| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Arch specific cpu topology information |
| * |
| * Copyright (C) 2016, ARM Ltd. |
| * Written by: Juri Lelli, ARM Ltd. |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/device.h> |
| #include <linux/of.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/sched/topology.h> |
| #include <linux/cpuset.h> |
| #include <linux/cpumask.h> |
| #include <linux/init.h> |
| #include <linux/percpu.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| |
| __weak bool arch_freq_counters_available(struct cpumask *cpus) |
| { |
| return false; |
| } |
| DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE; |
| |
| void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, |
| unsigned long max_freq) |
| { |
| unsigned long scale; |
| int i; |
| |
| /* |
| * If the use of counters for FIE is enabled, just return as we don't |
| * want to update the scale factor with information from CPUFREQ. |
| * Instead the scale factor will be updated from arch_scale_freq_tick. |
| */ |
| if (arch_freq_counters_available(cpus)) |
| return; |
| |
| scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; |
| |
| for_each_cpu(i, cpus) |
| per_cpu(freq_scale, i) = scale; |
| } |
| |
| DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; |
| |
| void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) |
| { |
| per_cpu(cpu_scale, cpu) = capacity; |
| } |
| |
| static ssize_t cpu_capacity_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cpu *cpu = container_of(dev, struct cpu, dev); |
| |
| return sprintf(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); |
| } |
| |
| static void update_topology_flags_workfn(struct work_struct *work); |
| static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); |
| |
| static DEVICE_ATTR_RO(cpu_capacity); |
| |
| static int register_cpu_capacity_sysctl(void) |
| { |
| int i; |
| struct device *cpu; |
| |
| for_each_possible_cpu(i) { |
| cpu = get_cpu_device(i); |
| if (!cpu) { |
| pr_err("%s: too early to get CPU%d device!\n", |
| __func__, i); |
| continue; |
| } |
| device_create_file(cpu, &dev_attr_cpu_capacity); |
| } |
| |
| return 0; |
| } |
| subsys_initcall(register_cpu_capacity_sysctl); |
| |
| static int update_topology; |
| |
| int topology_update_cpu_topology(void) |
| { |
| return update_topology; |
| } |
| |
| /* |
| * Updating the sched_domains can't be done directly from cpufreq callbacks |
| * due to locking, so queue the work for later. |
| */ |
| static void update_topology_flags_workfn(struct work_struct *work) |
| { |
| update_topology = 1; |
| rebuild_sched_domains(); |
| pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); |
| update_topology = 0; |
| } |
| |
| static DEFINE_PER_CPU(u32, freq_factor) = 1; |
| static u32 *raw_capacity; |
| |
| static int free_raw_capacity(void) |
| { |
| kfree(raw_capacity); |
| raw_capacity = NULL; |
| |
| return 0; |
| } |
| |
| void topology_normalize_cpu_scale(void) |
| { |
| u64 capacity; |
| u64 capacity_scale; |
| int cpu; |
| |
| if (!raw_capacity) |
| return; |
| |
| capacity_scale = 1; |
| for_each_possible_cpu(cpu) { |
| capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); |
| capacity_scale = max(capacity, capacity_scale); |
| } |
| |
| pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); |
| for_each_possible_cpu(cpu) { |
| capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); |
| capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, |
| capacity_scale); |
| topology_set_cpu_scale(cpu, capacity); |
| pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", |
| cpu, topology_get_cpu_scale(cpu)); |
| } |
| } |
| |
| bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) |
