| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Kernel Probes (KProbes) |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * |
| * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| * Probes initial implementation ( includes contributions from |
| * Rusty Russell). |
| * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| * interface to access function arguments. |
| * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi |
| * <prasanna@in.ibm.com> adapted for x86_64 from i386. |
| * 2005-Mar Roland McGrath <roland@redhat.com> |
| * Fixed to handle %rip-relative addressing mode correctly. |
| * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston |
| * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi |
| * <prasanna@in.ibm.com> added function-return probes. |
| * 2005-May Rusty Lynch <rusty.lynch@intel.com> |
| * Added function return probes functionality |
| * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added |
| * kprobe-booster and kretprobe-booster for i386. |
| * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster |
| * and kretprobe-booster for x86-64 |
| * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven |
| * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> |
| * unified x86 kprobes code. |
| */ |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/hardirq.h> |
| #include <linux/preempt.h> |
| #include <linux/sched/debug.h> |
| #include <linux/perf_event.h> |
| #include <linux/extable.h> |
| #include <linux/kdebug.h> |
| #include <linux/kallsyms.h> |
| #include <linux/kgdb.h> |
| #include <linux/ftrace.h> |
| #include <linux/kasan.h> |
| #include <linux/moduleloader.h> |
| #include <linux/objtool.h> |
| #include <linux/vmalloc.h> |
| #include <linux/pgtable.h> |
| #include <linux/set_memory.h> |
| |
| #include <asm/text-patching.h> |
| #include <asm/cacheflush.h> |
| #include <asm/desc.h> |
| #include <linux/uaccess.h> |
| #include <asm/alternative.h> |
| #include <asm/insn.h> |
| #include <asm/debugreg.h> |
| #include <asm/ibt.h> |
| |
| #include "common.h" |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ |
| (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ |
| (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ |
| (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ |
| (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ |
| << (row % 32)) |
| /* |
| * Undefined/reserved opcodes, conditional jump, Opcode Extension |
| * Groups, and some special opcodes can not boost. |
| * This is non-const and volatile to keep gcc from statically |
| * optimizing it out, as variable_test_bit makes gcc think only |
| * *(unsigned long*) is used. |
| */ |
| static volatile u32 twobyte_is_boostable[256 / 32] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ---------------------------------------------- */ |
| W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ |
| W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ |
| W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ |
| W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ |
| W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ |
| W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ |
| W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ |
| W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ |
| W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ |
| W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ |
| W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ |
| W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ |
| W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ |
| W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ |
| /* ----------------------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| #undef W |
| |
| struct kretprobe_blackpoint kretprobe_blacklist[] = { |
