| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _ASM_IA64_BITOPS_H |
| #define _ASM_IA64_BITOPS_H |
| |
| /* |
| * Copyright (C) 1998-2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64 |
| * O(1) scheduler patch |
| */ |
| |
| #ifndef _LINUX_BITOPS_H |
| #error only <linux/bitops.h> can be included directly |
| #endif |
| |
| #include <linux/compiler.h> |
| #include <linux/types.h> |
| #include <asm/intrinsics.h> |
| #include <asm/barrier.h> |
| |
| /** |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| * |
| * The address must be (at least) "long" aligned. |
| * Note that there are driver (e.g., eepro100) which use these operations to |
| * operate on hw-defined data-structures, so we can't easily change these |
| * operations to force a bigger alignment. |
| * |
| * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| */ |
| static __inline__ void |
| set_bit (int nr, volatile void *addr) |
| { |
| __u32 bit, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| bit = 1 << (nr & 31); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old | bit; |
| } while (cmpxchg_acq(m, old, new) != old); |
| } |
| |
| /** |
| * arch___set_bit - Set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike set_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __always_inline void |
| arch___set_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31)); |
| } |
| |
| /** |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic() |
| * in order to ensure changes are visible on other processors. |
| */ |
| static __inline__ void |
| clear_bit (int nr, volatile void *addr) |
| { |
| __u32 mask, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| mask = ~(1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old & mask; |
| } while (cmpxchg_acq(m, old, new) != old); |
| } |
| |
| /** |
| * clear_bit_unlock - Clears a bit in memory with release |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit_unlock() is atomic and may not be reordered. It does |
| * contain a memory barrier suitable for unlock type operations. |
| */ |
| static __inline__ void |
| clear_bit_unlock (int nr, volatile void *addr) |
| { |
| __u32 mask, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| mask = ~(1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old & mask; |
| } while (cmpxchg_rel(m, old, new) != old); |
| } |
| |
| /** |
| * __clear_bit_unlock - Non-atomically clears a bit in memory with release |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * Similarly to clear_bit_unlock, the implementation uses a store |
| * with release semantics. See also arch_spin_unlock(). |
| */ |
| static __inline__ void |
| __clear_bit_unlock(int nr, void *addr) |
| { |
| __u32 * const m = (__u32 *) addr + (nr >> 5); |
| __u32 const new = *m & ~(1 << (nr & 31)); |
| |
| ia64_st4_rel_nta(m, new); |
| } |
| |
| /** |
| * arch___clear_bit - Clears a bit in memory (non-atomic version) |
| * @nr: the bit to clear |
| * @addr: the address to start counting from |
| * |
| * Unlike clear_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __always_inline void |
| arch___clear_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| *((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31)); |
| } |
| |
| /** |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to toggle |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void |
| change_bit (int nr, volatile void *addr) |
| { |
| __u32 bit, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| bit = (1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old ^ bit; |
| } while (cmpxchg_acq(m, old, new) != old); |
| } |
| |
| /** |
| * arch___change_bit - Toggle a bit in memory |
| * @nr: the bit to toggle |
| * @addr: the address to start counting from |
| * |
| * Unlike change_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __always_inline void |
| arch___change_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31)); |
| } |
| |
| /** |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies the acquisition side of the memory barrier. |
| */ |
| static __inline__ int |
| test_and_set_bit (int nr, volatile void *addr) |
| { |
| __u32 bit, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| bit = 1 << (nr & 31); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old | bit; |
| } while (cmpxchg_acq(m, old, new) != old); |
| return (old & bit) != 0; |
| } |
| |
| /** |
| * test_and_set_bit_lock - Set a bit and return its old value for lock |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This is the same as test_and_set_bit on ia64 |
| */ |
| #define test_and_set_bit_lock test_and_set_bit |
| |
| /** |
| * arch___test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __always_inline bool |
| arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| __u32 *p = (__u32 *) addr + (nr >> 5); |
| __u32 m = 1 << (nr & 31); |
| int oldbitset = (*p & m) != 0; |
| |
| *p |= m; |
| return oldbitset; |
| } |
| |
| /** |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies the acquisition side of the memory barrier. |
| */ |
| static __inline__ int |
| test_and_clear_bit (int nr, volatile void *addr) |
| { |
| __u32 mask, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| mask = ~(1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old & mask; |
| } while (cmpxchg_acq(m, old, new) != old); |
| return (old & ~mask) != 0; |
| } |
| |
| /** |
| * arch___test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __always_inline bool |
| arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| __u32 *p = (__u32 *) addr + (nr >> 5); |
| __u32 m = 1 << (nr & 31); |
| int oldbitset = (*p & m) != 0; |
| |
| *p &= ~m; |
| return oldbitset; |
| } |
| |
| /** |
| * test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to change |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies the acquisition side of the memory barrier. |
| */ |
| static __inline__ int |
| test_and_change_bit (int nr, volatile void *addr) |
| { |
| __u32 bit, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| bit = (1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old ^ bit; |
| } while (cmpxchg_acq(m, old, new) != old); |
| return (old & bit) != 0; |
| } |
| |
| /** |
| * arch___test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to change |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| */ |
| static __always_inline bool |
| arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| __u32 old, bit = (1 << (nr & 31)); |
| __u32 *m = (__u32 *) addr + (nr >> 5); |
| |
| old = *m; |
| *m = old ^ bit; |
| return (old & bit) != 0; |
| } |
| |
| #define arch_test_bit generic_test_bit |
| #define arch_test_bit_acquire generic_test_bit_acquire |
| |
| /** |
| * ffz - find the first zero bit in a long word |
| * @x: The long word to find the bit in |
| * |
| * Returns the bit-number (0..63) of the first (least significant) zero bit. |
| * Undefined if no zero exists, so code should check against ~0UL first... |
| */ |
| static inline unsigned long |
| ffz (unsigned long x) |
| { |
| unsigned long result; |
| |
| result = ia64_popcnt(x & (~x - 1)); |
| return result; |
| } |
| |
| /** |
| * __ffs - find first bit in word. |
| * @x: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static __inline__ unsigned long |
| __ffs (unsigned long x) |
| { |
| unsigned long result; |
| |
| result = ia64_popcnt((x-1) & ~x); |
| return result; |
| } |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Return bit number of last (most-significant) bit set. Undefined |
| * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3). |
| */ |
| static inline unsigned long |
| ia64_fls (unsigned long x) |
| { |
| long double d = x; |
| long exp; |
| |
| exp = ia64_getf_exp(d); |
| return exp - 0xffff; |
| } |
| |
| /* |
| * Find the last (most significant) bit set. Returns 0 for x==0 and |
| * bits are numbered from 1..32 (e.g., fls(9) == 4). |
| */ |
| static inline int fls(unsigned int t) |
| { |
| unsigned long x = t & 0xffffffffu; |
| |
| if (!x) |
| return 0; |
| x |= x >> 1; |
| x |= x >> 2; |
| x |= x >> 4; |
| x |= x >> 8; |
| x |= x >> 16; |
| return ia64_popcnt(x); |
| } |
| |
| /* |
| * Find the last (most significant) bit set. Undefined for x==0. |
| * Bits are numbered from 0..63 (e.g., __fls(9) == 3). |
| */ |
| static inline unsigned long |
| __fls (unsigned long x) |
| { |
| x |= x >> 1; |
| x |= x >> 2; |
| x |= x >> 4; |
| x |= x >> 8; |
| x |= x >> 16; |
| x |= x >> 32; |
| return ia64_popcnt(x) - 1; |
| } |
| |
| #include <asm-generic/bitops/fls64.h> |
| |
| #include <asm-generic/bitops/builtin-ffs.h> |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| static __inline__ unsigned long __arch_hweight64(unsigned long x) |
| { |
| unsigned long result; |
| result = ia64_popcnt(x); |
| return result; |
| } |
| |
| #define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful)) |
| #define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful)) |
| #define __arch_hweight8(x) ((unsigned int) __arch_hweight64((x) & 0xfful)) |
| |
| #include <asm-generic/bitops/const_hweight.h> |
| |
| #endif /* __KERNEL__ */ |
| |
| #ifdef __KERNEL__ |
| |
| #include <asm-generic/bitops/non-instrumented-non-atomic.h> |
| |
| #include <asm-generic/bitops/le.h> |
| |
| #include <asm-generic/bitops/ext2-atomic-setbit.h> |
| |
| #include <asm-generic/bitops/sched.h> |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_IA64_BITOPS_H */ |