| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Clocksource driver for the synthetic counter and timers |
| * provided by the Hyper-V hypervisor to guest VMs, as described |
| * in the Hyper-V Top Level Functional Spec (TLFS). This driver |
| * is instruction set architecture independent. |
| * |
| * Copyright (C) 2019, Microsoft, Inc. |
| * |
| * Author: Michael Kelley <mikelley@microsoft.com> |
| */ |
| |
| #include <linux/percpu.h> |
| #include <linux/cpumask.h> |
| #include <linux/clockchips.h> |
| #include <linux/clocksource.h> |
| #include <linux/sched_clock.h> |
| #include <linux/mm.h> |
| #include <linux/cpuhotplug.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/acpi.h> |
| #include <linux/hyperv.h> |
| #include <clocksource/hyperv_timer.h> |
| #include <asm/hyperv-tlfs.h> |
| #include <asm/mshyperv.h> |
| |
| static struct clock_event_device __percpu *hv_clock_event; |
| static u64 hv_sched_clock_offset __ro_after_init; |
| |
| /* |
| * If false, we're using the old mechanism for stimer0 interrupts |
| * where it sends a VMbus message when it expires. The old |
| * mechanism is used when running on older versions of Hyper-V |
| * that don't support Direct Mode. While Hyper-V provides |
| * four stimer's per CPU, Linux uses only stimer0. |
| * |
| * Because Direct Mode does not require processing a VMbus |
| * message, stimer interrupts can be enabled earlier in the |
| * process of booting a CPU, and consistent with when timer |
| * interrupts are enabled for other clocksource drivers. |
| * However, for legacy versions of Hyper-V when Direct Mode |
| * is not enabled, setting up stimer interrupts must be |
| * delayed until VMbus is initialized and can process the |
| * interrupt message. |
| */ |
| static bool direct_mode_enabled; |
| |
| static int stimer0_irq = -1; |
| static int stimer0_message_sint; |
| static DEFINE_PER_CPU(long, stimer0_evt); |
| |
| /* |
| * Common code for stimer0 interrupts coming via Direct Mode or |
| * as a VMbus message. |
| */ |
| void hv_stimer0_isr(void) |
| { |
| struct clock_event_device *ce; |
| |
| ce = this_cpu_ptr(hv_clock_event); |
| ce->event_handler(ce); |
| } |
| EXPORT_SYMBOL_GPL(hv_stimer0_isr); |
| |
| /* |
| * stimer0 interrupt handler for architectures that support |
| * per-cpu interrupts, which also implies Direct Mode. |
| */ |
| static irqreturn_t hv_stimer0_percpu_isr(int irq, void *dev_id) |
| { |
| hv_stimer0_isr(); |
| return IRQ_HANDLED; |
| } |
| |
| static int hv_ce_set_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| u64 current_tick; |
| |
| current_tick = hv_read_reference_counter(); |
| current_tick += delta; |
| hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick); |
| return 0; |
| } |
| |
| static int hv_ce_shutdown(struct clock_event_device *evt) |
| { |
| hv_set_register(HV_REGISTER_STIMER0_COUNT, 0); |
| hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0); |
| if (direct_mode_enabled && stimer0_irq >= 0) |
| disable_percpu_irq(stimer0_irq); |
| |
| return 0; |
| } |
| |
| static int hv_ce_set_oneshot(struct clock_event_device *evt) |
| { |
| union hv_stimer_config timer_cfg; |
| |
| timer_cfg.as_uint64 = 0; |
| timer_cfg.enable = 1; |
| timer_cfg.auto_enable = 1; |
| if (direct_mode_enabled) { |
| /* |
| * When it expires, the timer will directly interrupt |
| * on the specified hardware vector/IRQ. |
| */ |
| timer_cfg.direct_mode = 1; |
| timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR; |
| if (stimer0_irq >= 0) |
| enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE); |
| } else { |
| /* |
| * When it expires, the timer will generate a VMbus message, |
