| /* |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
| */ |
| #include <linux/kallsyms.h> |
| #include <linux/kprobes.h> |
| #include <linux/uaccess.h> |
| #include <linux/utsname.h> |
| #include <linux/hardirq.h> |
| #include <linux/kdebug.h> |
| #include <linux/module.h> |
| #include <linux/ptrace.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/ftrace.h> |
| #include <linux/kexec.h> |
| #include <linux/bug.h> |
| #include <linux/nmi.h> |
| #include <linux/sysfs.h> |
| #include <linux/kasan.h> |
| |
| #include <asm/cpu_entry_area.h> |
| #include <asm/stacktrace.h> |
| #include <asm/unwind.h> |
| |
| int panic_on_unrecovered_nmi; |
| int panic_on_io_nmi; |
| static int die_counter; |
| |
| static struct pt_regs exec_summary_regs; |
| |
| bool noinstr in_task_stack(unsigned long *stack, struct task_struct *task, |
| struct stack_info *info) |
| { |
| unsigned long *begin = task_stack_page(task); |
| unsigned long *end = task_stack_page(task) + THREAD_SIZE; |
| |
| if (stack < begin || stack >= end) |
| return false; |
| |
| info->type = STACK_TYPE_TASK; |
| info->begin = begin; |
| info->end = end; |
| info->next_sp = NULL; |
| |
| return true; |
| } |
| |
| /* Called from get_stack_info_noinstr - so must be noinstr too */ |
| bool noinstr in_entry_stack(unsigned long *stack, struct stack_info *info) |
| { |
| struct entry_stack *ss = cpu_entry_stack(smp_processor_id()); |
| |
| void *begin = ss; |
| void *end = ss + 1; |
| |
| if ((void *)stack < begin || (void *)stack >= end) |
| return false; |
| |
| info->type = STACK_TYPE_ENTRY; |
| info->begin = begin; |
| info->end = end; |
| info->next_sp = NULL; |
| |
| return true; |
| } |
| |
| static void printk_stack_address(unsigned long address, int reliable, |
| const char *log_lvl) |
| { |
| touch_nmi_watchdog(); |
| printk("%s %s%pBb\n", log_lvl, reliable ? "" : "? ", (void *)address); |
| } |
| |
| static int copy_code(struct pt_regs *regs, u8 *buf, unsigned long src, |
| unsigned int nbytes) |
| { |
| if (!user_mode(regs)) |
| return copy_from_kernel_nofault(buf, (u8 *)src, nbytes); |
| |
| /* The user space code from other tasks cannot be accessed. */ |
| if (regs != task_pt_regs(current)) |
| return -EPERM; |
| |
| /* |
| * Even if named copy_from_user_nmi() this can be invoked from |
| * other contexts and will not try to resolve a pagefault, which is |
| * the correct thing to do here as this code can be called from any |
| * context. |
| */ |
| return copy_from_user_nmi(buf, (void __user *)src, nbytes); |
| } |
| |
| /* |
| * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus: |
| * |
| * In case where we don't have the exact kernel image (which, if we did, we can |
| * simply disassemble and navigate to the RIP), the purpose of the bigger |
| * prologue is to have more context and to be able to correlate the code from |
| * the different toolchains better. |
| * |
| * In addition, it helps in recreating the register allocation of the failing |
| * kernel and thus make sense of the register dump. |
| * |
| * What is more, the additional complication of a variable length insn arch like |
| * x86 warrants having longer byte sequence before rIP so that the disassembler |
| * can "sync" up properly and find instruction boundaries when decoding the |
| * opcode bytes. |
| * |
| * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random |
| * guesstimate in attempt to achieve all of the above. |
| */ |
| void show_opcodes(struct pt_regs *regs, const char *loglvl) |
| { |
| #define PROLOGUE_SIZE 42 |
| #define EPILOGUE_SIZE 21 |
| #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE) |
| u8 opcodes[OPCODE_BUFSIZE]; |
| unsigned long prologue = regs->ip - PROLOGUE_SIZE; |
| |
| switch (copy_code(regs, opcodes, prologue, sizeof(opcodes))) { |
| case 0: |
| printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %" |
| __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes, |
| opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1); |
| break; |
| case -EPERM: |
| /* No access to the user space stack of other tasks. Ignore. */ |
| break; |
| default: |
| printk("%sCode: Unable to access opcode bytes at 0x%lx.\n", |
| loglvl, prologue); |
| break; |
| } |
| } |
| |
| void show_ip(struct pt_regs *regs, const char *loglvl) |
| { |
| #ifdef CONFIG_X86_32 |
| printk("%sEIP: %pS\n", loglvl, (void *)regs->ip); |
| #else |
| printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip); |
| #endif |
| show_opcodes(regs, loglvl); |
| } |
| |
| void show_iret_regs(struct pt_regs *regs, const char *log_lvl) |
| { |
| show_ip(regs, log_lvl); |
| printk("%sRSP: %04x:%016lx EFLAGS: %08lx", log_lvl, (int)regs->ss, |
| regs->sp, regs->flags); |
| } |
| |
| static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs, |
| bool partial, const char *log_lvl) |
| { |
| /* |