| {"__switch_to", }, /* This function switches only current task, but |
| doesn't switch kernel stack.*/ |
| {NULL, NULL} /* Terminator */ |
| }; |
| |
| const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); |
| |
| static nokprobe_inline void |
| __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) |
| { |
| struct __arch_relative_insn { |
| u8 op; |
| s32 raddr; |
| } __packed *insn; |
| |
| insn = (struct __arch_relative_insn *)dest; |
| insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); |
| insn->op = op; |
| } |
| |
| /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ |
| void synthesize_reljump(void *dest, void *from, void *to) |
| { |
| __synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE); |
| } |
| NOKPROBE_SYMBOL(synthesize_reljump); |
| |
| /* Insert a call instruction at address 'from', which calls address 'to'.*/ |
| void synthesize_relcall(void *dest, void *from, void *to) |
| { |
| __synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE); |
| } |
| NOKPROBE_SYMBOL(synthesize_relcall); |
| |
| /* |
| * Returns non-zero if INSN is boostable. |
| * RIP relative instructions are adjusted at copying time in 64 bits mode |
| */ |
| int can_boost(struct insn *insn, void *addr) |
| { |
| kprobe_opcode_t opcode; |
| insn_byte_t prefix; |
| int i; |
| |
| if (search_exception_tables((unsigned long)addr)) |
| return 0; /* Page fault may occur on this address. */ |
| |
| /* 2nd-byte opcode */ |
| if (insn->opcode.nbytes == 2) |
| return test_bit(insn->opcode.bytes[1], |
| (unsigned long *)twobyte_is_boostable); |
| |
| if (insn->opcode.nbytes != 1) |
| return 0; |
| |
| for_each_insn_prefix(insn, i, prefix) { |
| insn_attr_t attr; |
| |
| attr = inat_get_opcode_attribute(prefix); |
| /* Can't boost Address-size override prefix and CS override prefix */ |
| if (prefix == 0x2e || inat_is_address_size_prefix(attr)) |
| return 0; |
| } |
| |
| opcode = insn->opcode.bytes[0]; |
| |
| switch (opcode) { |
| case 0x62: /* bound */ |
| case 0x70 ... 0x7f: /* Conditional jumps */ |
| case 0x9a: /* Call far */ |
| case 0xc0 ... 0xc1: /* Grp2 */ |
| case 0xcc ... 0xce: /* software exceptions */ |
| case 0xd0 ... 0xd3: /* Grp2 */ |
| case 0xd6: /* (UD) */ |
| case 0xd8 ... 0xdf: /* ESC */ |
| case 0xe0 ... 0xe3: /* LOOP*, JCXZ */ |
| case 0xe8 ... 0xe9: /* near Call, JMP */ |
| case 0xeb: /* Short JMP */ |
| case 0xf0 ... 0xf4: /* LOCK/REP, HLT */ |
| case 0xf6 ... 0xf7: /* Grp3 */ |
| case 0xfe: /* Grp4 */ |
| /* ... are not boostable */ |
| return 0; |
| case 0xff: /* Grp5 */ |
| /* Only indirect jmp is boostable */ |
| return X86_MODRM_REG(insn->modrm.bytes[0]) == 4; |
| default: |
| return 1; |
| } |
| } |
| |
| static unsigned long |
| __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) |
| { |
| struct kprobe *kp; |
| bool faddr; |
| |
| kp = get_kprobe((void *)addr); |
| faddr = ftrace_location(addr) == addr; |
| /* |
| * Use the current code if it is not modified by Kprobe |
| * and it cannot be modified by ftrace. |
| */ |
| if (!kp && !faddr) |
| return addr; |
| |
| /* |
| * Basically, kp->ainsn.insn has an original instruction. |
| * However, RIP-relative instruction can not do single-stepping |
| * at different place, __copy_instruction() tweaks the displacement of |
| * that instruction. In that case, we can't recover the instruction |
| * from the kp->ainsn.insn. |
| * |
| * On the other hand, in case on normal Kprobe, kp->opcode has a copy |
| * of the first byte of the probed instruction, which is overwritten |
| * by int3. And the instruction at kp->addr is not modified by kprobes |
| * except for the first byte, we can recover the original instruction |
| * from it and kp->opcode. |
| * |
| * In case of Kprobes using ftrace, we do not have a copy of |
