| // SPDX-License-Identifier: GPL-2.0-only |
| /* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved. |
| * Copyright (C) 2015 Linaro Ltd. |
| */ |
| #include <linux/platform_device.h> |
| #include <linux/init.h> |
| #include <linux/cpumask.h> |
| #include <linux/export.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interconnect.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/qcom_scm.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_platform.h> |
| #include <linux/clk.h> |
| #include <linux/reset-controller.h> |
| #include <linux/arm-smccc.h> |
| |
| #include "qcom_scm.h" |
| |
| static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT); |
| module_param(download_mode, bool, 0); |
| |
| #define SCM_HAS_CORE_CLK BIT(0) |
| #define SCM_HAS_IFACE_CLK BIT(1) |
| #define SCM_HAS_BUS_CLK BIT(2) |
| |
| struct qcom_scm { |
| struct device *dev; |
| struct clk *core_clk; |
| struct clk *iface_clk; |
| struct clk *bus_clk; |
| struct icc_path *path; |
| struct reset_controller_dev reset; |
| |
| /* control access to the interconnect path */ |
| struct mutex scm_bw_lock; |
| int scm_vote_count; |
| |
| u64 dload_mode_addr; |
| }; |
| |
| struct qcom_scm_current_perm_info { |
| __le32 vmid; |
| __le32 perm; |
| __le64 ctx; |
| __le32 ctx_size; |
| __le32 unused; |
| }; |
| |
| struct qcom_scm_mem_map_info { |
| __le64 mem_addr; |
| __le64 mem_size; |
| }; |
| |
| /* Each bit configures cold/warm boot address for one of the 4 CPUs */ |
| static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = { |
| 0, BIT(0), BIT(3), BIT(5) |
| }; |
| static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = { |
| BIT(2), BIT(1), BIT(4), BIT(6) |
| }; |
| |
| static const char * const qcom_scm_convention_names[] = { |
| [SMC_CONVENTION_UNKNOWN] = "unknown", |
| [SMC_CONVENTION_ARM_32] = "smc arm 32", |
| [SMC_CONVENTION_ARM_64] = "smc arm 64", |
| [SMC_CONVENTION_LEGACY] = "smc legacy", |
| }; |
| |
| static struct qcom_scm *__scm; |
| |
| static int qcom_scm_clk_enable(void) |
| { |
| int ret; |
| |
| ret = clk_prepare_enable(__scm->core_clk); |
| if (ret) |
| goto bail; |
| |
| ret = clk_prepare_enable(__scm->iface_clk); |
| if (ret) |
| goto disable_core; |
| |
| ret = clk_prepare_enable(__scm->bus_clk); |
| if (ret) |
| goto disable_iface; |
| |
| return 0; |
| |
| disable_iface: |
| clk_disable_unprepare(__scm->iface_clk); |
| disable_core: |
| clk_disable_unprepare(__scm->core_clk); |
| bail: |
| return ret; |
| } |
| |
| static void qcom_scm_clk_disable(void) |
| { |
| clk_disable_unprepare(__scm->core_clk); |
| clk_disable_unprepare(__scm->iface_clk); |
| clk_disable_unprepare(__scm->bus_clk); |
| } |
| |
| static int qcom_scm_bw_enable(void) |
| { |
| int ret = 0; |
| |
| if (!__scm->path) |
| return 0; |
| |
| if (IS_ERR(__scm->path)) |
| return -EINVAL; |
| |
| mutex_lock(&__scm->scm_bw_lock); |
| if (!__scm->scm_vote_count) { |
| ret = icc_set_bw(__scm->path, 0, UINT_MAX); |
| if (ret < 0) { |
| dev_err(__scm->dev, "failed to set bandwidth request\n"); |
| goto err_bw; |
| } |
| } |
| __scm->scm_vote_count++; |
| err_bw: |
| mutex_unlock(&__scm->scm_bw_lock); |
| |
| return ret; |
| } |
| |
| static void qcom_scm_bw_disable(void) |
| { |
| if (IS_ERR_OR_NULL(__scm->path)) |
| return; |
| |
| mutex_lock(&__scm->scm_bw_lock); |
| if (__scm->scm_vote_count-- == 1) |
| icc_set_bw(__scm->path, 0, 0); |
| mutex_unlock(&__scm->scm_bw_lock); |
| } |
| |
| enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN; |
| static DEFINE_SPINLOCK(scm_query_lock); |
| |
| static enum qcom_scm_convention __get_convention(void) |
| { |
| unsigned long flags; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_INFO, |
| .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, |
| .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO, |
| QCOM_SCM_INFO_IS_CALL_AVAIL) | |
| (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT), |
| .arginfo = QCOM_SCM_ARGS(1), |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| enum qcom_scm_convention probed_convention; |
| int ret; |
| bool forced = false; |
| |
| if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN)) |
| return qcom_scm_convention; |
| |
| /* |
| * Device isn't required as there is only one argument - no device |
| * needed to dma_map_single to secure world |
| */ |
| probed_convention = SMC_CONVENTION_ARM_64; |
| ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); |
| if (!ret && res.result[0] == 1) |
| goto found; |
| |
| /* |
| * Some SC7180 firmwares didn't implement the |
| * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64 |
| * calling conventions on these firmwares. Luckily we don't make any |
| * early calls into the firmware on these SoCs so the device pointer |
| * will be valid here to check if the compatible matches. |
| */ |
| if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) { |
| forced = true; |
| goto found; |
