| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * AMD Encrypted Register State Support |
| * |
| * Author: Joerg Roedel <jroedel@suse.de> |
| * |
| * This file is not compiled stand-alone. It contains code shared |
| * between the pre-decompression boot code and the running Linux kernel |
| * and is included directly into both code-bases. |
| */ |
| |
| #ifndef __BOOT_COMPRESSED |
| #define error(v) pr_err(v) |
| #define has_cpuflag(f) boot_cpu_has(f) |
| #endif |
| |
| /* I/O parameters for CPUID-related helpers */ |
| struct cpuid_leaf { |
| u32 fn; |
| u32 subfn; |
| u32 eax; |
| u32 ebx; |
| u32 ecx; |
| u32 edx; |
| }; |
| |
| /* |
| * Individual entries of the SNP CPUID table, as defined by the SNP |
| * Firmware ABI, Revision 0.9, Section 7.1, Table 14. |
| */ |
| struct snp_cpuid_fn { |
| u32 eax_in; |
| u32 ecx_in; |
| u64 xcr0_in; |
| u64 xss_in; |
| u32 eax; |
| u32 ebx; |
| u32 ecx; |
| u32 edx; |
| u64 __reserved; |
| } __packed; |
| |
| /* |
| * SNP CPUID table, as defined by the SNP Firmware ABI, Revision 0.9, |
| * Section 8.14.2.6. Also noted there is the SNP firmware-enforced limit |
| * of 64 entries per CPUID table. |
| */ |
| #define SNP_CPUID_COUNT_MAX 64 |
| |
| struct snp_cpuid_table { |
| u32 count; |
| u32 __reserved1; |
| u64 __reserved2; |
| struct snp_cpuid_fn fn[SNP_CPUID_COUNT_MAX]; |
| } __packed; |
| |
| /* |
| * Since feature negotiation related variables are set early in the boot |
| * process they must reside in the .data section so as not to be zeroed |
| * out when the .bss section is later cleared. |
| * |
| * GHCB protocol version negotiated with the hypervisor. |
| */ |
| static u16 ghcb_version __ro_after_init; |
| |
| /* Copy of the SNP firmware's CPUID page. */ |
| static struct snp_cpuid_table cpuid_table_copy __ro_after_init; |
| |
| /* |
| * These will be initialized based on CPUID table so that non-present |
| * all-zero leaves (for sparse tables) can be differentiated from |
| * invalid/out-of-range leaves. This is needed since all-zero leaves |
| * still need to be post-processed. |
| */ |
| static u32 cpuid_std_range_max __ro_after_init; |
| static u32 cpuid_hyp_range_max __ro_after_init; |
| static u32 cpuid_ext_range_max __ro_after_init; |
| |
| static bool __init sev_es_check_cpu_features(void) |
| { |
| if (!has_cpuflag(X86_FEATURE_RDRAND)) { |
| error("RDRAND instruction not supported - no trusted source of randomness available\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void __noreturn sev_es_terminate(unsigned int set, unsigned int reason) |
| { |
| u64 val = GHCB_MSR_TERM_REQ; |
| |
| /* Tell the hypervisor what went wrong. */ |
| val |= GHCB_SEV_TERM_REASON(set, reason); |
| |
| /* Request Guest Termination from Hypvervisor */ |
| sev_es_wr_ghcb_msr(val); |
| VMGEXIT(); |
| |
| while (true) |
| asm volatile("hlt\n" : : : "memory"); |
| } |
| |
| /* |
| * The hypervisor features are available from GHCB version 2 onward. |
| */ |
| static u64 get_hv_features(void) |
| { |
| u64 val; |
| |
| if (ghcb_version < 2) |
| return 0; |
| |
| sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ); |
| VMGEXIT(); |
| |
| val = sev_es_rd_ghcb_msr(); |
| if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP) |
| return 0; |
| |
| return GHCB_MSR_HV_FT_RESP_VAL(val); |
| } |
| |
| static void snp_register_ghcb_early(unsigned long paddr) |
| { |
| unsigned long pfn = paddr >> PAGE_SHIFT; |