| * the original instruction. In fact, the ftrace location might |
| * be modified at anytime and even could be in an inconsistent state. |
| * Fortunately, we know that the original code is the ideal 5-byte |
| * long NOP. |
| */ |
| if (copy_from_kernel_nofault(buf, (void *)addr, |
| MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) |
| return 0UL; |
| |
| if (faddr) |
| memcpy(buf, x86_nops[5], 5); |
| else |
| buf[0] = kp->opcode; |
| return (unsigned long)buf; |
| } |
| |
| /* |
| * Recover the probed instruction at addr for further analysis. |
| * Caller must lock kprobes by kprobe_mutex, or disable preemption |
| * for preventing to release referencing kprobes. |
| * Returns zero if the instruction can not get recovered (or access failed). |
| */ |
| unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) |
| { |
| unsigned long __addr; |
| |
| __addr = __recover_optprobed_insn(buf, addr); |
| if (__addr != addr) |
| return __addr; |
| |
| return __recover_probed_insn(buf, addr); |
| } |
| |
| /* Check if paddr is at an instruction boundary */ |
| static int can_probe(unsigned long paddr) |
| { |
| unsigned long addr, __addr, offset = 0; |
| struct insn insn; |
| kprobe_opcode_t buf[MAX_INSN_SIZE]; |
| |
| if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) |
| return 0; |
| |
| /* Decode instructions */ |
| addr = paddr - offset; |
| while (addr < paddr) { |
| int ret; |
| |
| /* |
| * Check if the instruction has been modified by another |
| * kprobe, in which case we replace the breakpoint by the |
| * original instruction in our buffer. |
| * Also, jump optimization will change the breakpoint to |
| * relative-jump. Since the relative-jump itself is |
| * normally used, we just go through if there is no kprobe. |
| */ |
| __addr = recover_probed_instruction(buf, addr); |
| if (!__addr) |
| return 0; |
| |
| ret = insn_decode_kernel(&insn, (void *)__addr); |
| if (ret < 0) |
| return 0; |
| |
| #ifdef CONFIG_KGDB |
| /* |
| * If there is a dynamically installed kgdb sw breakpoint, |
| * this function should not be probed. |
| */ |
| if (insn.opcode.bytes[0] == INT3_INSN_OPCODE && |
| kgdb_has_hit_break(addr)) |
| return 0; |
| #endif |
| addr += insn.length; |
| } |
| |
| return (addr == paddr); |
| } |
| |
| /* If x86 supports IBT (ENDBR) it must be skipped. */ |
| kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset, |
| bool *on_func_entry) |
| { |
| if (is_endbr(*(u32 *)addr)) { |
| *on_func_entry = !offset || offset == 4; |
| if (*on_func_entry) |
| offset = 4; |
| |
| } else { |
| *on_func_entry = !offset; |
| } |
| |
| return (kprobe_opcode_t *)(addr + offset); |
| } |
| |
| /* |
| * Copy an instruction with recovering modified instruction by kprobes |
| * and adjust the displacement if the instruction uses the %rip-relative |
| * addressing mode. Note that since @real will be the final place of copied |
| * instruction, displacement must be adjust by @real, not @dest. |
| * This returns the length of copied instruction, or 0 if it has an error. |
| */ |
| int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) |
| { |
| kprobe_opcode_t buf[MAX_INSN_SIZE]; |
| unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src); |
| int ret; |
| |
| if (!recovered_insn || !insn) |
| return 0; |
| |
| /* This can access kernel text if given address is not recovered */ |
| if (copy_from_kernel_nofault(dest, (void *)recovered_insn, |
| MAX_INSN_SIZE)) |
| return 0; |
| |
| ret = insn_decode_kernel(insn, dest); |
| if (ret < 0) |
| return 0; |
| |
| /* We can not probe force emulate prefixed instruction */ |
| if (insn_has_emulate_prefix(insn)) |
| return 0; |
| |
| /* Another subsystem puts a breakpoint, failed to recover */ |
| if (insn->opcode.bytes[0] == INT3_INSN_OPCODE) |