| } |
| |
| probed_convention = SMC_CONVENTION_ARM_32; |
| ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true); |
| if (!ret && res.result[0] == 1) |
| goto found; |
| |
| probed_convention = SMC_CONVENTION_LEGACY; |
| found: |
| spin_lock_irqsave(&scm_query_lock, flags); |
| if (probed_convention != qcom_scm_convention) { |
| qcom_scm_convention = probed_convention; |
| pr_info("qcom_scm: convention: %s%s\n", |
| qcom_scm_convention_names[qcom_scm_convention], |
| forced ? " (forced)" : ""); |
| } |
| spin_unlock_irqrestore(&scm_query_lock, flags); |
| |
| return qcom_scm_convention; |
| } |
| |
| /** |
| * qcom_scm_call() - Invoke a syscall in the secure world |
| * @dev: device |
| * @desc: Descriptor structure containing arguments and return values |
| * @res: Structure containing results from SMC/HVC call |
| * |
| * Sends a command to the SCM and waits for the command to finish processing. |
| * This should *only* be called in pre-emptible context. |
| */ |
| static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc, |
| struct qcom_scm_res *res) |
| { |
| might_sleep(); |
| switch (__get_convention()) { |
| case SMC_CONVENTION_ARM_32: |
| case SMC_CONVENTION_ARM_64: |
| return scm_smc_call(dev, desc, res, false); |
| case SMC_CONVENTION_LEGACY: |
| return scm_legacy_call(dev, desc, res); |
| default: |
| pr_err("Unknown current SCM calling convention.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /** |
| * qcom_scm_call_atomic() - atomic variation of qcom_scm_call() |
| * @dev: device |
| * @desc: Descriptor structure containing arguments and return values |
| * @res: Structure containing results from SMC/HVC call |
| * |
| * Sends a command to the SCM and waits for the command to finish processing. |
| * This can be called in atomic context. |
| */ |
| static int qcom_scm_call_atomic(struct device *dev, |
| const struct qcom_scm_desc *desc, |
| struct qcom_scm_res *res) |
| { |
| switch (__get_convention()) { |
| case SMC_CONVENTION_ARM_32: |
| case SMC_CONVENTION_ARM_64: |
| return scm_smc_call(dev, desc, res, true); |
| case SMC_CONVENTION_LEGACY: |
| return scm_legacy_call_atomic(dev, desc, res); |
| default: |
| pr_err("Unknown current SCM calling convention.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id, |
| u32 cmd_id) |
| { |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_INFO, |
| .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| desc.arginfo = QCOM_SCM_ARGS(1); |
| switch (__get_convention()) { |
| case SMC_CONVENTION_ARM_32: |
| case SMC_CONVENTION_ARM_64: |
| desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) | |
| (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT); |
| break; |
| case SMC_CONVENTION_LEGACY: |
| desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id); |
| break; |
| default: |
| pr_err("Unknown SMC convention being used\n"); |
| return false; |
| } |
| |
| ret = qcom_scm_call(dev, &desc, &res); |
| |
| return ret ? false : !!res.result[0]; |
| } |
| |
| static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits) |
| { |
| int cpu; |
| unsigned int flags = 0; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_BOOT, |
| .cmd = QCOM_SCM_BOOT_SET_ADDR, |
| .arginfo = QCOM_SCM_ARGS(2), |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| for_each_present_cpu(cpu) { |
| if (cpu >= QCOM_SCM_BOOT_MAX_CPUS) |
| return -EINVAL; |
| flags |= cpu_bits[cpu]; |
| } |
| |
| desc.args[0] = flags; |
| desc.args[1] = virt_to_phys(entry); |
| |
| return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL); |
| } |
| |
| static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_BOOT, |
| .cmd = QCOM_SCM_BOOT_SET_ADDR_MC, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| .arginfo = QCOM_SCM_ARGS(6), |
| .args = { |
| virt_to_phys(entry), |
| /* Apply to all CPUs in all affinity levels */ |
| ~0ULL, ~0ULL, ~0ULL, ~0ULL, |
| flags, |
| }, |
| }; |
| |
| /* Need a device for DMA of the additional arguments */ |
| if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY) |
| return -EOPNOTSUPP; |
| |
| return qcom_scm_call(__scm->dev, &desc, NULL); |
| } |
| |
| /** |
| * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus |
| * @entry: Entry point function for the cpus |
| * |
| * Set the Linux entry point for the SCM to transfer control to when coming |
| * out of a power down. CPU power down may be executed on cpuidle or hotplug. |
| */ |
| int qcom_scm_set_warm_boot_addr(void *entry) |
| { |
| if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT)) |
| /* Fallback to old SCM call */ |
| return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits); |
| return 0; |
| } |
| EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr); |
| |
| /** |
| * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus |
| * @entry: Entry point function for the cpus |
| */ |
| int qcom_scm_set_cold_boot_addr(void *entry) |