| { |
| struct clk *cpu_clk; |
| static bool cap_parsing_failed; |
| int ret; |
| u32 cpu_capacity; |
| |
| if (cap_parsing_failed) |
| return false; |
| |
| ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", |
| &cpu_capacity); |
| if (!ret) { |
| if (!raw_capacity) { |
| raw_capacity = kcalloc(num_possible_cpus(), |
| sizeof(*raw_capacity), |
| GFP_KERNEL); |
| if (!raw_capacity) { |
| cap_parsing_failed = true; |
| return false; |
| } |
| } |
| raw_capacity[cpu] = cpu_capacity; |
| pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", |
| cpu_node, raw_capacity[cpu]); |
| |
| /* |
| * Update freq_factor for calculating early boot cpu capacities. |
| * For non-clk CPU DVFS mechanism, there's no way to get the |
| * frequency value now, assuming they are running at the same |
| * frequency (by keeping the initial freq_factor value). |
| */ |
| cpu_clk = of_clk_get(cpu_node, 0); |
| if (!PTR_ERR_OR_ZERO(cpu_clk)) { |
| per_cpu(freq_factor, cpu) = |
| clk_get_rate(cpu_clk) / 1000; |
| clk_put(cpu_clk); |
| } |
| } else { |
| if (raw_capacity) { |
| pr_err("cpu_capacity: missing %pOF raw capacity\n", |
| cpu_node); |
| pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); |
| } |
| cap_parsing_failed = true; |
| free_raw_capacity(); |
| } |
| |
| return !ret; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| static cpumask_var_t cpus_to_visit; |
| static void parsing_done_workfn(struct work_struct *work); |
| static DECLARE_WORK(parsing_done_work, parsing_done_workfn); |
| |
| static int |
| init_cpu_capacity_callback(struct notifier_block *nb, |
| unsigned long val, |
| void *data) |
| { |
| struct cpufreq_policy *policy = data; |
| int cpu; |
| |
| if (!raw_capacity) |
| return 0; |
| |
| if (val != CPUFREQ_CREATE_POLICY) |
| return 0; |
| |
| pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", |
| cpumask_pr_args(policy->related_cpus), |
| cpumask_pr_args(cpus_to_visit)); |
| |
| cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); |
| |
| for_each_cpu(cpu, policy->related_cpus) |
| per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000; |
| |
| if (cpumask_empty(cpus_to_visit)) { |
| topology_normalize_cpu_scale(); |
| schedule_work(&update_topology_flags_work); |
| free_raw_capacity(); |
| pr_debug("cpu_capacity: parsing done\n"); |
| schedule_work(&parsing_done_work); |
| } |
| |
| return 0; |
| } |
| |
| static struct notifier_block init_cpu_capacity_notifier = { |
| .notifier_call = init_cpu_capacity_callback, |
| }; |
| |
| static int __init register_cpufreq_notifier(void) |
| { |
| int ret; |
| |
| /* |
| * on ACPI-based systems we need to use the default cpu capacity |
| * until we have the necessary code to parse the cpu capacity, so |
| * skip registering cpufreq notifier. |
| */ |
| if (!acpi_disabled || !raw_capacity) |
| return -EINVAL; |
| |
| if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| cpumask_copy(cpus_to_visit, cpu_possible_mask); |
| |
| ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, |
| CPUFREQ_POLICY_NOTIFIER); |
| |
| if (ret) |
| free_cpumask_var(cpus_to_visit); |
| |
| return ret; |
| } |
| core_initcall(register_cpufreq_notifier); |
| |
| static void parsing_done_workfn(struct work_struct *work) |
| { |
| cpufreq_unregister_notifier(&init_cpu_capacity_notifier, |
| CPUFREQ_POLICY_NOTIFIER); |
| free_cpumask_var(cpus_to_visit); |
| } |
| |
| #else |
| core_initcall(free_raw_capacity); |
| #endif |
| |
| #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) |
| /* |
| * This function returns the logic cpu number of the node. |
| * There are basically three kinds of return values: |
| * (1) logic cpu number which is > 0. |
| * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but |