| return 0; |
| |
| /* We should not singlestep on the exception masking instructions */ |
| if (insn_masking_exception(insn)) |
| return 0; |
| |
| #ifdef CONFIG_X86_64 |
| /* Only x86_64 has RIP relative instructions */ |
| if (insn_rip_relative(insn)) { |
| s64 newdisp; |
| u8 *disp; |
| /* |
| * The copied instruction uses the %rip-relative addressing |
| * mode. Adjust the displacement for the difference between |
| * the original location of this instruction and the location |
| * of the copy that will actually be run. The tricky bit here |
| * is making sure that the sign extension happens correctly in |
| * this calculation, since we need a signed 32-bit result to |
| * be sign-extended to 64 bits when it's added to the %rip |
| * value and yield the same 64-bit result that the sign- |
| * extension of the original signed 32-bit displacement would |
| * have given. |
| */ |
| newdisp = (u8 *) src + (s64) insn->displacement.value |
| - (u8 *) real; |
| if ((s64) (s32) newdisp != newdisp) { |
| pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); |
| return 0; |
| } |
| disp = (u8 *) dest + insn_offset_displacement(insn); |
| *(s32 *) disp = (s32) newdisp; |
| } |
| #endif |
| return insn->length; |
| } |
| |
| /* Prepare reljump or int3 right after instruction */ |
| static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p, |
| struct insn *insn) |
| { |
| int len = insn->length; |
| |
| if (!IS_ENABLED(CONFIG_PREEMPTION) && |
| !p->post_handler && can_boost(insn, p->addr) && |
| MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) { |
| /* |
| * These instructions can be executed directly if it |
| * jumps back to correct address. |
| */ |
| synthesize_reljump(buf + len, p->ainsn.insn + len, |
| p->addr + insn->length); |
| len += JMP32_INSN_SIZE; |
| p->ainsn.boostable = 1; |
| } else { |
| /* Otherwise, put an int3 for trapping singlestep */ |
| if (MAX_INSN_SIZE - len < INT3_INSN_SIZE) |
| return -ENOSPC; |
| |
| buf[len] = INT3_INSN_OPCODE; |
| len += INT3_INSN_SIZE; |
| } |
| |
| return len; |
| } |
| |
| /* Make page to RO mode when allocate it */ |
| void *alloc_insn_page(void) |
| { |
| void *page; |
| |
| page = module_alloc(PAGE_SIZE); |
| if (!page) |
| return NULL; |
| |
| /* |
| * TODO: Once additional kernel code protection mechanisms are set, ensure |
| * that the page was not maliciously altered and it is still zeroed. |
| */ |
| set_memory_rox((unsigned long)page, 1); |
| |
| return page; |
| } |
| |
| /* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */ |
| |
| static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs) |
| { |
| switch (p->ainsn.opcode) { |
| case 0xfa: /* cli */ |
| regs->flags &= ~(X86_EFLAGS_IF); |
| break; |
| case 0xfb: /* sti */ |
| regs->flags |= X86_EFLAGS_IF; |
| break; |
| case 0x9c: /* pushf */ |
| int3_emulate_push(regs, regs->flags); |
| break; |
| case 0x9d: /* popf */ |
| regs->flags = int3_emulate_pop(regs); |
| break; |
| } |
| regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; |
| } |
| NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers); |
| |
| static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs) |
| { |
| int3_emulate_ret(regs); |
| } |
| NOKPROBE_SYMBOL(kprobe_emulate_ret); |
| |
| static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size; |
| |
| func += p->ainsn.rel32; |
| int3_emulate_call(regs, func); |
| } |
| NOKPROBE_SYMBOL(kprobe_emulate_call); |
| |
| static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; |
| |
| ip += p->ainsn.rel32; |
| int3_emulate_jmp(regs, ip); |
| } |
| NOKPROBE_SYMBOL(kprobe_emulate_jmp); |
| |
| static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; |
| |
| int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32); |
| } |
| NOKPROBE_SYMBOL(kprobe_emulate_jcc); |