| u64 val; |
| |
| sev_es_wr_ghcb_msr(GHCB_MSR_REG_GPA_REQ_VAL(pfn)); |
| VMGEXIT(); |
| |
| val = sev_es_rd_ghcb_msr(); |
| |
| /* If the response GPA is not ours then abort the guest */ |
| if ((GHCB_RESP_CODE(val) != GHCB_MSR_REG_GPA_RESP) || |
| (GHCB_MSR_REG_GPA_RESP_VAL(val) != pfn)) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_REGISTER); |
| } |
| |
| static bool sev_es_negotiate_protocol(void) |
| { |
| u64 val; |
| |
| /* Do the GHCB protocol version negotiation */ |
| sev_es_wr_ghcb_msr(GHCB_MSR_SEV_INFO_REQ); |
| VMGEXIT(); |
| val = sev_es_rd_ghcb_msr(); |
| |
| if (GHCB_MSR_INFO(val) != GHCB_MSR_SEV_INFO_RESP) |
| return false; |
| |
| if (GHCB_MSR_PROTO_MAX(val) < GHCB_PROTOCOL_MIN || |
| GHCB_MSR_PROTO_MIN(val) > GHCB_PROTOCOL_MAX) |
| return false; |
| |
| ghcb_version = min_t(size_t, GHCB_MSR_PROTO_MAX(val), GHCB_PROTOCOL_MAX); |
| |
| return true; |
| } |
| |
| static __always_inline void vc_ghcb_invalidate(struct ghcb *ghcb) |
| { |
| ghcb->save.sw_exit_code = 0; |
| __builtin_memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap)); |
| } |
| |
| static bool vc_decoding_needed(unsigned long exit_code) |
| { |
| /* Exceptions don't require to decode the instruction */ |
| return !(exit_code >= SVM_EXIT_EXCP_BASE && |
| exit_code <= SVM_EXIT_LAST_EXCP); |
| } |
| |
| static enum es_result vc_init_em_ctxt(struct es_em_ctxt *ctxt, |
| struct pt_regs *regs, |
| unsigned long exit_code) |
| { |
| enum es_result ret = ES_OK; |
| |
| memset(ctxt, 0, sizeof(*ctxt)); |
| ctxt->regs = regs; |
| |
| if (vc_decoding_needed(exit_code)) |
| ret = vc_decode_insn(ctxt); |
| |
| return ret; |
| } |
| |
| static void vc_finish_insn(struct es_em_ctxt *ctxt) |
| { |
| ctxt->regs->ip += ctxt->insn.length; |
| } |
| |
| static enum es_result verify_exception_info(struct ghcb *ghcb, struct es_em_ctxt *ctxt) |
| { |
| u32 ret; |
| |
| ret = ghcb->save.sw_exit_info_1 & GENMASK_ULL(31, 0); |
| if (!ret) |
| return ES_OK; |
| |
| if (ret == 1) { |
| u64 info = ghcb->save.sw_exit_info_2; |
| unsigned long v = info & SVM_EVTINJ_VEC_MASK; |
| |
| /* Check if exception information from hypervisor is sane. */ |
| if ((info & SVM_EVTINJ_VALID) && |
| ((v == X86_TRAP_GP) || (v == X86_TRAP_UD)) && |
| ((info & SVM_EVTINJ_TYPE_MASK) == SVM_EVTINJ_TYPE_EXEPT)) { |
| ctxt->fi.vector = v; |
| |
| if (info & SVM_EVTINJ_VALID_ERR) |
| ctxt->fi.error_code = info >> 32; |
| |
| return ES_EXCEPTION; |
| } |
| } |
| |
| return ES_VMM_ERROR; |
| } |
| |
| static enum es_result sev_es_ghcb_hv_call(struct ghcb *ghcb, |
| struct es_em_ctxt *ctxt, |
| u64 exit_code, u64 exit_info_1, |
| u64 exit_info_2) |
| { |
| /* Fill in protocol and format specifiers */ |
| ghcb->protocol_version = ghcb_version; |
| ghcb->ghcb_usage = GHCB_DEFAULT_USAGE; |
| |
| ghcb_set_sw_exit_code(ghcb, exit_code); |
| ghcb_set_sw_exit_info_1(ghcb, exit_info_1); |
| ghcb_set_sw_exit_info_2(ghcb, exit_info_2); |
| |
| sev_es_wr_ghcb_msr(__pa(ghcb)); |
| VMGEXIT(); |
| |
| return verify_exception_info(ghcb, ctxt); |
| } |
| |
| static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg) |
| { |
| u64 val; |
| |
| sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx)); |
| VMGEXIT(); |
| val = sev_es_rd_ghcb_msr(); |
| if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP) |
| return -EIO; |
| |
| *reg = (val >> 32); |
| |
| return 0; |
| } |
| |
| static int sev_cpuid_hv(struct cpuid_leaf *leaf) |
