| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * prepare to run common code |
| * |
| * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE |
| */ |
| |
| #define DISABLE_BRANCH_PROFILING |
| |
| /* cpu_feature_enabled() cannot be used this early */ |
| #define USE_EARLY_PGTABLE_L5 |
| |
| #include <linux/init.h> |
| #include <linux/linkage.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/percpu.h> |
| #include <linux/start_kernel.h> |
| #include <linux/io.h> |
| #include <linux/memblock.h> |
| #include <linux/cc_platform.h> |
| #include <linux/pgtable.h> |
| |
| #include <asm/processor.h> |
| #include <asm/proto.h> |
| #include <asm/smp.h> |
| #include <asm/setup.h> |
| #include <asm/desc.h> |
| #include <asm/tlbflush.h> |
| #include <asm/sections.h> |
| #include <asm/kdebug.h> |
| #include <asm/e820/api.h> |
| #include <asm/bios_ebda.h> |
| #include <asm/bootparam_utils.h> |
| #include <asm/microcode.h> |
| #include <asm/kasan.h> |
| #include <asm/fixmap.h> |
| #include <asm/realmode.h> |
| #include <asm/extable.h> |
| #include <asm/trapnr.h> |
| #include <asm/sev.h> |
| #include <asm/tdx.h> |
| |
| /* |
| * Manage page tables very early on. |
| */ |
| extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD]; |
| static unsigned int __initdata next_early_pgt; |
| pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX); |
| |
| #ifdef CONFIG_X86_5LEVEL |
| unsigned int __pgtable_l5_enabled __ro_after_init; |
| unsigned int pgdir_shift __ro_after_init = 39; |
| EXPORT_SYMBOL(pgdir_shift); |
| unsigned int ptrs_per_p4d __ro_after_init = 1; |
| EXPORT_SYMBOL(ptrs_per_p4d); |
| #endif |
| |
| #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT |
| unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4; |
| EXPORT_SYMBOL(page_offset_base); |
| unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4; |
| EXPORT_SYMBOL(vmalloc_base); |
| unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4; |
| EXPORT_SYMBOL(vmemmap_base); |
| #endif |
| |
| /* |
| * GDT used on the boot CPU before switching to virtual addresses. |
| */ |
| static struct desc_struct startup_gdt[GDT_ENTRIES] = { |
| [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff), |
| [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff), |
| [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff), |
| }; |
| |
| /* |
| * Address needs to be set at runtime because it references the startup_gdt |
| * while the kernel still uses a direct mapping. |
| */ |
| static struct desc_ptr startup_gdt_descr = { |
| .size = sizeof(startup_gdt), |
| .address = 0, |
| }; |
| |
| #define __head __section(".head.text") |
| |
| static void __head *fixup_pointer(void *ptr, unsigned long physaddr) |
| { |
| return ptr - (void *)_text + (void *)physaddr; |
| } |
| |
| static unsigned long __head *fixup_long(void *ptr, unsigned long physaddr) |
| { |
| return fixup_pointer(ptr, physaddr); |
| } |
| |
| #ifdef CONFIG_X86_5LEVEL |
| static unsigned int __head *fixup_int(void *ptr, unsigned long physaddr) |
| { |
| return fixup_pointer(ptr, physaddr); |
| } |
| |
| static bool __head check_la57_support(unsigned long physaddr) |
| { |
| /* |
| * 5-level paging is detected and enabled at kernel decompression |
| * stage. Only check if it has been enabled there. |
| */ |
| if (!(native_read_cr4() & X86_CR4_LA57)) |
| return false; |
| |
| *fixup_int(&__pgtable_l5_enabled, physaddr) = 1; |
| *fixup_int(&pgdir_shift, physaddr) = 48; |
| *fixup_int(&ptrs_per_p4d, physaddr) = 512; |
| *fixup_long(&page_offset_base, physaddr) = __PAGE_OFFSET_BASE_L5; |
| *fixup_long(&vmalloc_base, physaddr) = __VMALLOC_BASE_L5; |
| *fixup_long(&vmemmap_base, physaddr) = __VMEMMAP_BASE_L5; |
| |
| return true; |
| } |
| #else |
| static bool __head check_la57_support(unsigned long physaddr) |
| { |
| return false; |
| } |
| #endif |
| |
| static unsigned long __head sme_postprocess_startup(struct boot_params *bp, pmdval_t *pmd) |
| { |
| unsigned long vaddr, vaddr_end; |
| int i; |
| |
| /* Encrypt the kernel and related (if SME is active) */ |