| |
| static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size; |
| bool match; |
| |
| if (p->ainsn.loop.type != 3) { /* LOOP* */ |
| if (p->ainsn.loop.asize == 32) |
| match = ((*(u32 *)®s->cx)--) != 0; |
| #ifdef CONFIG_X86_64 |
| else if (p->ainsn.loop.asize == 64) |
| match = ((*(u64 *)®s->cx)--) != 0; |
| #endif |
| else |
| match = ((*(u16 *)®s->cx)--) != 0; |
| } else { /* JCXZ */ |
| if (p->ainsn.loop.asize == 32) |
| match = *(u32 *)(®s->cx) == 0; |
| #ifdef CONFIG_X86_64 |
| else if (p->ainsn.loop.asize == 64) |
| match = *(u64 *)(®s->cx) == 0; |
| #endif |
| else |
| match = *(u16 *)(®s->cx) == 0; |
| } |
| |
| if (p->ainsn.loop.type == 0) /* LOOPNE */ |
| match = match && !(regs->flags & X86_EFLAGS_ZF); |
| else if (p->ainsn.loop.type == 1) /* LOOPE */ |
| match = match && (regs->flags & X86_EFLAGS_ZF); |
| |
| if (match) |
| ip += p->ainsn.rel32; |
| int3_emulate_jmp(regs, ip); |
| } |
| NOKPROBE_SYMBOL(kprobe_emulate_loop); |
| |
| static const int addrmode_regoffs[] = { |
| offsetof(struct pt_regs, ax), |
| offsetof(struct pt_regs, cx), |
| offsetof(struct pt_regs, dx), |
| offsetof(struct pt_regs, bx), |
| offsetof(struct pt_regs, sp), |
| offsetof(struct pt_regs, bp), |
| offsetof(struct pt_regs, si), |
| offsetof(struct pt_regs, di), |
| #ifdef CONFIG_X86_64 |
| offsetof(struct pt_regs, r8), |
| offsetof(struct pt_regs, r9), |
| offsetof(struct pt_regs, r10), |
| offsetof(struct pt_regs, r11), |
| offsetof(struct pt_regs, r12), |
| offsetof(struct pt_regs, r13), |
| offsetof(struct pt_regs, r14), |
| offsetof(struct pt_regs, r15), |
| #endif |
| }; |
| |
| static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; |
| |
| int3_emulate_call(regs, regs_get_register(regs, offs)); |
| } |
| NOKPROBE_SYMBOL(kprobe_emulate_call_indirect); |
| |
| static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs) |
| { |
| unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg]; |
| |
| int3_emulate_jmp(regs, regs_get_register(regs, offs)); |
| } |
| NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect); |
| |
| static int prepare_emulation(struct kprobe *p, struct insn *insn) |
| { |
| insn_byte_t opcode = insn->opcode.bytes[0]; |
| |
| switch (opcode) { |
| case 0xfa: /* cli */ |
| case 0xfb: /* sti */ |
| case 0x9c: /* pushfl */ |
| case 0x9d: /* popf/popfd */ |
| /* |
| * IF modifiers must be emulated since it will enable interrupt while |
| * int3 single stepping. |
| */ |
| p->ainsn.emulate_op = kprobe_emulate_ifmodifiers; |
| p->ainsn.opcode = opcode; |
| break; |
| case 0xc2: /* ret/lret */ |
| case 0xc3: |
| case 0xca: |
| case 0xcb: |
| p->ainsn.emulate_op = kprobe_emulate_ret; |
| break; |
| case 0x9a: /* far call absolute -- segment is not supported */ |
| case 0xea: /* far jmp absolute -- segment is not supported */ |
| case 0xcc: /* int3 */ |
| case 0xcf: /* iret -- in-kernel IRET is not supported */ |
| return -EOPNOTSUPP; |
| break; |
| case 0xe8: /* near call relative */ |
| p->ainsn.emulate_op = kprobe_emulate_call; |
| if (insn->immediate.nbytes == 2) |
| p->ainsn.rel32 = *(s16 *)&insn->immediate.value; |
| else |
| p->ainsn.rel32 = *(s32 *)&insn->immediate.value; |
| break; |
| case 0xeb: /* short jump relative */ |
| case 0xe9: /* near jump relative */ |
| p->ainsn.emulate_op = kprobe_emulate_jmp; |
| if (insn->immediate.nbytes == 1) |
| p->ainsn.rel32 = *(s8 *)&insn->immediate.value; |
| else if (insn->immediate.nbytes == 2) |
| p->ainsn.rel32 = *(s16 *)&insn->immediate.value; |
| else |
| p->ainsn.rel32 = *(s32 *)&insn->immediate.value; |
| break; |
| case 0x70 ... 0x7f: |
| /* 1 byte conditional jump */ |
| p->ainsn.emulate_op = kprobe_emulate_jcc; |
| p->ainsn.jcc.type = opcode & 0xf; |
| p->ainsn.rel32 = insn->immediate.value; |
| break; |
| case 0x0f: |