| * there is no possible logical CPU in the kernel to match. This happens |
| * when CONFIG_NR_CPUS is configure to be smaller than the number of |
| * CPU nodes in DT. We need to just ignore this case. |
| * (3) -1 if the node does not exist in the device tree |
| */ |
| static int __init get_cpu_for_node(struct device_node *node) |
| { |
| struct device_node *cpu_node; |
| int cpu; |
| |
| cpu_node = of_parse_phandle(node, "cpu", 0); |
| if (!cpu_node) |
| return -1; |
| |
| cpu = of_cpu_node_to_id(cpu_node); |
| if (cpu >= 0) |
| topology_parse_cpu_capacity(cpu_node, cpu); |
| else |
| pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", |
| cpu_node, cpumask_pr_args(cpu_possible_mask)); |
| |
| of_node_put(cpu_node); |
| return cpu; |
| } |
| |
| static int __init parse_core(struct device_node *core, int package_id, |
| int core_id) |
| { |
| char name[20]; |
| bool leaf = true; |
| int i = 0; |
| int cpu; |
| struct device_node *t; |
| |
| do { |
| snprintf(name, sizeof(name), "thread%d", i); |
| t = of_get_child_by_name(core, name); |
| if (t) { |
| leaf = false; |
| cpu = get_cpu_for_node(t); |
| if (cpu >= 0) { |
| cpu_topology[cpu].package_id = package_id; |
| cpu_topology[cpu].core_id = core_id; |
| cpu_topology[cpu].thread_id = i; |
| } else if (cpu != -ENODEV) { |
| pr_err("%pOF: Can't get CPU for thread\n", t); |
| of_node_put(t); |
| return -EINVAL; |
| } |
| of_node_put(t); |
| } |
| i++; |
| } while (t); |
| |
| cpu = get_cpu_for_node(core); |
| if (cpu >= 0) { |
| if (!leaf) { |
| pr_err("%pOF: Core has both threads and CPU\n", |
| core); |
| return -EINVAL; |
| } |
| |
| cpu_topology[cpu].package_id = package_id; |
| cpu_topology[cpu].core_id = core_id; |
| } else if (leaf && cpu != -ENODEV) { |
| pr_err("%pOF: Can't get CPU for leaf core\n", core); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int __init parse_cluster(struct device_node *cluster, int depth) |
| { |
| char name[20]; |
| bool leaf = true; |
| bool has_cores = false; |
| struct device_node *c; |
| static int package_id __initdata; |
| int core_id = 0; |
| int i, ret; |
| |
| /* |
| * First check for child clusters; we currently ignore any |
| * information about the nesting of clusters and present the |
| * scheduler with a flat list of them. |
| */ |
| i = 0; |
| do { |
| snprintf(name, sizeof(name), "cluster%d", i); |
| c = of_get_child_by_name(cluster, name); |
| if (c) { |
| leaf = false; |
| ret = parse_cluster(c, depth + 1); |
| of_node_put(c); |
| if (ret != 0) |
| return ret; |
| } |
| i++; |
| } while (c); |
| |
| /* Now check for cores */ |
| i = 0; |
| do { |
| snprintf(name, sizeof(name), "core%d", i); |
| c = of_get_child_by_name(cluster, name); |
| if (c) { |
| has_cores = true; |
| |
| if (depth == 0) { |
| pr_err("%pOF: cpu-map children should be clusters\n", |
| c); |
| of_node_put(c); |
| return -EINVAL; |
| } |
| |
| if (leaf) { |
| ret = parse_core(c, package_id, core_id++); |
| } else { |
| pr_err("%pOF: Non-leaf cluster with core %s\n", |
| cluster, name); |
| ret = -EINVAL; |
| } |
| |
| of_node_put(c); |
| if (ret != 0) |
| return ret; |
| } |
| i++; |
| } while (c); |
| |
| if (leaf && !has_cores) |
| pr_warn("%pOF: empty cluster\n", cluster); |
| |
| if (leaf) |
| package_id++; |
| |
| return 0; |
| } |
| |
| static int __init parse_dt_topology(void) |
| { |
| struct device_node *cn, *map; |
| int ret = 0; |
| int cpu; |
| |
| cn = of_find_node_by_path("/cpus"); |
| if (!cn) { |
| pr_err("No CPU information found in DT\n"); |
| return 0; |
| } |
| |
| /* |
| * When topology is provided cpu-map is essentially a root |
| * cluster with restricted subnodes. |
| */ |
| map = of_get_child_by_name(cn, "cpu-map"); |
| if (!map) |