| * to be handled by the normal VMbus interrupt handler. |
| */ |
| timer_cfg.direct_mode = 0; |
| timer_cfg.sintx = stimer0_message_sint; |
| } |
| hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64); |
| return 0; |
| } |
| |
| /* |
| * hv_stimer_init - Per-cpu initialization of the clockevent |
| */ |
| static int hv_stimer_init(unsigned int cpu) |
| { |
| struct clock_event_device *ce; |
| |
| if (!hv_clock_event) |
| return 0; |
| |
| ce = per_cpu_ptr(hv_clock_event, cpu); |
| ce->name = "Hyper-V clockevent"; |
| ce->features = CLOCK_EVT_FEAT_ONESHOT; |
| ce->cpumask = cpumask_of(cpu); |
| ce->rating = 1000; |
| ce->set_state_shutdown = hv_ce_shutdown; |
| ce->set_state_oneshot = hv_ce_set_oneshot; |
| ce->set_next_event = hv_ce_set_next_event; |
| |
| clockevents_config_and_register(ce, |
| HV_CLOCK_HZ, |
| HV_MIN_DELTA_TICKS, |
| HV_MAX_MAX_DELTA_TICKS); |
| return 0; |
| } |
| |
| /* |
| * hv_stimer_cleanup - Per-cpu cleanup of the clockevent |
| */ |
| int hv_stimer_cleanup(unsigned int cpu) |
| { |
| struct clock_event_device *ce; |
| |
| if (!hv_clock_event) |
| return 0; |
| |
| /* |
| * In the legacy case where Direct Mode is not enabled |
| * (which can only be on x86/64), stimer cleanup happens |
| * relatively early in the CPU offlining process. We |
| * must unbind the stimer-based clockevent device so |
| * that the LAPIC timer can take over until clockevents |
| * are no longer needed in the offlining process. Note |
| * that clockevents_unbind_device() eventually calls |
| * hv_ce_shutdown(). |
| * |
| * The unbind should not be done when Direct Mode is |
| * enabled because we may be on an architecture where |
| * there are no other clockevent devices to fallback to. |
| */ |
| ce = per_cpu_ptr(hv_clock_event, cpu); |
| if (direct_mode_enabled) |
| hv_ce_shutdown(ce); |
| else |
| clockevents_unbind_device(ce, cpu); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(hv_stimer_cleanup); |
| |
| /* |
| * These placeholders are overridden by arch specific code on |
| * architectures that need special setup of the stimer0 IRQ because |
| * they don't support per-cpu IRQs (such as x86/x64). |
| */ |
| void __weak hv_setup_stimer0_handler(void (*handler)(void)) |
| { |
| }; |
| |
| void __weak hv_remove_stimer0_handler(void) |
| { |
| }; |
| |
| /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */ |
| static int hv_setup_stimer0_irq(void) |
| { |
| int ret; |
| |
| ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR, |
| ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH); |
| if (ret < 0) { |
| pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret); |
| return ret; |
| } |
| stimer0_irq = ret; |
| |
| ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr, |
| "Hyper-V stimer0", &stimer0_evt); |
| if (ret) { |
| pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d", |
| stimer0_irq, ret); |
| acpi_unregister_gsi(stimer0_irq); |
| stimer0_irq = -1; |
| } |
| return ret; |
| } |
| |
| static void hv_remove_stimer0_irq(void) |
| { |
| if (stimer0_irq == -1) { |
| hv_remove_stimer0_handler(); |
| } else { |
| free_percpu_irq(stimer0_irq, &stimer0_evt); |
| acpi_unregister_gsi(stimer0_irq); |
| stimer0_irq = -1; |
| } |
| } |
| |
| /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */ |
| int hv_stimer_alloc(bool have_percpu_irqs) |
| { |
| int ret; |
| |
| /* |
| * Synthetic timers are always available except on old versions of |
| * Hyper-V on x86. In that case, return as error as Linux will use a |
| * clockevent based on emulated LAPIC timer hardware. |
| */ |
| if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE)) |
| return -EINVAL; |