| opcode = insn->opcode.bytes[1]; |
| if ((opcode & 0xf0) == 0x80) { |
| /* 2 bytes Conditional Jump */ |
| p->ainsn.emulate_op = kprobe_emulate_jcc; |
| p->ainsn.jcc.type = opcode & 0xf; |
| if (insn->immediate.nbytes == 2) |
| p->ainsn.rel32 = *(s16 *)&insn->immediate.value; |
| else |
| p->ainsn.rel32 = *(s32 *)&insn->immediate.value; |
| } else if (opcode == 0x01 && |
| X86_MODRM_REG(insn->modrm.bytes[0]) == 0 && |
| X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) { |
| /* VM extensions - not supported */ |
| return -EOPNOTSUPP; |
| } |
| break; |
| case 0xe0: /* Loop NZ */ |
| case 0xe1: /* Loop */ |
| case 0xe2: /* Loop */ |
| case 0xe3: /* J*CXZ */ |
| p->ainsn.emulate_op = kprobe_emulate_loop; |
| p->ainsn.loop.type = opcode & 0x3; |
| p->ainsn.loop.asize = insn->addr_bytes * 8; |
| p->ainsn.rel32 = *(s8 *)&insn->immediate.value; |
| break; |
| case 0xff: |
| /* |
| * Since the 0xff is an extended group opcode, the instruction |
| * is determined by the MOD/RM byte. |
| */ |
| opcode = insn->modrm.bytes[0]; |
| switch (X86_MODRM_REG(opcode)) { |
| case 0b010: /* FF /2, call near, absolute indirect */ |
| p->ainsn.emulate_op = kprobe_emulate_call_indirect; |
| break; |
| case 0b100: /* FF /4, jmp near, absolute indirect */ |
| p->ainsn.emulate_op = kprobe_emulate_jmp_indirect; |
| break; |
| case 0b011: /* FF /3, call far, absolute indirect */ |
| case 0b101: /* FF /5, jmp far, absolute indirect */ |
| return -EOPNOTSUPP; |
| } |
| |
| if (!p->ainsn.emulate_op) |
| break; |
| |
| if (insn->addr_bytes != sizeof(unsigned long)) |
| return -EOPNOTSUPP; /* Don't support different size */ |
| if (X86_MODRM_MOD(opcode) != 3) |
| return -EOPNOTSUPP; /* TODO: support memory addressing */ |
| |
| p->ainsn.indirect.reg = X86_MODRM_RM(opcode); |
| #ifdef CONFIG_X86_64 |
| if (X86_REX_B(insn->rex_prefix.value)) |
| p->ainsn.indirect.reg += 8; |
| #endif |
| break; |
| default: |
| break; |
| } |
| p->ainsn.size = insn->length; |
| |
| return 0; |
| } |
| |
| static int arch_copy_kprobe(struct kprobe *p) |
| { |
| struct insn insn; |
| kprobe_opcode_t buf[MAX_INSN_SIZE]; |
| int ret, len; |
| |
| /* Copy an instruction with recovering if other optprobe modifies it.*/ |
| len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); |
| if (!len) |
| return -EINVAL; |
| |
| /* Analyze the opcode and setup emulate functions */ |
| ret = prepare_emulation(p, &insn); |
| if (ret < 0) |
| return ret; |
| |
| /* Add int3 for single-step or booster jmp */ |
| len = prepare_singlestep(buf, p, &insn); |
| if (len < 0) |
| return len; |
| |
| /* Also, displacement change doesn't affect the first byte */ |
| p->opcode = buf[0]; |
| |
| p->ainsn.tp_len = len; |
| perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len); |
| |
| /* OK, write back the instruction(s) into ROX insn buffer */ |
| text_poke(p->ainsn.insn, buf, len); |
| |
| return 0; |
| } |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| int ret; |
| |
| if (alternatives_text_reserved(p->addr, p->addr)) |
| return -EINVAL; |
| |
| if (!can_probe((unsigned long)p->addr)) |
| return -EILSEQ; |
| |
| memset(&p->ainsn, 0, sizeof(p->ainsn)); |
| |
| /* insn: must be on special executable page on x86. */ |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) |
| return -ENOMEM; |
| |
| ret = arch_copy_kprobe(p); |
| if (ret) { |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| |
| return ret; |
| } |
| |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| u8 int3 = INT3_INSN_OPCODE; |
| |
| text_poke(p->addr, &int3, 1); |
| text_poke_sync(); |
| perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1); |
| } |
| |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| u8 int3 = INT3_INSN_OPCODE; |
| |
| perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1); |