| sme_encrypt_kernel(bp); |
| |
| /* |
| * Clear the memory encryption mask from the .bss..decrypted section. |
| * The bss section will be memset to zero later in the initialization so |
| * there is no need to zero it after changing the memory encryption |
| * attribute. |
| */ |
| if (sme_get_me_mask()) { |
| vaddr = (unsigned long)__start_bss_decrypted; |
| vaddr_end = (unsigned long)__end_bss_decrypted; |
| |
| for (; vaddr < vaddr_end; vaddr += PMD_SIZE) { |
| /* |
| * On SNP, transition the page to shared in the RMP table so that |
| * it is consistent with the page table attribute change. |
| * |
| * __start_bss_decrypted has a virtual address in the high range |
| * mapping (kernel .text). PVALIDATE, by way of |
| * early_snp_set_memory_shared(), requires a valid virtual |
| * address but the kernel is currently running off of the identity |
| * mapping so use __pa() to get a *currently* valid virtual address. |
| */ |
| early_snp_set_memory_shared(__pa(vaddr), __pa(vaddr), PTRS_PER_PMD); |
| |
| i = pmd_index(vaddr); |
| pmd[i] -= sme_get_me_mask(); |
| } |
| } |
| |
| /* |
| * Return the SME encryption mask (if SME is active) to be used as a |
| * modifier for the initial pgdir entry programmed into CR3. |
| */ |
| return sme_get_me_mask(); |
| } |
| |
| /* Code in __startup_64() can be relocated during execution, but the compiler |
| * doesn't have to generate PC-relative relocations when accessing globals from |
| * that function. Clang actually does not generate them, which leads to |
| * boot-time crashes. To work around this problem, every global pointer must |
| * be adjusted using fixup_pointer(). |
| */ |
| unsigned long __head __startup_64(unsigned long physaddr, |
| struct boot_params *bp) |
| { |
| unsigned long load_delta, *p; |
| unsigned long pgtable_flags; |
| pgdval_t *pgd; |
| p4dval_t *p4d; |
| pudval_t *pud; |
| pmdval_t *pmd, pmd_entry; |
| pteval_t *mask_ptr; |
| bool la57; |
| int i; |
| unsigned int *next_pgt_ptr; |
| |
| la57 = check_la57_support(physaddr); |
| |
| /* Is the address too large? */ |
| if (physaddr >> MAX_PHYSMEM_BITS) |
| for (;;); |
| |
| /* |
| * Compute the delta between the address I am compiled to run at |
| * and the address I am actually running at. |
| */ |
| load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map); |
| |
| /* Is the address not 2M aligned? */ |
| if (load_delta & ~PMD_MASK) |
| for (;;); |
| |
| /* Include the SME encryption mask in the fixup value */ |
| load_delta += sme_get_me_mask(); |
| |
| /* Fixup the physical addresses in the page table */ |
| |
| pgd = fixup_pointer(&early_top_pgt, physaddr); |
| p = pgd + pgd_index(__START_KERNEL_map); |
| if (la57) |
| *p = (unsigned long)level4_kernel_pgt; |
| else |
| *p = (unsigned long)level3_kernel_pgt; |
| *p += _PAGE_TABLE_NOENC - __START_KERNEL_map + load_delta; |
| |
| if (la57) { |
| p4d = fixup_pointer(&level4_kernel_pgt, physaddr); |
| p4d[511] += load_delta; |
| } |
| |
| pud = fixup_pointer(&level3_kernel_pgt, physaddr); |
| pud[510] += load_delta; |
| pud[511] += load_delta; |
| |
| pmd = fixup_pointer(level2_fixmap_pgt, physaddr); |
| for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--) |
| pmd[i] += load_delta; |
| |
| /* |
| * Set up the identity mapping for the switchover. These |
| * entries should *NOT* have the global bit set! This also |
| * creates a bunch of nonsense entries but that is fine -- |
| * it avoids problems around wraparound. |
| */ |
| |
| next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr); |
| pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr); |
| pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr); |
| |
| pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask(); |
| |
| if (la57) { |
| p4d = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], |
| physaddr); |
| |
| i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD; |
| pgd[i + 0] = (pgdval_t)p4d + pgtable_flags; |
| pgd[i + 1] = (pgdval_t)p4d + pgtable_flags; |
| |
| i = physaddr >> P4D_SHIFT; |
