FEATURES,
.is_ivybridge = 1,
.is_mobile = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_ivybridge_q_info = {
GEN7_FEATURES,
.is_ivybridge = 1,
.num_pipes = 0, /* legal, last one wins */
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_valleyview_m_info = {
GEN7_FEATURES,
.is_mobile = 1,
.num_pipes = 2,
.is_valleyview = 1,
.display_mmio_offset = VLV_DISPLAY_BASE,
.has_fbc = 0, /* legal, last one wins */
.has_llc = 0, /* legal, last one wins */
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_valleyview_d_info = {
GEN7_FEATURES,
.num_pipes = 2,
.is_valleyview = 1,
.display_mmio_offset = VLV_DISPLAY_BASE,
.has_fbc = 0, /* legal, last one wins */
.has_llc = 0, /* legal, last one wins */
GEN_DEFAULT_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_haswell_d_info = {
GEN7_FEATURES,
.is_haswell = 1,
.has_ddi = 1,
.has_fpga_dbg = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_haswell_m_info = {
GEN7_FEATURES,
.is_haswell = 1,
.is_mobile = 1,
.has_ddi = 1,
.has_fpga_dbg = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_broadwell_d_info = {
.gen = 8, .num_pipes = 3,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
.has_llc = 1,
.has_ddi = 1,
.has_fpga_dbg = 1,
.has_fbc = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_broadwell_m_info = {
.gen = 8, .is_mobile = 1, .num_pipes = 3,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
.has_llc = 1,
.has_ddi = 1,
.has_fpga_dbg = 1,
.has_fbc = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_broadwell_gt3d_info = {
.gen = 8, .num_pipes = 3,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
.has_llc = 1,
.has_ddi = 1,
.has_fpga_dbg = 1,
.has_fbc = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_broadwell_gt3m_info = {
.gen = 8, .is_mobile = 1, .num_pipes = 3,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
.has_llc = 1,
.has_ddi = 1,
.has_fpga_dbg = 1,
.has_fbc = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_cherryview_info = {
.gen = 8, .num_pipes = 3,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
.is_valleyview = 1,
.display_mmio_offset = VLV_DISPLAY_BASE,
GEN_CHV_PIPEOFFSETS,
CURSOR_OFFSETS,
};
static const struct intel_device_info intel_skylake_info = {
.is_skylake = 1,
.gen = 9, .num_pipes = 3,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
.has_llc = 1,
.has_ddi = 1,
.has_fpga_dbg = 1,
.has_fbc = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_skylake_gt3_info = {
.is_skylake = 1,
.gen = 9, .num_pipes = 3,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
.has_llc = 1,
.has_ddi = 1,
.has_fpga_dbg = 1,
.has_fbc = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
static const struct intel_device_info intel_broxton_info = {
.is_preliminary = 1,
.gen = 9,
.need_gfx_hws = 1, .has_hotplug = 1,
.ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
.num_pipes = 3,
.has_ddi = 1,
.has_fpga_dbg = 1,
.has_fbc = 1,
GEN_DEFAULT_PIPEOFFSETS,
IVB_CURSOR_OFFSETS,
};
/*
* Make sure any device matches here are from most specific to most
* general. For example, since the Quanta match is based on the subsystem
* and subvendor IDs, we need it to come before the more general IVB
* PCI ID matches, otherwise we'll use the wrong info struct above.
*/
#define INTEL_PCI_IDS \
INTEL_I830_IDS(&intel_i830_info), \
INTEL_I845G_IDS(&intel_845g_info), \
INTEL_I85X_IDS(&intel_i85x_info), \
INTEL_I865G_IDS(&intel_i865g_info), \
INTEL_I915G_IDS(&intel_i915g_info), \
INTEL_I915GM_IDS(&intel_i915gm_info), \
INTEL_I945G_IDS(&intel_i945g_info), \
INTEL_I945GM_IDS(&intel_i945gm_info), \
INTEL_I965G_IDS(&intel_i965g_info), \
INTEL_G33_IDS(&intel_g33_info), \
INTEL_I965GM_IDS(&intel_i965gm_info), \
INTEL_GM45_IDS(&intel_gm45_info), \
INTEL_G45_IDS(&intel_g45_info), \
INTEL_PINEVIEW_IDS(&intel_pineview_info), \
INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info), \
INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info), \
INTEL_SNB_D_IDS(&intel_sandybridge_d_info), \
INTEL_SNB_M_IDS(&intel_sandybridge_m_info), \
INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */ \
INTEL_IVB_M_IDS(&intel_ivybridge_m_info), \
INTEL_IVB_D_IDS(&intel_ivybridge_d_info), \
INTEL_HSW_D_IDS(&intel_haswell_d_info), \
INTEL_HSW_M_IDS(&intel_haswell_m_info), \
INTEL_VLV_M_IDS(&intel_valleyview_m_info), \
INTEL_VLV_D_IDS(&intel_valleyview_d_info), \
INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info), \
INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info), \
INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info), \
INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info), \
INTEL_CHV_IDS(&intel_cherryview_info), \
INTEL_SKL_GT1_IDS(&intel_skylake_info), \
INTEL_SKL_GT2_IDS(&intel_skylake_info), \
INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info), \
INTEL_BXT_IDS(&intel_broxton_info)
static const struct pci_device_id pciidlist[] = { /* aka */
INTEL_PCI_IDS,
{0, 0, 0}
};
MODULE_DEVICE_TABLE(pci, pciidlist);
static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
{
enum intel_pch ret = PCH_NOP;
/*
* In a virtualized passthrough environment we can be in a
* setup where the ISA bridge is not able to be passed through.