| text_poke(p->addr, &p->opcode, 1); |
| text_poke_sync(); |
| } |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| if (p->ainsn.insn) { |
| /* Record the perf event before freeing the slot */ |
| perf_event_text_poke(p->ainsn.insn, p->ainsn.insn, |
| p->ainsn.tp_len, NULL, 0); |
| free_insn_slot(p->ainsn.insn, p->ainsn.boostable); |
| p->ainsn.insn = NULL; |
| } |
| } |
| |
| static nokprobe_inline void |
| save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; |
| kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; |
| } |
| |
| static nokprobe_inline void |
| restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; |
| kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; |
| } |
| |
| static nokprobe_inline void |
| set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, p); |
| kcb->kprobe_saved_flags = kcb->kprobe_old_flags |
| = (regs->flags & X86_EFLAGS_IF); |
| } |
| |
| static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| /* Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| /* This will restore both kcb and current_kprobe */ |
| restore_previous_kprobe(kcb); |
| } else { |
| /* |
| * Always update the kcb status because |
| * reset_curent_kprobe() doesn't update kcb. |
| */ |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| if (cur->post_handler) |
| cur->post_handler(cur, regs, 0); |
| reset_current_kprobe(); |
| } |
| } |
| NOKPROBE_SYMBOL(kprobe_post_process); |
| |
| static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb, int reenter) |
| { |
| if (setup_detour_execution(p, regs, reenter)) |
| return; |
| |
| #if !defined(CONFIG_PREEMPTION) |
| if (p->ainsn.boostable) { |
| /* Boost up -- we can execute copied instructions directly */ |
| if (!reenter) |
| reset_current_kprobe(); |
| /* |
| * Reentering boosted probe doesn't reset current_kprobe, |
| * nor set current_kprobe, because it doesn't use single |
| * stepping. |
| */ |
| regs->ip = (unsigned long)p->ainsn.insn; |
| return; |
| } |
| #endif |
| if (reenter) { |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_REENTER; |
| } else |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| |
| if (p->ainsn.emulate_op) { |
| p->ainsn.emulate_op(p, regs); |
| kprobe_post_process(p, regs, kcb); |
| return; |
| } |
| |
| /* Disable interrupt, and set ip register on trampoline */ |
| regs->flags &= ~X86_EFLAGS_IF; |
| regs->ip = (unsigned long)p->ainsn.insn; |
| } |
| NOKPROBE_SYMBOL(setup_singlestep); |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "int3" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again |
| * right after the copied instruction. |
| * Different from the trap single-step, "int3" single-step can not |
| * handle the instruction which changes the ip register, e.g. jmp, |
| * call, conditional jmp, and the instructions which changes the IF |
| * flags because interrupt must be disabled around the single-stepping. |
| * Such instructions are software emulated, but others are single-stepped |
| * using "int3". |
| * |
| * When the 2nd "int3" handled, the regs->ip and regs->flags needs to |
| * be adjusted, so that we can resume execution on correct code. |
| */ |
| static void resume_singlestep(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| unsigned long copy_ip = (unsigned long)p->ainsn.insn; |
| unsigned long orig_ip = (unsigned long)p->addr; |
| |
| /* Restore saved interrupt flag and ip register */ |
| regs->flags |= kcb->kprobe_saved_flags; |
| /* Note that regs->ip is executed int3 so must be a step back */ |
| regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE; |
| } |
| NOKPROBE_SYMBOL(resume_singlestep); |
| |
| /* |
| * We have reentered the kprobe_handler(), since another probe was hit while |
| * within the handler. We save the original kprobes variables and just single |