| { |
| if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT)) |
| /* Fallback to old SCM call */ |
| return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits); |
| return 0; |
| } |
| EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr); |
| |
| /** |
| * qcom_scm_cpu_power_down() - Power down the cpu |
| * @flags: Flags to flush cache |
| * |
| * This is an end point to power down cpu. If there was a pending interrupt, |
| * the control would return from this function, otherwise, the cpu jumps to the |
| * warm boot entry point set for this cpu upon reset. |
| */ |
| void qcom_scm_cpu_power_down(u32 flags) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_BOOT, |
| .cmd = QCOM_SCM_BOOT_TERMINATE_PC, |
| .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK, |
| .arginfo = QCOM_SCM_ARGS(1), |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_cpu_power_down); |
| |
| int qcom_scm_set_remote_state(u32 state, u32 id) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_BOOT, |
| .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE, |
| .arginfo = QCOM_SCM_ARGS(2), |
| .args[0] = state, |
| .args[1] = id, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| int ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| |
| return ret ? : res.result[0]; |
| } |
| EXPORT_SYMBOL(qcom_scm_set_remote_state); |
| |
| static int __qcom_scm_set_dload_mode(struct device *dev, bool enable) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_BOOT, |
| .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE, |
| .arginfo = QCOM_SCM_ARGS(2), |
| .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0; |
| |
| return qcom_scm_call_atomic(__scm->dev, &desc, NULL); |
| } |
| |
| static void qcom_scm_set_download_mode(bool enable) |
| { |
| bool avail; |
| int ret = 0; |
| |
| avail = __qcom_scm_is_call_available(__scm->dev, |
| QCOM_SCM_SVC_BOOT, |
| QCOM_SCM_BOOT_SET_DLOAD_MODE); |
| if (avail) { |
| ret = __qcom_scm_set_dload_mode(__scm->dev, enable); |
| } else if (__scm->dload_mode_addr) { |
| ret = qcom_scm_io_writel(__scm->dload_mode_addr, |
| enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0); |
| } else { |
| dev_err(__scm->dev, |
| "No available mechanism for setting download mode\n"); |
| } |
| |
| if (ret) |
| dev_err(__scm->dev, "failed to set download mode: %d\n", ret); |
| } |
| |
| /** |
| * qcom_scm_pas_init_image() - Initialize peripheral authentication service |
| * state machine for a given peripheral, using the |
| * metadata |
| * @peripheral: peripheral id |
| * @metadata: pointer to memory containing ELF header, program header table |
| * and optional blob of data used for authenticating the metadata |
| * and the rest of the firmware |
| * @size: size of the metadata |
| * @ctx: optional metadata context |
| * |
| * Return: 0 on success. |
| * |
| * Upon successful return, the PAS metadata context (@ctx) will be used to |
| * track the metadata allocation, this needs to be released by invoking |
| * qcom_scm_pas_metadata_release() by the caller. |
| */ |
| int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size, |
| struct qcom_scm_pas_metadata *ctx) |
| { |
| dma_addr_t mdata_phys; |
| void *mdata_buf; |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_PIL, |
| .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE, |
| .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW), |
| .args[0] = peripheral, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| /* |
| * During the scm call memory protection will be enabled for the meta |
| * data blob, so make sure it's physically contiguous, 4K aligned and |
| * non-cachable to avoid XPU violations. |
| */ |
| mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys, |
| GFP_KERNEL); |
| if (!mdata_buf) { |
| dev_err(__scm->dev, "Allocation of metadata buffer failed.\n"); |
| return -ENOMEM; |
| } |
| memcpy(mdata_buf, metadata, size); |
| |
| ret = qcom_scm_clk_enable(); |
| if (ret) |
| goto out; |
| |
| ret = qcom_scm_bw_enable(); |
| if (ret) |
| return ret; |
| |
| desc.args[1] = mdata_phys; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| |
| qcom_scm_bw_disable(); |
| qcom_scm_clk_disable(); |
| |
| out: |
| if (ret < 0 || !ctx) { |
| dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys); |
| } else if (ctx) { |
| ctx->ptr = mdata_buf; |
| ctx->phys = mdata_phys; |
| ctx->size = size; |
| } |
| |
| return ret ? : res.result[0]; |
| } |
| EXPORT_SYMBOL(qcom_scm_pas_init_image); |
| |
| /** |
| * qcom_scm_pas_metadata_release() - release metadata context |
| * @ctx: metadata context |
| */ |
| void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx) |
| { |
| if (!ctx->ptr) |
| return; |
| |
| dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys); |
| |
| ctx->ptr = NULL; |
| ctx->phys = 0; |
| ctx->size = 0; |
| } |
| EXPORT_SYMBOL(qcom_scm_pas_metadata_release); |
| |
| /** |
| * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral |
| * for firmware loading |
| * @peripheral: peripheral id |
| * @addr: start address of memory area to prepare |
| * @size: size of the memory area to prepare |
| * |
| * Returns 0 on success. |
| */ |
| int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size) |
| { |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_PIL, |
| .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP, |
| .arginfo = QCOM_SCM_ARGS(3), |
| .args[0] = peripheral, |
| .args[1] = addr, |
| .args[2] = size, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| ret = qcom_scm_clk_enable(); |
| if (ret) |
| return ret; |
| |
| ret = qcom_scm_bw_enable(); |
| if (ret) |
| return ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| qcom_scm_bw_disable(); |
| qcom_scm_clk_disable(); |
| |
| return ret ? : res.result[0]; |
| } |
| EXPORT_SYMBOL(qcom_scm_pas_mem_setup); |
| |
| /** |
| * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware |
| * and reset the remote processor |
| * @peripheral: peripheral id |
| * |
| * Return 0 on success. |
| */ |
| int qcom_scm_pas_auth_and_reset(u32 peripheral) |
| { |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_PIL, |
| .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET, |
| .arginfo = QCOM_SCM_ARGS(1), |
| .args[0] = peripheral, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| ret = qcom_scm_clk_enable(); |
| if (ret) |
| return ret; |
| |
| ret = qcom_scm_bw_enable(); |
| if (ret) |
| return ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| qcom_scm_bw_disable(); |
| qcom_scm_clk_disable(); |
| |
| return ret ? : res.result[0]; |
| } |
| EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset); |
| |
| /** |
| * qcom_scm_pas_shutdown() - Shut down the remote processor |
| * @peripheral: peripheral id |
| * |
| * Returns 0 on success. |
| */ |
| int qcom_scm_pas_shutdown(u32 peripheral) |
| { |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_PIL, |
| .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN, |
| .arginfo = QCOM_SCM_ARGS(1), |
| .args[0] = peripheral, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| ret = qcom_scm_clk_enable(); |
| if (ret) |
| return ret; |
| |
| ret = qcom_scm_bw_enable(); |
| if (ret) |
| return ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| |
| qcom_scm_bw_disable(); |
| qcom_scm_clk_disable(); |
| |
| return ret ? : res.result[0]; |
| } |
| EXPORT_SYMBOL(qcom_scm_pas_shutdown); |
| |
| /** |
| * qcom_scm_pas_supported() - Check if the peripheral authentication service is |
| * available for the given peripherial |
| * @peripheral: peripheral id |
| * |
| * Returns true if PAS is supported for this peripheral, otherwise false. |
| */ |
| bool qcom_scm_pas_supported(u32 peripheral) |
| { |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_PIL, |
| .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED, |
| .arginfo = QCOM_SCM_ARGS(1), |
| .args[0] = peripheral, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL, |
| QCOM_SCM_PIL_PAS_IS_SUPPORTED)) |
| return false; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| |
| return ret ? false : !!res.result[0]; |
| } |
| EXPORT_SYMBOL(qcom_scm_pas_supported); |
| |
| static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_PIL, |
| .cmd = QCOM_SCM_PIL_PAS_MSS_RESET, |
| .arginfo = QCOM_SCM_ARGS(2), |
| .args[0] = reset, |
| .args[1] = 0, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| int ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| |
| return ret ? : res.result[0]; |
| } |
| |
| static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev, |
| unsigned long idx) |
| { |
| if (idx != 0) |
| return -EINVAL; |
| |
| return __qcom_scm_pas_mss_reset(__scm->dev, 1); |
| } |
| |
| static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev, |
| unsigned long idx) |
| { |
| if (idx != 0) |
| return -EINVAL; |
| |
| return __qcom_scm_pas_mss_reset(__scm->dev, 0); |
| } |
| |
| static const struct reset_control_ops qcom_scm_pas_reset_ops = { |
| .assert = qcom_scm_pas_reset_assert, |
| .deassert = qcom_scm_pas_reset_deassert, |
| }; |
| |
| int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_IO, |
| .cmd = QCOM_SCM_IO_READ, |
| .arginfo = QCOM_SCM_ARGS(1), |
| .args[0] = addr, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| int ret; |
| |
| |
| ret = qcom_scm_call_atomic(__scm->dev, &desc, &res); |
| if (ret >= 0) |
| *val = res.result[0]; |
| |
| return ret < 0 ? ret : 0; |
| } |
| EXPORT_SYMBOL(qcom_scm_io_readl); |
| |
| int qcom_scm_io_writel(phys_addr_t addr, unsigned int val) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_IO, |
| .cmd = QCOM_SCM_IO_WRITE, |
| .arginfo = QCOM_SCM_ARGS(2), |
| .args[0] = addr, |
| .args[1] = val, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| return qcom_scm_call_atomic(__scm->dev, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_io_writel); |