* In this case, a south bridge can be emulated and we have to
* make an educated guess as to which PCH is really there.
*/
if (IS_GEN5(dev)) {
ret = PCH_IBX;
DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
} else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
ret = PCH_CPT;
DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
ret = PCH_LPT;
DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
} else if (IS_SKYLAKE(dev)) {
ret = PCH_SPT;
DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
}
return ret;
}
void intel_detect_pch(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct pci_dev *pch = NULL;
/* In all current cases, num_pipes is equivalent to the PCH_NOP setting
* (which really amounts to a PCH but no South Display).
*/
if (INTEL_INFO(dev)->num_pipes == 0) {
dev_priv->pch_type = PCH_NOP;
return;
}
/*
* The reason to probe ISA bridge instead of Dev31:Fun0 is to
* make graphics device passthrough work easy for VMM, that only
* need to expose ISA bridge to let driver know the real hardware
* underneath. This is a requirement from virtualization team.
*
* In some virtualized environments (e.g. XEN), there is irrelevant
* ISA bridge in the system. To work reliably, we should scan trhough
* all the ISA bridge devices and check for the first match, instead
* of only checking the first one.
*/
while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
if (pch->vendor == PCI_VENDOR_ID_INTEL) {
unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
dev_priv->pch_id = id;
if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
dev_priv->pch_type = PCH_IBX;
DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
WARN_ON(!IS_GEN5(dev));
} else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
dev_priv->pch_type = PCH_CPT;
DRM_DEBUG_KMS("Found CougarPoint PCH\n");
WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
} else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
/* PantherPoint is CPT compatible */
dev_priv->pch_type = PCH_CPT;
DRM_DEBUG_KMS("Found PantherPoint PCH\n");
WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
} else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
dev_priv->pch_type = PCH_LPT;
DRM_DEBUG_KMS("Found LynxPoint PCH\n");
WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
} else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
dev_priv->pch_type = PCH_LPT;
DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
} else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
dev_priv->pch_type = PCH_SPT;
DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
WARN_ON(!IS_SKYLAKE(dev));
} else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
dev_priv->pch_type = PCH_SPT;
DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
WARN_ON(!IS_SKYLAKE(dev));
} else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE) {
dev_priv->pch_type = intel_virt_detect_pch(dev);
} else
continue;
break;
}
}
if (!pch)
DRM_DEBUG_KMS("No PCH found.\n");
pci_dev_put(pch);
}
bool i915_semaphore_is_enabled(struct drm_device *dev)
{
if (INTEL_INFO(dev)->gen < 6)
return false;
if (i915.semaphores >= 0)
return i915.semaphores;
/* TODO: make semaphores and Execlists play nicely together */
if (i915.enable_execlists)
return false;
/* Until we get further testing... */
if (IS_GEN8(dev))
return false;
#ifdef CONFIG_INTEL_IOMMU
/* Enable semaphores on SNB when IO remapping is off */
if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
return false;
#endif
return true;
}
void i915_firmware_load_error_print(const char *fw_path, int err)
{
DRM_ERROR("failed to load firmware %s (%d)\n", fw_path, err);
/*
* If the reason is not known assume -ENOENT since that's the most
* usual failure mode.