| p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags; |
| p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags; |
| } else { |
| i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD; |
| pgd[i + 0] = (pgdval_t)pud + pgtable_flags; |
| pgd[i + 1] = (pgdval_t)pud + pgtable_flags; |
| } |
| |
| i = physaddr >> PUD_SHIFT; |
| pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags; |
| pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags; |
| |
| pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL; |
| /* Filter out unsupported __PAGE_KERNEL_* bits: */ |
| mask_ptr = fixup_pointer(&__supported_pte_mask, physaddr); |
| pmd_entry &= *mask_ptr; |
| pmd_entry += sme_get_me_mask(); |
| pmd_entry += physaddr; |
| |
| for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) { |
| int idx = i + (physaddr >> PMD_SHIFT); |
| |
| pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE; |
| } |
| |
| /* |
| * Fixup the kernel text+data virtual addresses. Note that |
| * we might write invalid pmds, when the kernel is relocated |
| * cleanup_highmap() fixes this up along with the mappings |
| * beyond _end. |
| * |
| * Only the region occupied by the kernel image has so far |
| * been checked against the table of usable memory regions |
| * provided by the firmware, so invalidate pages outside that |
| * region. A page table entry that maps to a reserved area of |
| * memory would allow processor speculation into that area, |
| * and on some hardware (particularly the UV platform) even |
| * speculative access to some reserved areas is caught as an |
| * error, causing the BIOS to halt the system. |
| */ |
| |
| pmd = fixup_pointer(level2_kernel_pgt, physaddr); |
| |
| /* invalidate pages before the kernel image */ |
| for (i = 0; i < pmd_index((unsigned long)_text); i++) |
| pmd[i] &= ~_PAGE_PRESENT; |
| |
| /* fixup pages that are part of the kernel image */ |
| for (; i <= pmd_index((unsigned long)_end); i++) |
| if (pmd[i] & _PAGE_PRESENT) |
| pmd[i] += load_delta; |
| |
| /* invalidate pages after the kernel image */ |
| for (; i < PTRS_PER_PMD; i++) |
| pmd[i] &= ~_PAGE_PRESENT; |
| |
| /* |
| * Fixup phys_base - remove the memory encryption mask to obtain |
| * the true physical address. |
| */ |
| *fixup_long(&phys_base, physaddr) += load_delta - sme_get_me_mask(); |
| |
| return sme_postprocess_startup(bp, pmd); |
| } |
| |
| /* Wipe all early page tables except for the kernel symbol map */ |
| static void __init reset_early_page_tables(void) |
| { |
| memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1)); |
| next_early_pgt = 0; |
| write_cr3(__sme_pa_nodebug(early_top_pgt)); |
| } |
| |
| /* Create a new PMD entry */ |
| bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd) |
| { |
| unsigned long physaddr = address - __PAGE_OFFSET; |
| pgdval_t pgd, *pgd_p; |
| p4dval_t p4d, *p4d_p; |
| pudval_t pud, *pud_p; |
| pmdval_t *pmd_p; |
| |
| /* Invalid address or early pgt is done ? */ |
| if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt)) |
| return false; |
| |
| again: |
| pgd_p = &early_top_pgt[pgd_index(address)].pgd; |
| pgd = *pgd_p; |
| |
| /* |
| * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is |
| * critical -- __PAGE_OFFSET would point us back into the dynamic |
| * range and we might end up looping forever... |
| */ |
| if (!pgtable_l5_enabled()) |
| p4d_p = pgd_p; |
| else if (pgd) |
| p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); |
| else { |
| if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { |
| reset_early_page_tables(); |
| goto again; |
| } |
| |
| p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++]; |
| memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D); |
| *pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; |
| } |
| p4d_p += p4d_index(address); |
| p4d = *p4d_p; |
| |
| if (p4d) |
| pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); |
| else { |
| if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { |
| reset_early_page_tables(); |