| |
| /** |
| * qcom_scm_restore_sec_cfg_available() - Check if secure environment |
| * supports restore security config interface. |
| * |
| * Return true if restore-cfg interface is supported, false if not. |
| */ |
| bool qcom_scm_restore_sec_cfg_available(void) |
| { |
| return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP, |
| QCOM_SCM_MP_RESTORE_SEC_CFG); |
| } |
| EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available); |
| |
| int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_MP, |
| .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG, |
| .arginfo = QCOM_SCM_ARGS(2), |
| .args[0] = device_id, |
| .args[1] = spare, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| int ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| |
| return ret ? : res.result[0]; |
| } |
| EXPORT_SYMBOL(qcom_scm_restore_sec_cfg); |
| |
| int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_MP, |
| .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE, |
| .arginfo = QCOM_SCM_ARGS(1), |
| .args[0] = spare, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| int ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| |
| if (size) |
| *size = res.result[0]; |
| |
| return ret ? : res.result[1]; |
| } |
| EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size); |
| |
| int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_MP, |
| .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT, |
| .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL, |
| QCOM_SCM_VAL), |
| .args[0] = addr, |
| .args[1] = size, |
| .args[2] = spare, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| int ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, NULL); |
| |
| /* the pg table has been initialized already, ignore the error */ |
| if (ret == -EPERM) |
| ret = 0; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init); |
| |
| int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_MP, |
| .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE, |
| .arginfo = QCOM_SCM_ARGS(2), |
| .args[0] = size, |
| .args[1] = spare, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| return qcom_scm_call(__scm->dev, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size); |
| |
| int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size, |
| u32 cp_nonpixel_start, |
| u32 cp_nonpixel_size) |
| { |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_MP, |
| .cmd = QCOM_SCM_MP_VIDEO_VAR, |
| .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL, |
| QCOM_SCM_VAL, QCOM_SCM_VAL), |
| .args[0] = cp_start, |
| .args[1] = cp_size, |
| .args[2] = cp_nonpixel_start, |
| .args[3] = cp_nonpixel_size, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| |
| return ret ? : res.result[0]; |
| } |
| EXPORT_SYMBOL(qcom_scm_mem_protect_video_var); |
| |
| static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region, |
| size_t mem_sz, phys_addr_t src, size_t src_sz, |
| phys_addr_t dest, size_t dest_sz) |
| { |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_MP, |
| .cmd = QCOM_SCM_MP_ASSIGN, |
| .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL, |
| QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO, |
| QCOM_SCM_VAL, QCOM_SCM_VAL), |
| .args[0] = mem_region, |
| .args[1] = mem_sz, |
| .args[2] = src, |
| .args[3] = src_sz, |
| .args[4] = dest, |
| .args[5] = dest_sz, |
| .args[6] = 0, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| ret = qcom_scm_call(dev, &desc, &res); |
| |
| return ret ? : res.result[0]; |
| } |
| |
| /** |
| * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership |
| * @mem_addr: mem region whose ownership need to be reassigned |
| * @mem_sz: size of the region. |
| * @srcvm: vmid for current set of owners, each set bit in |
| * flag indicate a unique owner |
| * @newvm: array having new owners and corresponding permission |
| * flags |
| * @dest_cnt: number of owners in next set. |
| * |
| * Return negative errno on failure or 0 on success with @srcvm updated. |
| */ |
| int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz, |
| unsigned int *srcvm, |
| const struct qcom_scm_vmperm *newvm, |
| unsigned int dest_cnt) |
| { |
| struct qcom_scm_current_perm_info *destvm; |
| struct qcom_scm_mem_map_info *mem_to_map; |
| phys_addr_t mem_to_map_phys; |
| phys_addr_t dest_phys; |
| dma_addr_t ptr_phys; |
| size_t mem_to_map_sz; |
| size_t dest_sz; |
| size_t src_sz; |
| size_t ptr_sz; |
| int next_vm; |
| __le32 *src; |
| void *ptr; |
| int ret, i, b; |
| unsigned long srcvm_bits = *srcvm; |
| |
| src_sz = hweight_long(srcvm_bits) * sizeof(*src); |
| mem_to_map_sz = sizeof(*mem_to_map); |
| dest_sz = dest_cnt * sizeof(*destvm); |
| ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) + |
| ALIGN(dest_sz, SZ_64); |
| |
| ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL); |
| if (!ptr) |
| return -ENOMEM; |
| |