*/
if (!err)
err = -ENOENT;
if (!(IS_BUILTIN(CONFIG_DRM_I915) && err == -ENOENT))
return;
DRM_ERROR(
"The driver is built-in, so to load the firmware you need to\n"
"include it either in the kernel (see CONFIG_EXTRA_FIRMWARE) or\n"
"in your initrd/initramfs image.\n");
}
static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
struct drm_encoder *encoder;
drm_modeset_lock_all(dev);
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
if (intel_encoder->suspend)
intel_encoder->suspend(intel_encoder);
}
drm_modeset_unlock_all(dev);
}
static int intel_suspend_complete(struct drm_i915_private *dev_priv);
static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
bool rpm_resume);
static int skl_resume_prepare(struct drm_i915_private *dev_priv);
static int bxt_resume_prepare(struct drm_i915_private *dev_priv);
static int i915_drm_suspend(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
pci_power_t opregion_target_state;
int error;
/* ignore lid events during suspend */
mutex_lock(&dev_priv->modeset_restore_lock);
dev_priv->modeset_restore = MODESET_SUSPENDED;
mutex_unlock(&dev_priv->modeset_restore_lock);
/* We do a lot of poking in a lot of registers, make sure they work
* properly. */
intel_display_set_init_power(dev_priv, true);
drm_kms_helper_poll_disable(dev);
pci_save_state(dev->pdev);
error = i915_gem_suspend(dev);
if (error) {
dev_err(&dev->pdev->dev,
"GEM idle failed, resume might fail\n");
return error;
}
intel_guc_suspend(dev);
intel_suspend_gt_powersave(dev);
/*
* Disable CRTCs directly since we want to preserve sw state
* for _thaw. Also, power gate the CRTC power wells.
*/
drm_modeset_lock_all(dev);
intel_display_suspend(dev);
drm_modeset_unlock_all(dev);
intel_dp_mst_suspend(dev);
intel_runtime_pm_disable_interrupts(dev_priv);
intel_hpd_cancel_work(dev_priv);
intel_suspend_encoders(dev_priv);
intel_suspend_hw(dev);
i915_gem_suspend_gtt_mappings(dev);
i915_save_state(dev);
opregion_target_state = PCI_D3cold;
#if IS_ENABLED(CONFIG_ACPI_SLEEP)
if (acpi_target_system_state() < ACPI_STATE_S3)
opregion_target_state = PCI_D1;
#endif
intel_opregion_notify_adapter(dev, opregion_target_state);
intel_uncore_forcewake_reset(dev, false);
intel_opregion_fini(dev);
intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
dev_priv->suspend_count++;
intel_display_set_init_power(dev_priv, false);
return 0;
}
static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
{
struct drm_i915_private *dev_priv = drm_dev->dev_private;
int ret;
ret = intel_suspend_complete(dev_priv);
if (ret) {
DRM_ERROR("Suspend complete failed: %d\n", ret);
return ret;
}
pci_disable_device(drm_dev->pdev);
/*
* During hibernation on some platforms the BIOS may try to access
* the device even though it's already in D3 and hang the machine. So
* leave the device in D0 on those platforms and hope the BIOS will
* power down the device properly. The issue was seen on multiple old
* GENs with different BIOS vendors, so having an explicit blacklist
* is inpractical; apply the workaround on everything pre GEN6. The
* platforms where the issue was seen:
* Lenovo Thinkpad X301, X61s, X60, T60, X41
* Fujitsu FSC S7110
* Acer Aspire 1830T
*/
if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
pci_set_power_state(drm_dev->pdev, PCI_D3hot);
return 0;
}
int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
{
int error;
if (!dev || !dev->dev_private) {
DRM_ERROR("dev: %p\n", dev);
DRM_ERROR("DRM not initialized, aborting suspend.\n");
return -ENODEV;
}
if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
state.event != PM_EVENT_FREEZE))
return -EINVAL;
if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
error = i915_drm_suspend(dev);
if (error)
return error;
return i915_drm_suspend_late(dev, false);
}
static int i915_drm_resume(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
mutex_lock(&dev->struct_mutex);
i915_gem_restore_gtt_mappings(dev);
mutex_unlock(&dev->struct_mutex);
i915_restore_state(dev);
intel_opregion_setup(dev);
intel_init_pch_refclk(dev);
drm_mode_config_reset(dev);
/*
* Interrupts have to be enabled before any batches are run. If not the
* GPU will hang. i915_gem_init_hw() will initiate batches to
* update/restore the context.
*
* Modeset enabling in intel_modeset_init_hw() also needs working
* interrupts.
*/
intel_runtime_pm_enable_interrupts(dev_priv);
mutex_lock(&dev->struct_mutex);
if (i915_gem_init_hw(dev)) {
DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
}
mutex_unlock(&dev->struct_mutex);
intel_guc_resume(dev);
intel_modeset_init_hw(dev);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display.hpd_irq_setup)
dev_priv->display.hpd_irq_setup(dev);
spin_unlock_irq(&dev_priv->irq_lock);
drm_modeset_lock_all(dev);
intel_display_resume(dev);
drm_modeset_unlock_all(dev);
intel_dp_mst_resume(dev);
/*
* ... but also need to make sure that hotplug processing
* doesn't cause havoc. Like in the driver load code we don't
* bother with the tiny race here where we might loose hotplug
* notifications.