| goto again; |
| } |
| |
| pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++]; |
| memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); |
| *p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; |
| } |
| pud_p += pud_index(address); |
| pud = *pud_p; |
| |
| if (pud) |
| pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base); |
| else { |
| if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) { |
| reset_early_page_tables(); |
| goto again; |
| } |
| |
| pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++]; |
| memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD); |
| *pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE; |
| } |
| pmd_p[pmd_index(address)] = pmd; |
| |
| return true; |
| } |
| |
| static bool __init early_make_pgtable(unsigned long address) |
| { |
| unsigned long physaddr = address - __PAGE_OFFSET; |
| pmdval_t pmd; |
| |
| pmd = (physaddr & PMD_MASK) + early_pmd_flags; |
| |
| return __early_make_pgtable(address, pmd); |
| } |
| |
| void __init do_early_exception(struct pt_regs *regs, int trapnr) |
| { |
| if (trapnr == X86_TRAP_PF && |
| early_make_pgtable(native_read_cr2())) |
| return; |
| |
| if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) && |
| trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs)) |
| return; |
| |
| if (trapnr == X86_TRAP_VE && tdx_early_handle_ve(regs)) |
| return; |
| |
| early_fixup_exception(regs, trapnr); |
| } |
| |
| /* Don't add a printk in there. printk relies on the PDA which is not initialized |
| yet. */ |
| void __init clear_bss(void) |
| { |
| memset(__bss_start, 0, |
| (unsigned long) __bss_stop - (unsigned long) __bss_start); |
| memset(__brk_base, 0, |
| (unsigned long) __brk_limit - (unsigned long) __brk_base); |
| } |
| |
| static unsigned long get_cmd_line_ptr(void) |
| { |
| unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr; |
| |
| cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32; |
| |
| return cmd_line_ptr; |
| } |
| |
| static void __init copy_bootdata(char *real_mode_data) |
| { |
| char * command_line; |
| unsigned long cmd_line_ptr; |
| |
| /* |
| * If SME is active, this will create decrypted mappings of the |
| * boot data in advance of the copy operations. |
| */ |
| sme_map_bootdata(real_mode_data); |
| |
| memcpy(&boot_params, real_mode_data, sizeof(boot_params)); |
| sanitize_boot_params(&boot_params); |
| cmd_line_ptr = get_cmd_line_ptr(); |
| if (cmd_line_ptr) { |
| command_line = __va(cmd_line_ptr); |
| memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE); |
| } |
| |
| /* |
| * The old boot data is no longer needed and won't be reserved, |
| * freeing up that memory for use by the system. If SME is active, |
| * we need to remove the mappings that were created so that the |
| * memory doesn't remain mapped as decrypted. |
| */ |
| sme_unmap_bootdata(real_mode_data); |
| } |
| |
| asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data) |
| { |
| /* |
| * Build-time sanity checks on the kernel image and module |
| * area mappings. (these are purely build-time and produce no code) |
| */ |
| BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map); |
| BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE); |
| BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE); |
| BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0); |
| BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0); |
| BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL)); |
| MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) == |
| (__START_KERNEL & PGDIR_MASK))); |
| BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END); |
| |
| cr4_init_shadow(); |
| |
| /* Kill off the identity-map trampoline */ |
| reset_early_page_tables(); |
| |
| clear_bss(); |
| |
| /* |
| * This needs to happen *before* kasan_early_init() because latter maps stuff |
| * into that page. |
| */ |
| clear_page(init_top_pgt); |
| |
| /* |
| * SME support may update early_pmd_flags to include the memory |
| * encryption mask, so it needs to be called before anything |