| goto out; |
| |
| ret = parse_cluster(map, 0); |
| if (ret != 0) |
| goto out_map; |
| |
| topology_normalize_cpu_scale(); |
| |
| /* |
| * Check that all cores are in the topology; the SMP code will |
| * only mark cores described in the DT as possible. |
| */ |
| for_each_possible_cpu(cpu) |
| if (cpu_topology[cpu].package_id == -1) |
| ret = -EINVAL; |
| |
| out_map: |
| of_node_put(map); |
| out: |
| of_node_put(cn); |
| return ret; |
| } |
| #endif |
| |
| /* |
| * cpu topology table |
| */ |
| struct cpu_topology cpu_topology[NR_CPUS]; |
| EXPORT_SYMBOL_GPL(cpu_topology); |
| |
| const struct cpumask *cpu_coregroup_mask(int cpu) |
| { |
| const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); |
| |
| /* Find the smaller of NUMA, core or LLC siblings */ |
| if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { |
| /* not numa in package, lets use the package siblings */ |
| core_mask = &cpu_topology[cpu].core_sibling; |
| } |
| if (cpu_topology[cpu].llc_id != -1) { |
| if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) |
| core_mask = &cpu_topology[cpu].llc_sibling; |
| } |
| |
| return core_mask; |
| } |
| |
| void update_siblings_masks(unsigned int cpuid) |
| { |
| struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; |
| int cpu; |
| |
| /* update core and thread sibling masks */ |
| for_each_online_cpu(cpu) { |
| cpu_topo = &cpu_topology[cpu]; |
| |
| if (cpuid_topo->llc_id == cpu_topo->llc_id) { |
| cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); |
| cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); |
| } |
| |
| if (cpuid_topo->package_id != cpu_topo->package_id) |
| continue; |
| |
| cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); |
| cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); |
| |
| if (cpuid_topo->core_id != cpu_topo->core_id) |
| continue; |
| |
| cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); |
| cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); |
| } |
| } |
| |
| static void clear_cpu_topology(int cpu) |
| { |
| struct cpu_topology *cpu_topo = &cpu_topology[cpu]; |
| |
| cpumask_clear(&cpu_topo->llc_sibling); |
| cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); |
| |
| cpumask_clear(&cpu_topo->core_sibling); |
| cpumask_set_cpu(cpu, &cpu_topo->core_sibling); |
| cpumask_clear(&cpu_topo->thread_sibling); |
| cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); |
| } |
| |
| void __init reset_cpu_topology(void) |
| { |
| unsigned int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct cpu_topology *cpu_topo = &cpu_topology[cpu]; |
| |
| cpu_topo->thread_id = -1; |
| cpu_topo->core_id = -1; |
| cpu_topo->package_id = -1; |
| cpu_topo->llc_id = -1; |
| |
| clear_cpu_topology(cpu); |
| } |
| } |
| |
| void remove_cpu_topology(unsigned int cpu) |
| { |
| int sibling; |
| |
| for_each_cpu(sibling, topology_core_cpumask(cpu)) |
| cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); |
| for_each_cpu(sibling, topology_sibling_cpumask(cpu)) |
| cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); |
| for_each_cpu(sibling, topology_llc_cpumask(cpu)) |
| cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); |
| |
| clear_cpu_topology(cpu); |
| } |
| |
| __weak int __init parse_acpi_topology(void) |
| { |
| return 0; |
| } |
| |
| #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) |
| void __init init_cpu_topology(void) |
| { |
| reset_cpu_topology(); |
| |
| /* |
| * Discard anything that was parsed if we hit an error so we |
| * don't use partial information. |
| */ |
| if (parse_acpi_topology()) |
| reset_cpu_topology(); |
| else if (of_have_populated_dt() && parse_dt_topology()) |
| reset_cpu_topology(); |
| } |
| #endif |