* */
intel_hpd_init(dev_priv);
/* Config may have changed between suspend and resume */
drm_helper_hpd_irq_event(dev);
intel_opregion_init(dev);
intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
mutex_lock(&dev_priv->modeset_restore_lock);
dev_priv->modeset_restore = MODESET_DONE;
mutex_unlock(&dev_priv->modeset_restore_lock);
intel_opregion_notify_adapter(dev, PCI_D0);
drm_kms_helper_poll_enable(dev);
return 0;
}
static int i915_drm_resume_early(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = 0;
/*
* We have a resume ordering issue with the snd-hda driver also
* requiring our device to be power up. Due to the lack of a
* parent/child relationship we currently solve this with an early
* resume hook.
*
* FIXME: This should be solved with a special hdmi sink device or
* similar so that power domains can be employed.
*/
if (pci_enable_device(dev->pdev))
return -EIO;
pci_set_master(dev->pdev);
if (IS_VALLEYVIEW(dev_priv))
ret = vlv_resume_prepare(dev_priv, false);
if (ret)
DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
ret);
intel_uncore_early_sanitize(dev, true);
if (IS_BROXTON(dev))
ret = bxt_resume_prepare(dev_priv);
else if (IS_SKYLAKE(dev_priv))
ret = skl_resume_prepare(dev_priv);
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
hsw_disable_pc8(dev_priv);
intel_uncore_sanitize(dev);
intel_power_domains_init_hw(dev_priv);
return ret;
}
int i915_resume_switcheroo(struct drm_device *dev)
{
int ret;
if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
ret = i915_drm_resume_early(dev);
if (ret)
return ret;
return i915_drm_resume(dev);
}
/**
* i915_reset - reset chip after a hang
* @dev: drm device to reset
*
* Reset the chip. Useful if a hang is detected. Returns zero on successful
* reset or otherwise an error code.
*
* Procedure is fairly simple:
* - reset the chip using the reset reg
* - re-init context state
* - re-init hardware status page
* - re-init ring buffer
* - re-init interrupt state
* - re-init display
*/
int i915_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
bool simulated;
int ret;
intel_reset_gt_powersave(dev);
mutex_lock(&dev->struct_mutex);
i915_gem_reset(dev);
simulated = dev_priv->gpu_error.stop_rings != 0;
ret = intel_gpu_reset(dev);
/* Also reset the gpu hangman. */
if (simulated) {
DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
dev_priv->gpu_error.stop_rings = 0;
if (ret == -ENODEV) {
DRM_INFO("Reset not implemented, but ignoring "
"error for simulated gpu hangs\n");
ret = 0;
}
}
if (i915_stop_ring_allow_warn(dev_priv))
pr_notice("drm/i915: Resetting chip after gpu hang\n");
if (ret) {
DRM_ERROR("Failed to reset chip: %i\n", ret);
mutex_unlock(&dev->struct_mutex);
return ret;
}
intel_overlay_reset(dev_priv);
/* Ok, now get things going again... */
/*
* Everything depends on having the GTT running, so we need to start
* there. Fortunately we don't need to do this unless we reset the
* chip at a PCI level.
*
* Next we need to restore the context, but we don't use those
* yet either...
*
* Ring buffer needs to be re-initialized in the KMS case, or if X
* was running at the time of the reset (i.e. we weren't VT
* switched away).
*/
/* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
dev_priv->gpu_error.reload_in_reset = true;
ret = i915_gem_init_hw(dev);
dev_priv->gpu_error.reload_in_reset = false;
mutex_unlock(&dev->struct_mutex);
if (ret) {
DRM_ERROR("Failed hw init on reset %d\n", ret);
return ret;
}
/*
* rps/rc6 re-init is necessary to restore state lost after the
* reset and the re-install of gt irqs. Skip for ironlake per
* previous concerns that it doesn't respond well to some forms
* of re-init after reset.
*/
if (INTEL_INFO(dev)->gen > 5)
intel_enable_gt_powersave(dev);
return 0;
}
static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct intel_device_info *intel_info =
(struct intel_device_info *) ent->driver_data;
if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
DRM_INFO("This hardware requires preliminary hardware support.\n"
"See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
return -ENODEV;
}
/* Only bind to function 0 of the device. Early generations
* used function 1 as a placeholder for multi-head. This causes
* us confusion instead, especially on the systems where both
* functions have the same PCI-ID!
*/
if (PCI_FUNC(pdev->devfn))
return -ENODEV;
return drm_get_pci_dev(pdev, ent, &driver);
}
static void
i915_pci_remove(struct pci_dev *pdev)
{
struct drm_device *dev = pci_get_drvdata(pdev);
drm_put_dev(dev);
}
static int i915_pm_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct drm_device *drm_dev = pci_get_drvdata(pdev);
if (!drm_dev || !drm_dev->dev_private) {
dev_err(dev, "DRM not initialized, aborting suspend.\n");
return -ENODEV;
}
if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_suspend(drm_dev);
}
static int i915_pm_suspend_late(struct device *dev)
{
struct drm_device *drm_dev = dev_to_i915(dev)->dev;
/*
* We have a suspend ordering issue with the snd-hda driver also
* requiring our device to be power up. Due to the lack of a
* parent/child relationship we currently solve this with an late
* suspend hook.