| /* Fill source vmid detail */ |
| src = ptr; |
| i = 0; |
| for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG) |
| src[i++] = cpu_to_le32(b); |
| |
| /* Fill details of mem buff to map */ |
| mem_to_map = ptr + ALIGN(src_sz, SZ_64); |
| mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64); |
| mem_to_map->mem_addr = cpu_to_le64(mem_addr); |
| mem_to_map->mem_size = cpu_to_le64(mem_sz); |
| |
| next_vm = 0; |
| /* Fill details of next vmid detail */ |
| destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); |
| dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64); |
| for (i = 0; i < dest_cnt; i++, destvm++, newvm++) { |
| destvm->vmid = cpu_to_le32(newvm->vmid); |
| destvm->perm = cpu_to_le32(newvm->perm); |
| destvm->ctx = 0; |
| destvm->ctx_size = 0; |
| next_vm |= BIT(newvm->vmid); |
| } |
| |
| ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz, |
| ptr_phys, src_sz, dest_phys, dest_sz); |
| dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys); |
| if (ret) { |
| dev_err(__scm->dev, |
| "Assign memory protection call failed %d\n", ret); |
| return -EINVAL; |
| } |
| |
| *srcvm = next_vm; |
| return 0; |
| } |
| EXPORT_SYMBOL(qcom_scm_assign_mem); |
| |
| /** |
| * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available |
| */ |
| bool qcom_scm_ocmem_lock_available(void) |
| { |
| return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM, |
| QCOM_SCM_OCMEM_LOCK_CMD); |
| } |
| EXPORT_SYMBOL(qcom_scm_ocmem_lock_available); |
| |
| /** |
| * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM |
| * region to the specified initiator |
| * |
| * @id: tz initiator id |
| * @offset: OCMEM offset |
| * @size: OCMEM size |
| * @mode: access mode (WIDE/NARROW) |
| */ |
| int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size, |
| u32 mode) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_OCMEM, |
| .cmd = QCOM_SCM_OCMEM_LOCK_CMD, |
| .args[0] = id, |
| .args[1] = offset, |
| .args[2] = size, |
| .args[3] = mode, |
| .arginfo = QCOM_SCM_ARGS(4), |
| }; |
| |
| return qcom_scm_call(__scm->dev, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_ocmem_lock); |
| |
| /** |
| * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM |
| * region from the specified initiator |
| * |
| * @id: tz initiator id |
| * @offset: OCMEM offset |
| * @size: OCMEM size |
| */ |
| int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_OCMEM, |
| .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD, |
| .args[0] = id, |
| .args[1] = offset, |
| .args[2] = size, |
| .arginfo = QCOM_SCM_ARGS(3), |
| }; |
| |
| return qcom_scm_call(__scm->dev, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_ocmem_unlock); |
| |
| /** |
| * qcom_scm_ice_available() - Is the ICE key programming interface available? |
| * |
| * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and |
| * qcom_scm_ice_set_key() are available. |
| */ |
| bool qcom_scm_ice_available(void) |
| { |
| return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES, |
| QCOM_SCM_ES_INVALIDATE_ICE_KEY) && |
| __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES, |
| QCOM_SCM_ES_CONFIG_SET_ICE_KEY); |
| } |
| EXPORT_SYMBOL(qcom_scm_ice_available); |
| |
| /** |
| * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key |
| * @index: the keyslot to invalidate |
| * |
| * The UFSHCI and eMMC standards define a standard way to do this, but it |
| * doesn't work on these SoCs; only this SCM call does. |
| * |
| * It is assumed that the SoC has only one ICE instance being used, as this SCM |
| * call doesn't specify which ICE instance the keyslot belongs to. |
| * |
| * Return: 0 on success; -errno on failure. |
| */ |
| int qcom_scm_ice_invalidate_key(u32 index) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_ES, |
| .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY, |
| .arginfo = QCOM_SCM_ARGS(1), |
| .args[0] = index, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| return qcom_scm_call(__scm->dev, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_ice_invalidate_key); |
| |
| /** |
| * qcom_scm_ice_set_key() - Set an inline encryption key |
| * @index: the keyslot into which to set the key |
| * @key: the key to program |
| * @key_size: the size of the key in bytes |
| * @cipher: the encryption algorithm the key is for |
| * @data_unit_size: the encryption data unit size, i.e. the size of each |
| * individual plaintext and ciphertext. Given in 512-byte |
| * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc. |
| * |
| * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it |
| * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline. |
| * |
| * The UFSHCI and eMMC standards define a standard way to do this, but it |
| * doesn't work on these SoCs; only this SCM call does. |
| * |
| * It is assumed that the SoC has only one ICE instance being used, as this SCM |