| |
| hv_clock_event = alloc_percpu(struct clock_event_device); |
| if (!hv_clock_event) |
| return -ENOMEM; |
| |
| direct_mode_enabled = ms_hyperv.misc_features & |
| HV_STIMER_DIRECT_MODE_AVAILABLE; |
| |
| /* |
| * If Direct Mode isn't enabled, the remainder of the initialization |
| * is done later by hv_stimer_legacy_init() |
| */ |
| if (!direct_mode_enabled) |
| return 0; |
| |
| if (have_percpu_irqs) { |
| ret = hv_setup_stimer0_irq(); |
| if (ret) |
| goto free_clock_event; |
| } else { |
| hv_setup_stimer0_handler(hv_stimer0_isr); |
| } |
| |
| /* |
| * Since we are in Direct Mode, stimer initialization |
| * can be done now with a CPUHP value in the same range |
| * as other clockevent devices. |
| */ |
| ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING, |
| "clockevents/hyperv/stimer:starting", |
| hv_stimer_init, hv_stimer_cleanup); |
| if (ret < 0) { |
| hv_remove_stimer0_irq(); |
| goto free_clock_event; |
| } |
| return ret; |
| |
| free_clock_event: |
| free_percpu(hv_clock_event); |
| hv_clock_event = NULL; |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(hv_stimer_alloc); |
| |
| /* |
| * hv_stimer_legacy_init -- Called from the VMbus driver to handle |
| * the case when Direct Mode is not enabled, and the stimer |
| * must be initialized late in the CPU onlining process. |
| * |
| */ |
| void hv_stimer_legacy_init(unsigned int cpu, int sint) |
| { |
| if (direct_mode_enabled) |
| return; |
| |
| /* |
| * This function gets called by each vCPU, so setting the |
| * global stimer_message_sint value each time is conceptually |
| * not ideal, but the value passed in is always the same and |
| * it avoids introducing yet another interface into this |
| * clocksource driver just to set the sint in the legacy case. |
| */ |
| stimer0_message_sint = sint; |
| (void)hv_stimer_init(cpu); |
| } |
| EXPORT_SYMBOL_GPL(hv_stimer_legacy_init); |
| |
| /* |
| * hv_stimer_legacy_cleanup -- Called from the VMbus driver to |
| * handle the case when Direct Mode is not enabled, and the |
| * stimer must be cleaned up early in the CPU offlining |
| * process. |
| */ |
| void hv_stimer_legacy_cleanup(unsigned int cpu) |
| { |
| if (direct_mode_enabled) |
| return; |
| (void)hv_stimer_cleanup(cpu); |
| } |
| EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup); |
| |
| /* |
| * Do a global cleanup of clockevents for the cases of kexec and |
| * vmbus exit |
| */ |
| void hv_stimer_global_cleanup(void) |
| { |
| int cpu; |
| |
| /* |
| * hv_stime_legacy_cleanup() will stop the stimer if Direct |
| * Mode is not enabled, and fallback to the LAPIC timer. |
| */ |
| for_each_present_cpu(cpu) { |
| hv_stimer_legacy_cleanup(cpu); |
| } |
| |
| if (!hv_clock_event) |
| return; |
| |
| if (direct_mode_enabled) { |
| cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING); |
| hv_remove_stimer0_irq(); |
| stimer0_irq = -1; |
| } |
| free_percpu(hv_clock_event); |
| hv_clock_event = NULL; |
| |
| } |
| EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup); |
| |
| /* |
| * Code and definitions for the Hyper-V clocksources. Two |
| * clocksources are defined: one that reads the Hyper-V defined MSR, and |
| * the other that uses the TSC reference page feature as defined in the |
| * TLFS. The MSR version is for compatibility with old versions of |
| * Hyper-V and 32-bit x86. The TSC reference page version is preferred. |
| */ |
| |
| static union { |
| struct ms_hyperv_tsc_page page; |
| u8 reserved[PAGE_SIZE]; |
| } tsc_pg __aligned(PAGE_SIZE); |
| |
| static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page; |
| static unsigned long tsc_pfn; |
| |