*
* FIXME: This should be solved with a special hdmi sink device or
* similar so that power domains can be employed.
*/
if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_suspend_late(drm_dev, false);
}
static int i915_pm_poweroff_late(struct device *dev)
{
struct drm_device *drm_dev = dev_to_i915(dev)->dev;
if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_suspend_late(drm_dev, true);
}
static int i915_pm_resume_early(struct device *dev)
{
struct drm_device *drm_dev = dev_to_i915(dev)->dev;
if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_resume_early(drm_dev);
}
static int i915_pm_resume(struct device *dev)
{
struct drm_device *drm_dev = dev_to_i915(dev)->dev;
if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
return 0;
return i915_drm_resume(drm_dev);
}
static int skl_suspend_complete(struct drm_i915_private *dev_priv)
{
/* Enabling DC6 is not a hard requirement to enter runtime D3 */
skl_uninit_cdclk(dev_priv);
return 0;
}
static int hsw_suspend_complete(struct drm_i915_private *dev_priv)
{
hsw_enable_pc8(dev_priv);
return 0;
}
static int bxt_suspend_complete(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
/* TODO: when DC5 support is added disable DC5 here. */
broxton_ddi_phy_uninit(dev);
broxton_uninit_cdclk(dev);
bxt_enable_dc9(dev_priv);
return 0;
}
static int bxt_resume_prepare(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
/* TODO: when CSR FW support is added make sure the FW is loaded */
bxt_disable_dc9(dev_priv);
/*
* TODO: when DC5 support is added enable DC5 here if the CSR FW
* is available.
*/
broxton_init_cdclk(dev);
broxton_ddi_phy_init(dev);
intel_prepare_ddi(dev);
return 0;
}
static int skl_resume_prepare(struct drm_i915_private *dev_priv)
{
struct drm_device *dev = dev_priv->dev;
skl_init_cdclk(dev_priv);
intel_csr_load_program(dev);
return 0;
}
/*
* Save all Gunit registers that may be lost after a D3 and a subsequent
* S0i[R123] transition. The list of registers needing a save/restore is
* defined in the VLV2_S0IXRegs document. This documents marks all Gunit
* registers in the following way:
* - Driver: saved/restored by the driver
* - Punit : saved/restored by the Punit firmware
* - No, w/o marking: no need to save/restore, since the register is R/O or
* used internally by the HW in a way that doesn't depend
* keeping the content across a suspend/resume.
* - Debug : used for debugging
*
* We save/restore all registers marked with 'Driver', with the following
* exceptions:
* - Registers out of use, including also registers marked with 'Debug'.
* These have no effect on the driver's operation, so we don't save/restore
* them to reduce the overhead.
* - Registers that are fully setup by an initialization function called from
* the resume path. For example many clock gating and RPS/RC6 registers.
* - Registers that provide the right functionality with their reset defaults.
*
* TODO: Except for registers that based on the above 3 criteria can be safely
* ignored, we save/restore all others, practically treating the HW context as
* a black-box for the driver. Further investigation is needed to reduce the
* saved/restored registers even further, by following the same 3 criteria.
*/
static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
{
struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
int i;
/* GAM 0x4000-0x4770 */
s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
s->arb_mode = I915_READ(ARB_MODE);
s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
s->ecochk = I915_READ(GAM_ECOCHK);
s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
/* MBC 0x9024-0x91D0, 0x8500 */
s->g3dctl = I915_READ(VLV_G3DCTL);
s->gsckgctl = I915_READ(VLV_GSCKGCTL);
s->mbctl = I915_READ(GEN6_MBCTL);
/* GCP 0x9400-0x9424, 0x8100-0x810C */
s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
s->rstctl = I915_READ(GEN6_RSTCTL);
s->misccpctl = I915_READ(GEN7_MISCCPCTL);
/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
s->gfxpause = I915_READ(GEN6_GFXPAUSE);
s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
s->rpdeuc = I915_READ(GEN6_RPDEUC);
s->ecobus = I915_READ(ECOBUS);
s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
s->rcedata = I915_READ(VLV_RCEDATA);
s->spare2gh = I915_READ(VLV_SPAREG2H);
/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
s->gt_imr = I915_READ(GTIMR);
s->gt_ier = I915_READ(GTIER);
s->pm_imr = I915_READ(GEN6_PMIMR);
s->pm_ier = I915_READ(GEN6_PMIER);
for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
/* GT SA CZ domain, 0x100000-0x138124 */
s->tilectl = I915_READ(TILECTL);
s->gt_fifoctl = I915_READ(GTFIFOCTL);
s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
s->pmwgicz = I915_READ(VLV_PMWGICZ);
/* Gunit-Display CZ domain, 0x182028-0x1821CF */
s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
s->pcbr = I915_READ(VLV_PCBR);