| * These on_stack() checks aren't strictly necessary: the unwind code |
| * has already validated the 'regs' pointer. The checks are done for |
| * ordering reasons: if the registers are on the next stack, we don't |
| * want to print them out yet. Otherwise they'll be shown as part of |
| * the wrong stack. Later, when show_trace_log_lvl() switches to the |
| * next stack, this function will be called again with the same regs so |
| * they can be printed in the right context. |
| */ |
| if (!partial && on_stack(info, regs, sizeof(*regs))) { |
| __show_regs(regs, SHOW_REGS_SHORT, log_lvl); |
| |
| } else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET, |
| IRET_FRAME_SIZE)) { |
| /* |
| * When an interrupt or exception occurs in entry code, the |
| * full pt_regs might not have been saved yet. In that case |
| * just print the iret frame. |
| */ |
| show_iret_regs(regs, log_lvl); |
| } |
| } |
| |
| /* |
| * This function reads pointers from the stack and dereferences them. The |
| * pointers may not have their KMSAN shadow set up properly, which may result |
| * in false positive reports. Disable instrumentation to avoid those. |
| */ |
| __no_kmsan_checks |
| static void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, |
| unsigned long *stack, const char *log_lvl) |
| { |
| struct unwind_state state; |
| struct stack_info stack_info = {0}; |
| unsigned long visit_mask = 0; |
| int graph_idx = 0; |
| bool partial = false; |
| |
| printk("%sCall Trace:\n", log_lvl); |
| |
| unwind_start(&state, task, regs, stack); |
| stack = stack ? : get_stack_pointer(task, regs); |
| regs = unwind_get_entry_regs(&state, &partial); |
| |
| /* |
| * Iterate through the stacks, starting with the current stack pointer. |
| * Each stack has a pointer to the next one. |
| * |
| * x86-64 can have several stacks: |
| * - task stack |
| * - interrupt stack |
| * - HW exception stacks (double fault, nmi, debug, mce) |
| * - entry stack |
| * |
| * x86-32 can have up to four stacks: |
| * - task stack |
| * - softirq stack |
| * - hardirq stack |
| * - entry stack |
| */ |
| for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) { |
| const char *stack_name; |
| |
| if (get_stack_info(stack, task, &stack_info, &visit_mask)) { |
| /* |
| * We weren't on a valid stack. It's possible that |
| * we overflowed a valid stack into a guard page. |
| * See if the next page up is valid so that we can |
| * generate some kind of backtrace if this happens. |
| */ |
| stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack); |
| if (get_stack_info(stack, task, &stack_info, &visit_mask)) |
| break; |
| } |
| |
| stack_name = stack_type_name(stack_info.type); |
| if (stack_name) |
| printk("%s <%s>\n", log_lvl, stack_name); |
| |
| if (regs) |
| show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); |
| |
| /* |
| * Scan the stack, printing any text addresses we find. At the |
| * same time, follow proper stack frames with the unwinder. |
| * |
| * Addresses found during the scan which are not reported by |
| * the unwinder are considered to be additional clues which are |
| * sometimes useful for debugging and are prefixed with '?'. |
| * This also serves as a failsafe option in case the unwinder |
| * goes off in the weeds. |
| */ |
| for (; stack < stack_info.end; stack++) { |
| unsigned long real_addr; |
| int reliable = 0; |
| unsigned long addr = READ_ONCE_NOCHECK(*stack); |
| unsigned long *ret_addr_p = |
| unwind_get_return_address_ptr(&state); |
| |
| if (!__kernel_text_address(addr)) |
| continue; |
| |
| /* |
| * Don't print regs->ip again if it was already printed |
| * by show_regs_if_on_stack(). |
| */ |
| if (regs && stack == ®s->ip) |
| goto next; |
| |
| if (stack == ret_addr_p) |
| reliable = 1; |
| |
| /* |
| * When function graph tracing is enabled for a |
| * function, its return address on the stack is |
| * replaced with the address of an ftrace handler |
| * (return_to_handler). In that case, before printing |
| * the "real" address, we want to print the handler |
| * address as an "unreliable" hint that function graph |
| * tracing was involved. |
| */ |
| real_addr = ftrace_graph_ret_addr(task, &graph_idx, |
| addr, stack); |
| if (real_addr != addr) |
| printk_stack_address(addr, 0, log_lvl); |
| printk_stack_address(real_addr, reliable, log_lvl); |
| |
| if (!reliable) |
| continue; |
| |
| next: |
| /* |
| * Get the next frame from the unwinder. No need to |
| * check for an error: if anything goes wrong, the rest |
| * of the addresses will just be printed as unreliable. |
| */ |
| unwind_next_frame(&state); |
| |
| /* if the frame has entry regs, print them */ |
| regs = unwind_get_entry_regs(&state, &partial); |
| if (regs) |
| show_regs_if_on_stack(&stack_info, regs, partial, log_lvl); |
| } |
| |
| if (stack_name) |
| printk("%s </%s>\n", log_lvl, stack_name); |