| * call doesn't specify which ICE instance the keyslot belongs to. |
| * |
| * Return: 0 on success; -errno on failure. |
| */ |
| int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size, |
| enum qcom_scm_ice_cipher cipher, u32 data_unit_size) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_ES, |
| .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY, |
| .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW, |
| QCOM_SCM_VAL, QCOM_SCM_VAL, |
| QCOM_SCM_VAL), |
| .args[0] = index, |
| .args[2] = key_size, |
| .args[3] = cipher, |
| .args[4] = data_unit_size, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| void *keybuf; |
| dma_addr_t key_phys; |
| int ret; |
| |
| /* |
| * 'key' may point to vmalloc()'ed memory, but we need to pass a |
| * physical address that's been properly flushed. The sanctioned way to |
| * do this is by using the DMA API. But as is best practice for crypto |
| * keys, we also must wipe the key after use. This makes kmemdup() + |
| * dma_map_single() not clearly correct, since the DMA API can use |
| * bounce buffers. Instead, just use dma_alloc_coherent(). Programming |
| * keys is normally rare and thus not performance-critical. |
| */ |
| |
| keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys, |
| GFP_KERNEL); |
| if (!keybuf) |
| return -ENOMEM; |
| memcpy(keybuf, key, key_size); |
| desc.args[1] = key_phys; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, NULL); |
| |
| memzero_explicit(keybuf, key_size); |
| |
| dma_free_coherent(__scm->dev, key_size, keybuf, key_phys); |
| return ret; |
| } |
| EXPORT_SYMBOL(qcom_scm_ice_set_key); |
| |
| /** |
| * qcom_scm_hdcp_available() - Check if secure environment supports HDCP. |
| * |
| * Return true if HDCP is supported, false if not. |
| */ |
| bool qcom_scm_hdcp_available(void) |
| { |
| bool avail; |
| int ret = qcom_scm_clk_enable(); |
| |
| if (ret) |
| return ret; |
| |
| avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP, |
| QCOM_SCM_HDCP_INVOKE); |
| |
| qcom_scm_clk_disable(); |
| |
| return avail; |
| } |
| EXPORT_SYMBOL(qcom_scm_hdcp_available); |
| |
| /** |
| * qcom_scm_hdcp_req() - Send HDCP request. |
| * @req: HDCP request array |
| * @req_cnt: HDCP request array count |
| * @resp: response buffer passed to SCM |
| * |
| * Write HDCP register(s) through SCM. |
| */ |
| int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) |
| { |
| int ret; |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_HDCP, |
| .cmd = QCOM_SCM_HDCP_INVOKE, |
| .arginfo = QCOM_SCM_ARGS(10), |
| .args = { |
| req[0].addr, |
| req[0].val, |
| req[1].addr, |
| req[1].val, |
| req[2].addr, |
| req[2].val, |
| req[3].addr, |
| req[3].val, |
| req[4].addr, |
| req[4].val |
| }, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| struct qcom_scm_res res; |
| |
| if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) |
| return -ERANGE; |
| |
| ret = qcom_scm_clk_enable(); |
| if (ret) |
| return ret; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, &res); |
| *resp = res.result[0]; |
| |
| qcom_scm_clk_disable(); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(qcom_scm_hdcp_req); |
| |
| int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_SMMU_PROGRAM, |
| .cmd = QCOM_SCM_SMMU_PT_FORMAT, |
| .arginfo = QCOM_SCM_ARGS(3), |
| .args[0] = sec_id, |
| .args[1] = ctx_num, |
| .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */ |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| return qcom_scm_call(__scm->dev, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format); |
| |
| int qcom_scm_qsmmu500_wait_safe_toggle(bool en) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_SMMU_PROGRAM, |
| .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1, |
| .arginfo = QCOM_SCM_ARGS(2), |
| .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL, |
| .args[1] = en, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| |
| return qcom_scm_call_atomic(__scm->dev, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle); |
| |
| bool qcom_scm_lmh_dcvsh_available(void) |
| { |
| return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH); |
| } |
| EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available); |
| |
| int qcom_scm_lmh_profile_change(u32 profile_id) |
| { |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_LMH, |
| .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE, |
| .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL), |
| .args[0] = profile_id, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| return qcom_scm_call(__scm->dev, &desc, NULL); |
| } |
| EXPORT_SYMBOL(qcom_scm_lmh_profile_change); |
| |
| int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val, |
| u64 limit_node, u32 node_id, u64 version) |
| { |
| dma_addr_t payload_phys; |
| u32 *payload_buf; |
| int ret, payload_size = 5 * sizeof(u32); |
| |
| struct qcom_scm_desc desc = { |
| .svc = QCOM_SCM_SVC_LMH, |