| { |
| int ret; |
| |
| /* |
| * MSR protocol does not support fetching non-zero subfunctions, but is |
| * sufficient to handle current early-boot cases. Should that change, |
| * make sure to report an error rather than ignoring the index and |
| * grabbing random values. If this issue arises in the future, handling |
| * can be added here to use GHCB-page protocol for cases that occur late |
| * enough in boot that GHCB page is available. |
| */ |
| if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn) |
| return -EINVAL; |
| |
| ret = __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax); |
| ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx); |
| ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx); |
| ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx); |
| |
| return ret; |
| } |
| |
| /* |
| * This may be called early while still running on the initial identity |
| * mapping. Use RIP-relative addressing to obtain the correct address |
| * while running with the initial identity mapping as well as the |
| * switch-over to kernel virtual addresses later. |
| */ |
| static const struct snp_cpuid_table *snp_cpuid_get_table(void) |
| { |
| void *ptr; |
| |
| asm ("lea cpuid_table_copy(%%rip), %0" |
| : "=r" (ptr) |
| : "p" (&cpuid_table_copy)); |
| |
| return ptr; |
| } |
| |
| /* |
| * The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of |
| * XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0 |
| * and 1 based on the corresponding features enabled by a particular |
| * combination of XCR0 and XSS registers so that a guest can look up the |
| * version corresponding to the features currently enabled in its XCR0/XSS |
| * registers. The only values that differ between these versions/table |
| * entries is the enabled XSAVE area size advertised via EBX. |
| * |
| * While hypervisors may choose to make use of this support, it is more |
| * robust/secure for a guest to simply find the entry corresponding to the |
| * base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the |
| * XSAVE area size using subfunctions 2 through 64, as documented in APM |
| * Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here. |
| * |
| * Since base/legacy XSAVE area size is documented as 0x240, use that value |
| * directly rather than relying on the base size in the CPUID table. |
| * |
| * Return: XSAVE area size on success, 0 otherwise. |
| */ |
| static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted) |
| { |
| const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); |
| u64 xfeatures_found = 0; |
| u32 xsave_size = 0x240; |
| int i; |
| |
| for (i = 0; i < cpuid_table->count; i++) { |
| const struct snp_cpuid_fn *e = &cpuid_table->fn[i]; |
| |
| if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64)) |
| continue; |
| if (!(xfeatures_en & (BIT_ULL(e->ecx_in)))) |
| continue; |
| if (xfeatures_found & (BIT_ULL(e->ecx_in))) |
| continue; |
| |
| xfeatures_found |= (BIT_ULL(e->ecx_in)); |
| |
| if (compacted) |
| xsave_size += e->eax; |
| else |
| xsave_size = max(xsave_size, e->eax + e->ebx); |
| } |
| |
| /* |
| * Either the guest set unsupported XCR0/XSS bits, or the corresponding |
| * entries in the CPUID table were not present. This is not a valid |
| * state to be in. |
| */ |
| if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2))) |
| return 0; |
| |
| return xsave_size; |
| } |
| |
| static bool |