| } |
| } |
| |
| void show_stack(struct task_struct *task, unsigned long *sp, |
| const char *loglvl) |
| { |
| task = task ? : current; |
| |
| /* |
| * Stack frames below this one aren't interesting. Don't show them |
| * if we're printing for %current. |
| */ |
| if (!sp && task == current) |
| sp = get_stack_pointer(current, NULL); |
| |
| show_trace_log_lvl(task, NULL, sp, loglvl); |
| } |
| |
| void show_stack_regs(struct pt_regs *regs) |
| { |
| show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); |
| } |
| |
| static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED; |
| static int die_owner = -1; |
| static unsigned int die_nest_count; |
| |
| unsigned long oops_begin(void) |
| { |
| int cpu; |
| unsigned long flags; |
| |
| oops_enter(); |
| |
| /* racy, but better than risking deadlock. */ |
| raw_local_irq_save(flags); |
| cpu = smp_processor_id(); |
| if (!arch_spin_trylock(&die_lock)) { |
| if (cpu == die_owner) |
| /* nested oops. should stop eventually */; |
| else |
| arch_spin_lock(&die_lock); |
| } |
| die_nest_count++; |
| die_owner = cpu; |
| console_verbose(); |
| bust_spinlocks(1); |
| return flags; |
| } |
| NOKPROBE_SYMBOL(oops_begin); |
| |
| void __noreturn rewind_stack_and_make_dead(int signr); |
| |
| void oops_end(unsigned long flags, struct pt_regs *regs, int signr) |
| { |
| if (regs && kexec_should_crash(current)) |
| crash_kexec(regs); |
| |
| bust_spinlocks(0); |
| die_owner = -1; |
| add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| die_nest_count--; |
| if (!die_nest_count) |
| /* Nest count reaches zero, release the lock. */ |
| arch_spin_unlock(&die_lock); |
| raw_local_irq_restore(flags); |
| oops_exit(); |
| |
| /* Executive summary in case the oops scrolled away */ |
| __show_regs(&exec_summary_regs, SHOW_REGS_ALL, KERN_DEFAULT); |
| |
| if (!signr) |
| return; |
| if (in_interrupt()) |
| panic("Fatal exception in interrupt"); |
| if (panic_on_oops) |
| panic("Fatal exception"); |
| |
| /* |
| * We're not going to return, but we might be on an IST stack or |
| * have very little stack space left. Rewind the stack and kill |
| * the task. |
| * Before we rewind the stack, we have to tell KASAN that we're going to |
| * reuse the task stack and that existing poisons are invalid. |
| */ |
| kasan_unpoison_task_stack(current); |
| rewind_stack_and_make_dead(signr); |
| } |
| NOKPROBE_SYMBOL(oops_end); |
| |
| static void __die_header(const char *str, struct pt_regs *regs, long err) |
| { |
| const char *pr = ""; |
| |
| /* Save the regs of the first oops for the executive summary later. */ |
| if (!die_counter) |
| exec_summary_regs = *regs; |
| |
| if (IS_ENABLED(CONFIG_PREEMPTION)) |
| pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT"; |
| |
| printk(KERN_DEFAULT |
| "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter, |
| pr, |
| IS_ENABLED(CONFIG_SMP) ? " SMP" : "", |
| debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "", |
| IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "", |
| IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ? |
| (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : ""); |
| } |
| NOKPROBE_SYMBOL(__die_header); |
| |
| static int __die_body(const char *str, struct pt_regs *regs, long err) |
| { |
| show_regs(regs); |
| print_modules(); |
| |
| if (notify_die(DIE_OOPS, str, regs, err, |
| current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP) |
| return 1; |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(__die_body); |
| |
| int __die(const char *str, struct pt_regs *regs, long err) |
| { |
| __die_header(str, regs, err); |
| return __die_body(str, regs, err); |
| } |
| NOKPROBE_SYMBOL(__die); |
| |
| /* |
| * This is gone through when something in the kernel has done something bad |
| * and is about to be terminated: |
| */ |
| void die(const char *str, struct pt_regs *regs, long err) |
| { |
| unsigned long flags = oops_begin(); |
| int sig = SIGSEGV; |
| |
| if (__die(str, regs, err)) |
| sig = 0; |
| oops_end(flags, regs, sig); |
| } |
| |
| void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr) |
| { |
| unsigned long flags = oops_begin(); |
| int sig = SIGSEGV; |
| |
| __die_header(str, regs, err); |
| if (gp_addr) |
| kasan_non_canonical_hook(gp_addr); |
| if (__die_body(str, regs, err)) |
| sig = 0; |
| oops_end(flags, regs, sig); |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| enum show_regs_mode print_kernel_regs; |
| |
| show_regs_print_info(KERN_DEFAULT); |
| |
| print_kernel_regs = user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL; |
| __show_regs(regs, print_kernel_regs, KERN_DEFAULT); |
| |
| /* |
| * When in-kernel, we also print out the stack at the time of the fault.. |
| */ |
| if (!user_mode(regs)) |
| show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT); |
| } |