| unsigned long hv_get_tsc_pfn(void) |
| { |
| return tsc_pfn; |
| } |
| EXPORT_SYMBOL_GPL(hv_get_tsc_pfn); |
| |
| struct ms_hyperv_tsc_page *hv_get_tsc_page(void) |
| { |
| return tsc_page; |
| } |
| EXPORT_SYMBOL_GPL(hv_get_tsc_page); |
| |
| static u64 notrace read_hv_clock_tsc(void) |
| { |
| u64 current_tick = hv_read_tsc_page(hv_get_tsc_page()); |
| |
| if (current_tick == U64_MAX) |
| current_tick = hv_get_register(HV_REGISTER_TIME_REF_COUNT); |
| |
| return current_tick; |
| } |
| |
| static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg) |
| { |
| return read_hv_clock_tsc(); |
| } |
| |
| static u64 notrace read_hv_sched_clock_tsc(void) |
| { |
| return (read_hv_clock_tsc() - hv_sched_clock_offset) * |
| (NSEC_PER_SEC / HV_CLOCK_HZ); |
| } |
| |
| static void suspend_hv_clock_tsc(struct clocksource *arg) |
| { |
| union hv_reference_tsc_msr tsc_msr; |
| |
| /* Disable the TSC page */ |
| tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC); |
| tsc_msr.enable = 0; |
| hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64); |
| } |
| |
| |
| static void resume_hv_clock_tsc(struct clocksource *arg) |
| { |
| union hv_reference_tsc_msr tsc_msr; |
| |
| /* Re-enable the TSC page */ |
| tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC); |
| tsc_msr.enable = 1; |
| tsc_msr.pfn = tsc_pfn; |
| hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64); |
| } |
| |
| #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK |
| static int hv_cs_enable(struct clocksource *cs) |
| { |
| vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK); |
| return 0; |
| } |
| #endif |
| |
| static struct clocksource hyperv_cs_tsc = { |
| .name = "hyperv_clocksource_tsc_page", |
| .rating = 500, |
| .read = read_hv_clock_tsc_cs, |
| .mask = CLOCKSOURCE_MASK(64), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| .suspend= suspend_hv_clock_tsc, |
| .resume = resume_hv_clock_tsc, |
| #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK |
| .enable = hv_cs_enable, |
| .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK, |
| #else |
| .vdso_clock_mode = VDSO_CLOCKMODE_NONE, |
| #endif |
| }; |
| |
| static u64 notrace read_hv_clock_msr(void) |
| { |
| /* |
| * Read the partition counter to get the current tick count. This count |
| * is set to 0 when the partition is created and is incremented in |
| * 100 nanosecond units. |
| */ |
| return hv_get_register(HV_REGISTER_TIME_REF_COUNT); |
| } |
| |
| static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg) |
| { |
| return read_hv_clock_msr(); |
| } |
| |
| static u64 notrace read_hv_sched_clock_msr(void) |
| { |
| return (read_hv_clock_msr() - hv_sched_clock_offset) * |
| (NSEC_PER_SEC / HV_CLOCK_HZ); |
| } |
| |
| static struct clocksource hyperv_cs_msr = { |
| .name = "hyperv_clocksource_msr", |
| .rating = 500, |
| .read = read_hv_clock_msr_cs, |
| .mask = CLOCKSOURCE_MASK(64), |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| /* |
| * Reference to pv_ops must be inline so objtool |
| * detection of noinstr violations can work correctly. |
| */ |
| #ifdef CONFIG_GENERIC_SCHED_CLOCK |
| static __always_inline void hv_setup_sched_clock(void *sched_clock) |
| { |
| /* |
| * We're on an architecture with generic sched clock (not x86/x64). |
| * The Hyper-V sched clock read function returns nanoseconds, not |
| * the normal 100ns units of the Hyper-V synthetic clock. |
| */ |
| sched_clock_register(sched_clock, 64, NSEC_PER_SEC); |
| } |
| #elif defined CONFIG_PARAVIRT |
| static __always_inline void hv_setup_sched_clock(void *sched_clock) |
| { |
| /* We're on x86/x64 *and* using PV ops */ |
| paravirt_set_sched_clock(sched_clock); |