| snp_cpuid_get_validated_func(struct cpuid_leaf *leaf) |
| { |
| const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); |
| int i; |
| |
| for (i = 0; i < cpuid_table->count; i++) { |
| const struct snp_cpuid_fn *e = &cpuid_table->fn[i]; |
| |
| if (e->eax_in != leaf->fn) |
| continue; |
| |
| if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn) |
| continue; |
| |
| /* |
| * For 0xD subfunctions 0 and 1, only use the entry corresponding |
| * to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0). |
| * See the comments above snp_cpuid_calc_xsave_size() for more |
| * details. |
| */ |
| if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1)) |
| if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in) |
| continue; |
| |
| leaf->eax = e->eax; |
| leaf->ebx = e->ebx; |
| leaf->ecx = e->ecx; |
| leaf->edx = e->edx; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void snp_cpuid_hv(struct cpuid_leaf *leaf) |
| { |
| if (sev_cpuid_hv(leaf)) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV); |
| } |
| |
| static int snp_cpuid_postprocess(struct cpuid_leaf *leaf) |
| { |
| struct cpuid_leaf leaf_hv = *leaf; |
| |
| switch (leaf->fn) { |
| case 0x1: |
| snp_cpuid_hv(&leaf_hv); |
| |
| /* initial APIC ID */ |
| leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0)); |
| /* APIC enabled bit */ |
| leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9)); |
| |
| /* OSXSAVE enabled bit */ |
| if (native_read_cr4() & X86_CR4_OSXSAVE) |
| leaf->ecx |= BIT(27); |
| break; |
| case 0x7: |
| /* OSPKE enabled bit */ |
| leaf->ecx &= ~BIT(4); |
| if (native_read_cr4() & X86_CR4_PKE) |
| leaf->ecx |= BIT(4); |
| break; |
| case 0xB: |
| leaf_hv.subfn = 0; |
| snp_cpuid_hv(&leaf_hv); |
| |
| /* extended APIC ID */ |
| leaf->edx = leaf_hv.edx; |
| break; |
| case 0xD: { |
| bool compacted = false; |
| u64 xcr0 = 1, xss = 0; |
| u32 xsave_size; |
| |
| if (leaf->subfn != 0 && leaf->subfn != 1) |
| return 0; |
| |
| if (native_read_cr4() & X86_CR4_OSXSAVE) |
| xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
| if (leaf->subfn == 1) { |
| /* Get XSS value if XSAVES is enabled. */ |
| if (leaf->eax & BIT(3)) { |
| unsigned long lo, hi; |
| |
| asm volatile("rdmsr" : "=a" (lo), "=d" (hi) |
| : "c" (MSR_IA32_XSS)); |
| xss = (hi << 32) | lo; |
| } |
| |
| /* |
| * The PPR and APM aren't clear on what size should be |
| * encoded in 0xD:0x1:EBX when compaction is not enabled |
| * by either XSAVEC (feature bit 1) or XSAVES (feature |
| * bit 3) since SNP-capable hardware has these feature |
| * bits fixed as 1. KVM sets it to 0 in this case, but |
| * to avoid this becoming an issue it's safer to simply |
| * treat this as unsupported for SNP guests. |
| */ |
| if (!(leaf->eax & (BIT(1) | BIT(3)))) |
| return -EINVAL; |
| |
| compacted = true; |
| } |
| |
| xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted); |
| if (!xsave_size) |
| return -EINVAL; |
| |
| leaf->ebx = xsave_size; |
| } |
| break; |
| case 0x8000001E: |
| snp_cpuid_hv(&leaf_hv); |
| |
| /* extended APIC ID */ |
| leaf->eax = leaf_hv.eax; |
| /* compute ID */ |
| leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0)); |
| /* node ID */ |
| leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0)); |
| break; |
| default: |
| /* No fix-ups needed, use values as-is. */ |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value |
| * should be treated as fatal by caller. |