| * that may generate a page fault. |
| */ |
| sme_early_init(); |
| |
| kasan_early_init(); |
| |
| /* |
| * Flush global TLB entries which could be left over from the trampoline page |
| * table. |
| * |
| * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs |
| * instrument native_write_cr4() so KASAN must be initialized for that |
| * instrumentation to work. |
| */ |
| __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4)); |
| |
| idt_setup_early_handler(); |
| |
| /* Needed before cc_platform_has() can be used for TDX */ |
| tdx_early_init(); |
| |
| copy_bootdata(__va(real_mode_data)); |
| |
| /* |
| * Load microcode early on BSP. |
| */ |
| load_ucode_bsp(); |
| |
| /* set init_top_pgt kernel high mapping*/ |
| init_top_pgt[511] = early_top_pgt[511]; |
| |
| x86_64_start_reservations(real_mode_data); |
| } |
| |
| void __init x86_64_start_reservations(char *real_mode_data) |
| { |
| /* version is always not zero if it is copied */ |
| if (!boot_params.hdr.version) |
| copy_bootdata(__va(real_mode_data)); |
| |
| x86_early_init_platform_quirks(); |
| |
| switch (boot_params.hdr.hardware_subarch) { |
| case X86_SUBARCH_INTEL_MID: |
| x86_intel_mid_early_setup(); |
| break; |
| default: |
| break; |
| } |
| |
| start_kernel(); |
| } |
| |
| /* |
| * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is |
| * used until the idt_table takes over. On the boot CPU this happens in |
| * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases |
| * this happens in the functions called from head_64.S. |
| * |
| * The idt_table can't be used that early because all the code modifying it is |
| * in idt.c and can be instrumented by tracing or KASAN, which both don't work |
| * during early CPU bringup. Also the idt_table has the runtime vectors |
| * configured which require certain CPU state to be setup already (like TSS), |
| * which also hasn't happened yet in early CPU bringup. |
| */ |
| static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data; |
| |
| static struct desc_ptr bringup_idt_descr = { |
| .size = (NUM_EXCEPTION_VECTORS * sizeof(gate_desc)) - 1, |
| .address = 0, /* Set at runtime */ |
| }; |
| |
| static void set_bringup_idt_handler(gate_desc *idt, int n, void *handler) |
| { |
| #ifdef CONFIG_AMD_MEM_ENCRYPT |
| struct idt_data data; |
| gate_desc desc; |
| |
| init_idt_data(&data, n, handler); |
| idt_init_desc(&desc, &data); |
| native_write_idt_entry(idt, n, &desc); |
| #endif |
| } |
| |
| /* This runs while still in the direct mapping */ |
| static void startup_64_load_idt(unsigned long physbase) |
| { |
| struct desc_ptr *desc = fixup_pointer(&bringup_idt_descr, physbase); |
| gate_desc *idt = fixup_pointer(bringup_idt_table, physbase); |
| |
| |
| if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) { |
| void *handler; |
| |
| /* VMM Communication Exception */ |
| handler = fixup_pointer(vc_no_ghcb, physbase); |
| set_bringup_idt_handler(idt, X86_TRAP_VC, handler); |
| } |
| |
| desc->address = (unsigned long)idt; |
| native_load_idt(desc); |
| } |
| |
| /* This is used when running on kernel addresses */ |
| void early_setup_idt(void) |
| { |
| /* VMM Communication Exception */ |
| if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) { |
| setup_ghcb(); |
| set_bringup_idt_handler(bringup_idt_table, X86_TRAP_VC, vc_boot_ghcb); |
| } |
| |
| bringup_idt_descr.address = (unsigned long)bringup_idt_table; |
| native_load_idt(&bringup_idt_descr); |
| } |
| |
| /* |
| * Setup boot CPU state needed before kernel switches to virtual addresses. |
| */ |
| void __head startup_64_setup_env(unsigned long physbase) |
| { |
| /* Load GDT */ |
| startup_gdt_descr.address = (unsigned long)fixup_pointer(startup_gdt, physbase); |
| native_load_gdt(&startup_gdt_descr); |
| |
| /* New GDT is live - reload data segment registers */ |
| asm volatile("movl %%eax, %%ds\n" |
| "movl %%eax, %%ss\n" |
| "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory"); |
| |
| startup_64_load_idt(physbase); |
| } |