| * step on the instruction of the new probe without calling any user handlers. |
| */ |
| static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_SSDONE: |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SS: |
| kprobes_inc_nmissed_count(p); |
| setup_singlestep(p, regs, kcb, 1); |
| break; |
| case KPROBE_REENTER: |
| /* A probe has been hit in the codepath leading up to, or just |
| * after, single-stepping of a probed instruction. This entire |
| * codepath should strictly reside in .kprobes.text section. |
| * Raise a BUG or we'll continue in an endless reentering loop |
| * and eventually a stack overflow. |
| */ |
| pr_err("Unrecoverable kprobe detected.\n"); |
| dump_kprobe(p); |
| BUG(); |
| default: |
| /* impossible cases */ |
| WARN_ON(1); |
| return 0; |
| } |
| |
| return 1; |
| } |
| NOKPROBE_SYMBOL(reenter_kprobe); |
| |
| static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb) |
| { |
| return (kcb->kprobe_status == KPROBE_HIT_SS || |
| kcb->kprobe_status == KPROBE_REENTER); |
| } |
| |
| /* |
| * Interrupts are disabled on entry as trap3 is an interrupt gate and they |
| * remain disabled throughout this function. |
| */ |
| int kprobe_int3_handler(struct pt_regs *regs) |
| { |
| kprobe_opcode_t *addr; |
| struct kprobe *p; |
| struct kprobe_ctlblk *kcb; |
| |
| if (user_mode(regs)) |
| return 0; |
| |
| addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); |
| /* |
| * We don't want to be preempted for the entire duration of kprobe |
| * processing. Since int3 and debug trap disables irqs and we clear |
| * IF while singlestepping, it must be no preemptible. |
| */ |
| |
| kcb = get_kprobe_ctlblk(); |
| p = get_kprobe(addr); |
| |
| if (p) { |
| if (kprobe_running()) { |
| if (reenter_kprobe(p, regs, kcb)) |
| return 1; |
| } else { |
| set_current_kprobe(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| /* |
| * If we have no pre-handler or it returned 0, we |
| * continue with normal processing. If we have a |
| * pre-handler and it returned non-zero, that means |
| * user handler setup registers to exit to another |
| * instruction, we must skip the single stepping. |
| */ |
| if (!p->pre_handler || !p->pre_handler(p, regs)) |
| setup_singlestep(p, regs, kcb, 0); |
| else |
| reset_current_kprobe(); |
| return 1; |
| } |
| } else if (kprobe_is_ss(kcb)) { |
| p = kprobe_running(); |
| if ((unsigned long)p->ainsn.insn < regs->ip && |
| (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) { |
| /* Most provably this is the second int3 for singlestep */ |
| resume_singlestep(p, regs, kcb); |
| kprobe_post_process(p, regs, kcb); |
| return 1; |
| } |
| } /* else: not a kprobe fault; let the kernel handle it */ |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(kprobe_int3_handler); |
| |
| int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { |
| /* This must happen on single-stepping */ |
| WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && |
| kcb->kprobe_status != KPROBE_REENTER); |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the ip points back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->ip = (unsigned long)cur->addr; |
| |
| /* |
| * If the IF flag was set before the kprobe hit, |
| * don't touch it: |
| */ |
| regs->flags |= kcb->kprobe_old_flags; |
| |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| } |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(kprobe_fault_handler); |
| |
| int __init arch_populate_kprobe_blacklist(void) |
| { |
| return kprobe_add_area_blacklist((unsigned long)__entry_text_start, |
| (unsigned long)__entry_text_end); |
| } |
| |
| int __init arch_init_kprobes(void) |
| { |
| return 0; |
| } |
| |
| int arch_trampoline_kprobe(struct kprobe *p) |
| { |
| return 0; |
| } |