| */ |
| static int snp_cpuid(struct cpuid_leaf *leaf) |
| { |
| const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table(); |
| |
| if (!cpuid_table->count) |
| return -EOPNOTSUPP; |
| |
| if (!snp_cpuid_get_validated_func(leaf)) { |
| /* |
| * Some hypervisors will avoid keeping track of CPUID entries |
| * where all values are zero, since they can be handled the |
| * same as out-of-range values (all-zero). This is useful here |
| * as well as it allows virtually all guest configurations to |
| * work using a single SNP CPUID table. |
| * |
| * To allow for this, there is a need to distinguish between |
| * out-of-range entries and in-range zero entries, since the |
| * CPUID table entries are only a template that may need to be |
| * augmented with additional values for things like |
| * CPU-specific information during post-processing. So if it's |
| * not in the table, set the values to zero. Then, if they are |
| * within a valid CPUID range, proceed with post-processing |
| * using zeros as the initial values. Otherwise, skip |
| * post-processing and just return zeros immediately. |
| */ |
| leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0; |
| |
| /* Skip post-processing for out-of-range zero leafs. */ |
| if (!(leaf->fn <= cpuid_std_range_max || |
| (leaf->fn >= 0x40000000 && leaf->fn <= cpuid_hyp_range_max) || |
| (leaf->fn >= 0x80000000 && leaf->fn <= cpuid_ext_range_max))) |
| return 0; |
| } |
| |
| return snp_cpuid_postprocess(leaf); |
| } |
| |
| /* |
| * Boot VC Handler - This is the first VC handler during boot, there is no GHCB |
| * page yet, so it only supports the MSR based communication with the |
| * hypervisor and only the CPUID exit-code. |
| */ |
| void __init do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code) |
| { |
| unsigned int subfn = lower_bits(regs->cx, 32); |
| unsigned int fn = lower_bits(regs->ax, 32); |
| struct cpuid_leaf leaf; |
| int ret; |
| |
| /* Only CPUID is supported via MSR protocol */ |
| if (exit_code != SVM_EXIT_CPUID) |
| goto fail; |
| |
| leaf.fn = fn; |
| leaf.subfn = subfn; |
| |
| ret = snp_cpuid(&leaf); |
| if (!ret) |
| goto cpuid_done; |
| |
| if (ret != -EOPNOTSUPP) |
| goto fail; |
| |
| if (sev_cpuid_hv(&leaf)) |
| goto fail; |
| |
| cpuid_done: |
| regs->ax = leaf.eax; |
| regs->bx = leaf.ebx; |
| regs->cx = leaf.ecx; |
| regs->dx = leaf.edx; |
| |
| /* |
| * This is a VC handler and the #VC is only raised when SEV-ES is |
| * active, which means SEV must be active too. Do sanity checks on the |
| * CPUID results to make sure the hypervisor does not trick the kernel |
| * into the no-sev path. This could map sensitive data unencrypted and |
| * make it accessible to the hypervisor. |
| * |
| * In particular, check for: |
| * - Availability of CPUID leaf 0x8000001f |
| * - SEV CPUID bit. |
| * |
| * The hypervisor might still report the wrong C-bit position, but this |
| * can't be checked here. |
| */ |
| |
| if (fn == 0x80000000 && (regs->ax < 0x8000001f)) |
| /* SEV leaf check */ |
| goto fail; |
| else if ((fn == 0x8000001f && !(regs->ax & BIT(1)))) |
| /* SEV bit */ |
| goto fail; |
| |
| /* Skip over the CPUID two-byte opcode */ |
| regs->ip += 2; |
| |
| return; |
| |
| fail: |
| /* Terminate the guest */ |
| sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ); |
| } |
| |
| static enum es_result vc_insn_string_read(struct es_em_ctxt *ctxt, |