s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
/*
* Not saving any of:
* DFT, 0x9800-0x9EC0
* SARB, 0xB000-0xB1FC
* GAC, 0x5208-0x524C, 0x14000-0x14C000
* PCI CFG
*/
}
static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
{
struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
u32 val;
int i;
/* GAM 0x4000-0x4770 */
I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
I915_WRITE(GAM_ECOCHK, s->ecochk);
I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
/* MBC 0x9024-0x91D0, 0x8500 */
I915_WRITE(VLV_G3DCTL, s->g3dctl);
I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
I915_WRITE(GEN6_MBCTL, s->mbctl);
/* GCP 0x9400-0x9424, 0x8100-0x810C */
I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
I915_WRITE(GEN6_RSTCTL, s->rstctl);
I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
/* GPM 0xA000-0xAA84, 0x8000-0x80FC */
I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
I915_WRITE(ECOBUS, s->ecobus);
I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
I915_WRITE(VLV_RCEDATA, s->rcedata);
I915_WRITE(VLV_SPAREG2H, s->spare2gh);
/* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
I915_WRITE(GTIMR, s->gt_imr);
I915_WRITE(GTIER, s->gt_ier);
I915_WRITE(GEN6_PMIMR, s->pm_imr);
I915_WRITE(GEN6_PMIER, s->pm_ier);
for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
/* GT SA CZ domain, 0x100000-0x138124 */
I915_WRITE(TILECTL, s->tilectl);
I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
/*
* Preserve the GT allow wake and GFX force clock bit, they are not
* be restored, as they are used to control the s0ix suspend/resume
* sequence by the caller.
*/
val = I915_READ(VLV_GTLC_WAKE_CTRL);
val &= VLV_GTLC_ALLOWWAKEREQ;
val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
val &= VLV_GFX_CLK_FORCE_ON_BIT;
val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
/* Gunit-Display CZ domain, 0x182028-0x1821CF */
I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
I915_WRITE(VLV_PCBR, s->pcbr);
I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
}
int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
{
u32 val;
int err;
#define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
if (force_on)
val |= VLV_GFX_CLK_FORCE_ON_BIT;
I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
if (!force_on)
return 0;
err = wait_for(COND, 20);
if (err)
DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
I915_READ(VLV_GTLC_SURVIVABILITY_REG));
return err;
#undef COND
}
static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
{
u32 val;
int err = 0;
val = I915_READ(VLV_GTLC_WAKE_CTRL);
val &= ~VLV_GTLC_ALLOWWAKEREQ;
if (allow)
val |= VLV_GTLC_ALLOWWAKEREQ;
I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
POSTING_READ(VLV_GTLC_WAKE_CTRL);
#define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
allow)
err = wait_for(COND, 1);
if (err)
DRM_ERROR("timeout disabling GT waking\n");
return err;
#undef COND
}
static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
bool wait_for_on)
{
u32 mask;
u32 val;
int err;
mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
val = wait_for_on ? mask : 0;
#define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
if (COND)
return 0;
DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
wait_for_on ? "on" : "off",
I915_READ(VLV_GTLC_PW_STATUS));
/*
* RC6 transitioning can be delayed up to 2 msec (see
* valleyview_enable_rps), use 3 msec for safety.
*/
err = wait_for(COND, 3);
if (err)
DRM_ERROR("timeout waiting for GT wells to go %s\n",
wait_for_on ? "on" : "off");
return err;
#undef COND
}
static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
{
if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
return;
DRM_ERROR("GT register access while GT waking disabled\n");
I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
}
static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
{
u32 mask;
int err;
/*
* Bspec defines the following GT well on flags as debug only, so
* don't treat them as hard failures.
*/
(void)vlv_wait_for_gt_wells(dev_priv, false);
mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
vlv_check_no_gt_access(dev_priv);
err = vlv_force_gfx_clock(dev_priv, true);
if (err)
goto err1;
err = vlv_allow_gt_wake(dev_priv, false);
if (err)
goto err2;
if (!IS_CHERRYVIEW(dev_priv->dev))
vlv_save_gunit_s0ix_state(dev_priv);
err = vlv_force_gfx_clock(dev_priv, false);
if (err)
goto err2;
return 0;
err2:
/* For safety always re-enable waking and disable gfx clock forcing */
vlv_allow_gt_wake(dev_priv, true);
err1:
vlv_force_gfx_clock(dev_priv, false);
return err;
}
static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
bool rpm_resume)
{
struct drm_device *dev = dev_priv->dev;
int err;
int ret;
/*
* If any of the steps fail just try to continue, that's the best we
* can do at this point. Return the first error code (which will also
* leave RPM permanently disabled).