| } |
| #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */ |
| static __always_inline void hv_setup_sched_clock(void *sched_clock) {} |
| #endif /* CONFIG_GENERIC_SCHED_CLOCK */ |
| |
| static bool __init hv_init_tsc_clocksource(void) |
| { |
| union hv_reference_tsc_msr tsc_msr; |
| |
| if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE)) |
| return false; |
| |
| /* |
| * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly |
| * handles frequency and offset changes due to live migration, |
| * pause/resume, and other VM management operations. So lower the |
| * Hyper-V Reference TSC rating, causing the generic TSC to be used. |
| * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference |
| * TSC will be preferred over the virtualized ARM64 arch counter. |
| * While the Hyper-V MSR clocksource won't be used since the |
| * Reference TSC clocksource is present, change its rating as |
| * well for consistency. |
| */ |
| if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) { |
| hyperv_cs_tsc.rating = 250; |
| hyperv_cs_msr.rating = 250; |
| } |
| |
| hv_read_reference_counter = read_hv_clock_tsc; |
| |
| /* |
| * TSC page mapping works differently in root compared to guest. |
| * - In guest partition the guest PFN has to be passed to the |
| * hypervisor. |
| * - In root partition it's other way around: it has to map the PFN |
| * provided by the hypervisor. |
| * But it can't be mapped right here as it's too early and MMU isn't |
| * ready yet. So, we only set the enable bit here and will remap the |
| * page later in hv_remap_tsc_clocksource(). |
| * |
| * It worth mentioning, that TSC clocksource read function |
| * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when |
| * TSC page is zeroed (which is the case until the PFN is remapped) and |
| * thus TSC clocksource will work even without the real TSC page |
| * mapped. |
| */ |
| tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC); |
| if (hv_root_partition) |
| tsc_pfn = tsc_msr.pfn; |
| else |
| tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page)); |
| tsc_msr.enable = 1; |
| tsc_msr.pfn = tsc_pfn; |
| hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64); |
| |
| clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100); |
| |
| hv_sched_clock_offset = hv_read_reference_counter(); |
| hv_setup_sched_clock(read_hv_sched_clock_tsc); |
| |
| return true; |
| } |
| |
| void __init hv_init_clocksource(void) |
| { |
| /* |
| * Try to set up the TSC page clocksource. If it succeeds, we're |
| * done. Otherwise, set up the MSR clocksource. At least one of |
| * these will always be available except on very old versions of |
| * Hyper-V on x86. In that case we won't have a Hyper-V |
| * clocksource, but Linux will still run with a clocksource based |
| * on the emulated PIT or LAPIC timer. |
| */ |
| if (hv_init_tsc_clocksource()) |
| return; |
| |
| if (!(ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE)) |
| return; |
| |
| hv_read_reference_counter = read_hv_clock_msr; |
| clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100); |
| |
| hv_sched_clock_offset = hv_read_reference_counter(); |
| hv_setup_sched_clock(read_hv_sched_clock_msr); |
| } |
| |
| void __init hv_remap_tsc_clocksource(void) |
| { |
| if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE)) |
| return; |
| |
| if (!hv_root_partition) { |
| WARN(1, "%s: attempt to remap TSC page in guest partition\n", |
| __func__); |
| return; |
| } |
| |
| tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg), |
| MEMREMAP_WB); |
| if (!tsc_page) |
| pr_err("Failed to remap Hyper-V TSC page.\n"); |
| } |