| void *src, char *buf, |
| unsigned int data_size, |
| unsigned int count, |
| bool backwards) |
| { |
| int i, b = backwards ? -1 : 1; |
| enum es_result ret = ES_OK; |
| |
| for (i = 0; i < count; i++) { |
| void *s = src + (i * data_size * b); |
| char *d = buf + (i * data_size); |
| |
| ret = vc_read_mem(ctxt, s, d, data_size); |
| if (ret != ES_OK) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static enum es_result vc_insn_string_write(struct es_em_ctxt *ctxt, |
| void *dst, char *buf, |
| unsigned int data_size, |
| unsigned int count, |
| bool backwards) |
| { |
| int i, s = backwards ? -1 : 1; |
| enum es_result ret = ES_OK; |
| |
| for (i = 0; i < count; i++) { |
| void *d = dst + (i * data_size * s); |
| char *b = buf + (i * data_size); |
| |
| ret = vc_write_mem(ctxt, d, b, data_size); |
| if (ret != ES_OK) |
| break; |
| } |
| |
| return ret; |
| } |
| |
| #define IOIO_TYPE_STR BIT(2) |
| #define IOIO_TYPE_IN 1 |
| #define IOIO_TYPE_INS (IOIO_TYPE_IN | IOIO_TYPE_STR) |
| #define IOIO_TYPE_OUT 0 |
| #define IOIO_TYPE_OUTS (IOIO_TYPE_OUT | IOIO_TYPE_STR) |
| |
| #define IOIO_REP BIT(3) |
| |
| #define IOIO_ADDR_64 BIT(9) |
| #define IOIO_ADDR_32 BIT(8) |
| #define IOIO_ADDR_16 BIT(7) |
| |
| #define IOIO_DATA_32 BIT(6) |
| #define IOIO_DATA_16 BIT(5) |
| #define IOIO_DATA_8 BIT(4) |
| |
| #define IOIO_SEG_ES (0 << 10) |
| #define IOIO_SEG_DS (3 << 10) |
| |
| static enum es_result vc_ioio_exitinfo(struct es_em_ctxt *ctxt, u64 *exitinfo) |
| { |
| struct insn *insn = &ctxt->insn; |
| *exitinfo = 0; |
| |
| switch (insn->opcode.bytes[0]) { |
| /* INS opcodes */ |
| case 0x6c: |
| case 0x6d: |
| *exitinfo |= IOIO_TYPE_INS; |
| *exitinfo |= IOIO_SEG_ES; |
| *exitinfo |= (ctxt->regs->dx & 0xffff) << 16; |
| break; |
| |
| /* OUTS opcodes */ |
| case 0x6e: |
| case 0x6f: |
| *exitinfo |= IOIO_TYPE_OUTS; |
| *exitinfo |= IOIO_SEG_DS; |
| *exitinfo |= (ctxt->regs->dx & 0xffff) << 16; |
| break; |
| |
| /* IN immediate opcodes */ |
| case 0xe4: |
| case 0xe5: |
| *exitinfo |= IOIO_TYPE_IN; |
| *exitinfo |= (u8)insn->immediate.value << 16; |
| break; |
| |
| /* OUT immediate opcodes */ |
| case 0xe6: |
| case 0xe7: |
| *exitinfo |= IOIO_TYPE_OUT; |
| *exitinfo |= (u8)insn->immediate.value << 16; |
| break; |
| |
| /* IN register opcodes */ |
| case 0xec: |
| case 0xed: |
| *exitinfo |= IOIO_TYPE_IN; |
| *exitinfo |= (ctxt->regs->dx & 0xffff) << 16; |
| break; |
| |
| /* OUT register opcodes */ |
| case 0xee: |
| case 0xef: |
| *exitinfo |= IOIO_TYPE_OUT; |
| *exitinfo |= (ctxt->regs->dx & 0xffff) << 16; |
| break; |
| |
| default: |
| return ES_DECODE_FAILED; |
| } |
| |
| switch (insn->opcode.bytes[0]) { |
| case 0x6c: |
| case 0x6e: |
| case 0xe4: |
| case 0xe6: |
| case 0xec: |
| case 0xee: |
| /* Single byte opcodes */ |
| *exitinfo |= IOIO_DATA_8; |
| break; |
| default: |
| /* Length determined by instruction parsing */ |
| *exitinfo |= (insn->opnd_bytes == 2) ? IOIO_DATA_16 |
| : IOIO_DATA_32; |
| } |
| switch (insn->addr_bytes) { |
| case 2: |
| *exitinfo |= IOIO_ADDR_16; |
| break; |
| case 4: |
| *exitinfo |= IOIO_ADDR_32; |
| break; |
| case 8: |
| *exitinfo |= IOIO_ADDR_64; |
| break; |
| } |
| |
| if (insn_has_rep_prefix(insn)) |
| *exitinfo |= IOIO_REP; |
| |
| return ES_OK; |
| } |
| |
| static enum es_result vc_handle_ioio(struct ghcb *ghcb, struct es_em_ctxt *ctxt) |
| { |
| struct pt_regs *regs = ctxt->regs; |
| u64 exit_info_1, exit_info_2; |