*/
ret = vlv_force_gfx_clock(dev_priv, true);
if (!IS_CHERRYVIEW(dev_priv->dev))
vlv_restore_gunit_s0ix_state(dev_priv);
err = vlv_allow_gt_wake(dev_priv, true);
if (!ret)
ret = err;
err = vlv_force_gfx_clock(dev_priv, false);
if (!ret)
ret = err;
vlv_check_no_gt_access(dev_priv);
if (rpm_resume) {
intel_init_clock_gating(dev);
i915_gem_restore_fences(dev);
}
return ret;
}
static int intel_runtime_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct drm_device *dev = pci_get_drvdata(pdev);
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
return -ENODEV;
if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
return -ENODEV;
DRM_DEBUG_KMS("Suspending device\n");
/*
* We could deadlock here in case another thread holding struct_mutex
* calls RPM suspend concurrently, since the RPM suspend will wait
* first for this RPM suspend to finish. In this case the concurrent
* RPM resume will be followed by its RPM suspend counterpart. Still
* for consistency return -EAGAIN, which will reschedule this suspend.
*/
if (!mutex_trylock(&dev->struct_mutex)) {
DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
/*
* Bump the expiration timestamp, otherwise the suspend won't
* be rescheduled.
*/
pm_runtime_mark_last_busy(device);
return -EAGAIN;
}
/*
* We are safe here against re-faults, since the fault handler takes
* an RPM reference.
*/
i915_gem_release_all_mmaps(dev_priv);
mutex_unlock(&dev->struct_mutex);
intel_guc_suspend(dev);
intel_suspend_gt_powersave(dev);
intel_runtime_pm_disable_interrupts(dev_priv);
ret = intel_suspend_complete(dev_priv);
if (ret) {
DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
intel_runtime_pm_enable_interrupts(dev_priv);
return ret;
}
cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
intel_uncore_forcewake_reset(dev, false);
dev_priv->pm.suspended = true;
/*
* FIXME: We really should find a document that references the arguments
* used below!
*/
if (IS_BROADWELL(dev)) {
/*
* On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
* being detected, and the call we do at intel_runtime_resume()
* won't be able to restore them. Since PCI_D3hot matches the
* actual specification and appears to be working, use it.
*/
intel_opregion_notify_adapter(dev, PCI_D3hot);
} else {
/*
* current versions of firmware which depend on this opregion
* notification have repurposed the D1 definition to mean
* "runtime suspended" vs. what you would normally expect (D3)
* to distinguish it from notifications that might be sent via
* the suspend path.
*/
intel_opregion_notify_adapter(dev, PCI_D1);
}
assert_forcewakes_inactive(dev_priv);
DRM_DEBUG_KMS("Device suspended\n");
return 0;
}
static int intel_runtime_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct drm_device *dev = pci_get_drvdata(pdev);
struct drm_i915_private *dev_priv = dev->dev_private;
int ret = 0;
if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
return -ENODEV;
DRM_DEBUG_KMS("Resuming device\n");
intel_opregion_notify_adapter(dev, PCI_D0);
dev_priv->pm.suspended = false;
intel_guc_resume(dev);
if (IS_GEN6(dev_priv))
intel_init_pch_refclk(dev);
if (IS_BROXTON(dev))
ret = bxt_resume_prepare(dev_priv);
else if (IS_SKYLAKE(dev))
ret = skl_resume_prepare(dev_priv);
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
hsw_disable_pc8(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
ret = vlv_resume_prepare(dev_priv, true);
/*
* No point of rolling back things in case of an error, as the best
* we can do is to hope that things will still work (and disable RPM).
*/
i915_gem_init_swizzling(dev);
gen6_update_ring_freq(dev);
intel_runtime_pm_enable_interrupts(dev_priv);
/*
* On VLV/CHV display interrupts are part of the display
* power well, so hpd is reinitialized from there. For
* everyone else do it here.
*/
if (!IS_VALLEYVIEW(dev_priv))
intel_hpd_init(dev_priv);
intel_enable_gt_powersave(dev);
if (ret)
DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
else
DRM_DEBUG_KMS("Device resumed\n");
return ret;
}
/*
* This function implements common functionality of runtime and system
* suspend sequence.