| enum es_result ret; |
| |
| ret = vc_ioio_exitinfo(ctxt, &exit_info_1); |
| if (ret != ES_OK) |
| return ret; |
| |
| if (exit_info_1 & IOIO_TYPE_STR) { |
| |
| /* (REP) INS/OUTS */ |
| |
| bool df = ((regs->flags & X86_EFLAGS_DF) == X86_EFLAGS_DF); |
| unsigned int io_bytes, exit_bytes; |
| unsigned int ghcb_count, op_count; |
| unsigned long es_base; |
| u64 sw_scratch; |
| |
| /* |
| * For the string variants with rep prefix the amount of in/out |
| * operations per #VC exception is limited so that the kernel |
| * has a chance to take interrupts and re-schedule while the |
| * instruction is emulated. |
| */ |
| io_bytes = (exit_info_1 >> 4) & 0x7; |
| ghcb_count = sizeof(ghcb->shared_buffer) / io_bytes; |
| |
| op_count = (exit_info_1 & IOIO_REP) ? regs->cx : 1; |
| exit_info_2 = min(op_count, ghcb_count); |
| exit_bytes = exit_info_2 * io_bytes; |
| |
| es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES); |
| |
| /* Read bytes of OUTS into the shared buffer */ |
| if (!(exit_info_1 & IOIO_TYPE_IN)) { |
| ret = vc_insn_string_read(ctxt, |
| (void *)(es_base + regs->si), |
| ghcb->shared_buffer, io_bytes, |
| exit_info_2, df); |
| if (ret) |
| return ret; |
| } |
| |
| /* |
| * Issue an VMGEXIT to the HV to consume the bytes from the |
| * shared buffer or to have it write them into the shared buffer |
| * depending on the instruction: OUTS or INS. |
| */ |
| sw_scratch = __pa(ghcb) + offsetof(struct ghcb, shared_buffer); |
| ghcb_set_sw_scratch(ghcb, sw_scratch); |
| ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, |
| exit_info_1, exit_info_2); |
| if (ret != ES_OK) |
| return ret; |
| |
| /* Read bytes from shared buffer into the guest's destination. */ |
| if (exit_info_1 & IOIO_TYPE_IN) { |
| ret = vc_insn_string_write(ctxt, |
| (void *)(es_base + regs->di), |
| ghcb->shared_buffer, io_bytes, |
| exit_info_2, df); |
| if (ret) |
| return ret; |
| |
| if (df) |
| regs->di -= exit_bytes; |
| else |
| regs->di += exit_bytes; |
| } else { |
| if (df) |
| regs->si -= exit_bytes; |
| else |
| regs->si += exit_bytes; |
| } |
| |
| if (exit_info_1 & IOIO_REP) |
| regs->cx -= exit_info_2; |
| |
| ret = regs->cx ? ES_RETRY : ES_OK; |
| |
| } else { |
| |
| /* IN/OUT into/from rAX */ |
| |
| int bits = (exit_info_1 & 0x70) >> 1; |
| u64 rax = 0; |
| |
| if (!(exit_info_1 & IOIO_TYPE_IN)) |
| rax = lower_bits(regs->ax, bits); |
| |
| ghcb_set_rax(ghcb, rax); |
| |
| ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_IOIO, exit_info_1, 0); |
| if (ret != ES_OK) |
| return ret; |
| |
| if (exit_info_1 & IOIO_TYPE_IN) { |
| if (!ghcb_rax_is_valid(ghcb)) |
| return ES_VMM_ERROR; |
| regs->ax = lower_bits(ghcb->save.rax, bits); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int vc_handle_cpuid_snp(struct pt_regs *regs) |
| { |
| struct cpuid_leaf leaf; |
| int ret; |
| |
| leaf.fn = regs->ax; |
| leaf.subfn = regs->cx; |
| ret = snp_cpuid(&leaf); |
| if (!ret) { |
| regs->ax = leaf.eax; |
| regs->bx = leaf.ebx; |
| regs->cx = leaf.ecx; |
| regs->dx = leaf.edx; |
| } |
| |
| return ret; |
| } |
| |
| static enum es_result vc_handle_cpuid(struct ghcb *ghcb, |
| struct es_em_ctxt *ctxt) |
| { |
| struct pt_regs *regs = ctxt->regs; |
| u32 cr4 = native_read_cr4(); |
| enum es_result ret; |
| int snp_cpuid_ret; |
| |
| snp_cpuid_ret = vc_handle_cpuid_snp(regs); |
| if (!snp_cpuid_ret) |
| return ES_OK; |
| if (snp_cpuid_ret != -EOPNOTSUPP) |
| return ES_VMM_ERROR; |
| |
| ghcb_set_rax(ghcb, regs->ax); |
| ghcb_set_rcx(ghcb, regs->cx); |
| |
| if (cr4 & X86_CR4_OSXSAVE) |
| /* Safe to read xcr0 */ |
| ghcb_set_xcr0(ghcb, xgetbv(XCR_XFEATURE_ENABLED_MASK)); |
| else |
| /* xgetbv will cause #GP - use reset value for xcr0 */ |
| ghcb_set_xcr0(ghcb, 1); |
| |
| ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_CPUID, 0, 0); |
| if (ret != ES_OK) |
| return ret; |
| |
| if (!(ghcb_rax_is_valid(ghcb) && |
| ghcb_rbx_is_valid(ghcb) && |
| ghcb_rcx_is_valid(ghcb) && |
| ghcb_rdx_is_valid(ghcb))) |
| return ES_VMM_ERROR; |
| |
| regs->ax = ghcb->save.rax; |
| regs->bx = ghcb->save.rbx; |
| regs->cx = ghcb->save.rcx; |
| regs->dx = ghcb->save.rdx; |
| |
| return ES_OK; |
| } |
| |
| static enum es_result vc_handle_rdtsc(struct ghcb *ghcb, |
| struct es_em_ctxt *ctxt, |
| unsigned long exit_code) |
| { |
| bool rdtscp = (exit_code == SVM_EXIT_RDTSCP); |
| enum es_result ret; |
| |
| ret = sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, 0, 0); |
| if (ret != ES_OK) |
| return ret; |
| |
| if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb) && |
| (!rdtscp || ghcb_rcx_is_valid(ghcb)))) |
| return ES_VMM_ERROR; |
| |
| ctxt->regs->ax = ghcb->save.rax; |
| ctxt->regs->dx = ghcb->save.rdx; |
| if (rdtscp) |
| ctxt->regs->cx = ghcb->save.rcx; |
| |
| return ES_OK; |
| } |
| |
| struct cc_setup_data { |
| struct setup_data header; |
| u32 cc_blob_address; |
| }; |
| |
| /* |
| * Search for a Confidential Computing blob passed in as a setup_data entry |
| * via the Linux Boot Protocol. |
| */ |
| static struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp) |
| { |
| struct cc_setup_data *sd = NULL; |
| struct setup_data *hdr; |
| |
| hdr = (struct setup_data *)bp->hdr.setup_data; |
| |
| while (hdr) { |
| if (hdr->type == SETUP_CC_BLOB) { |
| sd = (struct cc_setup_data *)hdr; |
| return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address; |
| } |
| hdr = (struct setup_data *)hdr->next; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Initialize the kernel's copy of the SNP CPUID table, and set up the |
| * pointer that will be used to access it. |
| * |
| * Maintaining a direct mapping of the SNP CPUID table used by firmware would |
| * be possible as an alternative, but the approach is brittle since the |
| * mapping needs to be updated in sync with all the changes to virtual memory |
| * layout and related mapping facilities throughout the boot process. |
| */ |
| static void __init setup_cpuid_table(const struct cc_blob_sev_info *cc_info) |
| { |
| const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table; |
| int i; |
| |
| if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID); |
| |
| cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys; |
| if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX) |
| sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID); |
| |
| cpuid_table = snp_cpuid_get_table(); |
| memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table)); |
| |
| /* Initialize CPUID ranges for range-checking. */ |
| for (i = 0; i < cpuid_table->count; i++) { |
| const struct snp_cpuid_fn *fn = &cpuid_table->fn[i]; |
| |
| if (fn->eax_in == 0x0) |
| cpuid_std_range_max = fn->eax; |
| else if (fn->eax_in == 0x40000000) |
| cpuid_hyp_range_max = fn->eax; |
| else if (fn->eax_in == 0x80000000) |
| cpuid_ext_range_max = fn->eax; |
| } |
| } |