*/
static int intel_suspend_complete(struct drm_i915_private *dev_priv)
{
int ret;
if (IS_BROXTON(dev_priv))
ret = bxt_suspend_complete(dev_priv);
else if (IS_SKYLAKE(dev_priv))
ret = skl_suspend_complete(dev_priv);
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ret = hsw_suspend_complete(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
ret = vlv_suspend_complete(dev_priv);
else
ret = 0;
return ret;
}
static const struct dev_pm_ops i915_pm_ops = {
/*
* S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
* PMSG_RESUME]
*/
.suspend = i915_pm_suspend,
.suspend_late = i915_pm_suspend_late,
.resume_early = i915_pm_resume_early,
.resume = i915_pm_resume,
/*
* S4 event handlers
* @freeze, @freeze_late : called (1) before creating the
* hibernation image [PMSG_FREEZE] and
* (2) after rebooting, before restoring
* the image [PMSG_QUIESCE]
* @thaw, @thaw_early : called (1) after creating the hibernation
* image, before writing it [PMSG_THAW]
* and (2) after failing to create or
* restore the image [PMSG_RECOVER]
* @poweroff, @poweroff_late: called after writing the hibernation
* image, before rebooting [PMSG_HIBERNATE]
* @restore, @restore_early : called after rebooting and restoring the
* hibernation image [PMSG_RESTORE]
*/
.freeze = i915_pm_suspend,
.freeze_late = i915_pm_suspend_late,
.thaw_early = i915_pm_resume_early,
.thaw = i915_pm_resume,
.poweroff = i915_pm_suspend,
.poweroff_late = i915_pm_poweroff_late,
.restore_early = i915_pm_resume_early,
.restore = i915_pm_resume,
/* S0ix (via runtime suspend) event handlers */
.runtime_suspend = intel_runtime_suspend,
.runtime_resume = intel_runtime_resume,
};
static const struct vm_operations_struct i915_gem_vm_ops = {
.fault = i915_gem_fault,
.open = drm_gem_vm_open,
.close = drm_gem_vm_close,
};
static const struct file_operations i915_driver_fops = {
.owner = THIS_MODULE,
.open = drm_open,
.release = drm_release,
.unlocked_ioctl = drm_ioctl,
.mmap = drm_gem_mmap,
.poll = drm_poll,
.read = drm_read,
#ifdef CONFIG_COMPAT
.compat_ioctl = i915_compat_ioctl,
#endif
.llseek = noop_llseek,
};
static struct drm_driver driver = {
/* Don't use MTRRs here; the Xserver or userspace app should
* deal with them for Intel hardware.
*/
.driver_features =
DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
DRIVER_RENDER | DRIVER_MODESET,
.load = i915_driver_load,
.unload = i915_driver_unload,
.open = i915_driver_open,
.lastclose = i915_driver_lastclose,
.preclose = i915_driver_preclose,
.postclose = i915_driver_postclose,
.set_busid = drm_pci_set_busid,
#if defined(CONFIG_DEBUG_FS)
.debugfs_init = i915_debugfs_init,
.debugfs_cleanup = i915_debugfs_cleanup,
#endif
.gem_free_object = i915_gem_free_object,
.gem_vm_ops = &i915_gem_vm_ops,
.prime_handle_to_fd = drm_gem_prime_handle_to_fd,
.prime_fd_to_handle = drm_gem_prime_fd_to_handle,
.gem_prime_export = i915_gem_prime_export,
.gem_prime_import = i915_gem_prime_import,
.dumb_create = i915_gem_dumb_create,
.dumb_map_offset = i915_gem_mmap_gtt,
.dumb_destroy = drm_gem_dumb_destroy,
.ioctls = i915_ioctls,
.fops = &i915_driver_fops,
.name = DRIVER_NAME,
.desc = DRIVER_DESC,
.date = DRIVER_DATE,
.major = DRIVER_MAJOR,
.minor = DRIVER_MINOR,
.patchlevel = DRIVER_PATCHLEVEL,
};
static struct pci_driver i915_pci_driver = {
.name = DRIVER_NAME,
.id_table = pciidlist,
.probe = i915_pci_probe,
.remove = i915_pci_remove,
.driver.pm = &i915_pm_ops,
};
static int __init i915_init(void)
{
driver.num_ioctls = i915_max_ioctl;
/*
* Enable KMS by default, unless explicitly overriden by
* either the i915.modeset prarameter or by the
* vga_text_mode_force boot option.
*/
if (i915.modeset == 0)
driver.driver_features &= ~DRIVER_MODESET;
#ifdef CONFIG_VGA_CONSOLE
if (vgacon_text_force() && i915.modeset == -1)
driver.driver_features &= ~DRIVER_MODESET;
#endif
if (!(driver.driver_features & DRIVER_MODESET)) {
/* Silently fail loading to not upset userspace. */
DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
return 0;
}
if (i915.nuclear_pageflip)
driver.driver_features |= DRIVER_ATOMIC;
return drm_pci_init(&driver, &i915_pci_driver);
}
static void __exit i915_exit(void)
{
if (!(driver.driver_features & DRIVER_MODESET))
return; /* Never loaded a driver. */
drm_pci_exit(&driver, &i915_pci_driver);
}
module_init(i915_init);
module_exit(i915_exit);
MODULE_AUTHOR("Tungsten Graphics, Inc.");
MODULE_AUTHOR("Intel Corporation");
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL and additional rights");