| .cmd = QCOM_SCM_LMH_LIMIT_DCVSH, |
| .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL, |
| QCOM_SCM_VAL, QCOM_SCM_VAL), |
| .args[1] = payload_size, |
| .args[2] = limit_node, |
| .args[3] = node_id, |
| .args[4] = version, |
| .owner = ARM_SMCCC_OWNER_SIP, |
| }; |
| |
| payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL); |
| if (!payload_buf) |
| return -ENOMEM; |
| |
| payload_buf[0] = payload_fn; |
| payload_buf[1] = 0; |
| payload_buf[2] = payload_reg; |
| payload_buf[3] = 1; |
| payload_buf[4] = payload_val; |
| |
| desc.args[0] = payload_phys; |
| |
| ret = qcom_scm_call(__scm->dev, &desc, NULL); |
| |
| dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys); |
| return ret; |
| } |
| EXPORT_SYMBOL(qcom_scm_lmh_dcvsh); |
| |
| static int qcom_scm_find_dload_address(struct device *dev, u64 *addr) |
| { |
| struct device_node *tcsr; |
| struct device_node *np = dev->of_node; |
| struct resource res; |
| u32 offset; |
| int ret; |
| |
| tcsr = of_parse_phandle(np, "qcom,dload-mode", 0); |
| if (!tcsr) |
| return 0; |
| |
| ret = of_address_to_resource(tcsr, 0, &res); |
| of_node_put(tcsr); |
| if (ret) |
| return ret; |
| |
| ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset); |
| if (ret < 0) |
| return ret; |
| |
| *addr = res.start + offset; |
| |
| return 0; |
| } |
| |
| /** |
| * qcom_scm_is_available() - Checks if SCM is available |
| */ |
| bool qcom_scm_is_available(void) |
| { |
| return !!__scm; |
| } |
| EXPORT_SYMBOL(qcom_scm_is_available); |
| |
| static int qcom_scm_probe(struct platform_device *pdev) |
| { |
| struct qcom_scm *scm; |
| unsigned long clks; |
| int ret; |
| |
| scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL); |
| if (!scm) |
| return -ENOMEM; |
| |
| ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr); |
| if (ret < 0) |
| return ret; |
| |
| mutex_init(&scm->scm_bw_lock); |
| |
| clks = (unsigned long)of_device_get_match_data(&pdev->dev); |
| |
| scm->path = devm_of_icc_get(&pdev->dev, NULL); |
| if (IS_ERR(scm->path)) |
| return dev_err_probe(&pdev->dev, PTR_ERR(scm->path), |
| "failed to acquire interconnect path\n"); |
| |
| scm->core_clk = devm_clk_get(&pdev->dev, "core"); |
| if (IS_ERR(scm->core_clk)) { |
| if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER) |
| return PTR_ERR(scm->core_clk); |
| |
| if (clks & SCM_HAS_CORE_CLK) { |
| dev_err(&pdev->dev, "failed to acquire core clk\n"); |
| return PTR_ERR(scm->core_clk); |
| } |
| |
| scm->core_clk = NULL; |
| } |
| |
| scm->iface_clk = devm_clk_get(&pdev->dev, "iface"); |
| if (IS_ERR(scm->iface_clk)) { |
| if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER) |
| return PTR_ERR(scm->iface_clk); |
| |
| if (clks & SCM_HAS_IFACE_CLK) { |
| dev_err(&pdev->dev, "failed to acquire iface clk\n"); |
| return PTR_ERR(scm->iface_clk); |
| } |
| |
| scm->iface_clk = NULL; |
| } |
| |
| scm->bus_clk = devm_clk_get(&pdev->dev, "bus"); |
| if (IS_ERR(scm->bus_clk)) { |
| if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER) |
| return PTR_ERR(scm->bus_clk); |
| |
| if (clks & SCM_HAS_BUS_CLK) { |
| dev_err(&pdev->dev, "failed to acquire bus clk\n"); |
| return PTR_ERR(scm->bus_clk); |
| } |
| |
| scm->bus_clk = NULL; |
| } |
| |
| scm->reset.ops = &qcom_scm_pas_reset_ops; |
| scm->reset.nr_resets = 1; |
| scm->reset.of_node = pdev->dev.of_node; |
| ret = devm_reset_controller_register(&pdev->dev, &scm->reset); |
| if (ret) |
| return ret; |
| |
| /* vote for max clk rate for highest performance */ |
| ret = clk_set_rate(scm->core_clk, INT_MAX); |
| if (ret) |
| return ret; |
| |
| __scm = scm; |
| __scm->dev = &pdev->dev; |
| |
| __get_convention(); |
| |
| /* |
| * If requested enable "download mode", from this point on warmboot |
| * will cause the boot stages to enter download mode, unless |
| * disabled below by a clean shutdown/reboot. |
| */ |
| if (download_mode) |
| qcom_scm_set_download_mode(true); |
| |
| return 0; |
| } |
| |
| static void qcom_scm_shutdown(struct platform_device *pdev) |
| { |
| /* Clean shutdown, disable download mode to allow normal restart */ |
| if (download_mode) |
| qcom_scm_set_download_mode(false); |
| } |
| |
| static const struct of_device_id qcom_scm_dt_match[] = { |
| { .compatible = "qcom,scm-apq8064", |
| /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */ |
| }, |
| { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK | |
| SCM_HAS_IFACE_CLK | |
| SCM_HAS_BUS_CLK) |
| }, |
| { .compatible = "qcom,scm-ipq4019" }, |
| { .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK | |
| SCM_HAS_IFACE_CLK | |
| SCM_HAS_BUS_CLK) }, |
| { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK }, |
| { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK }, |
| { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK | |
| SCM_HAS_IFACE_CLK | |
| SCM_HAS_BUS_CLK) |
| }, |
| { .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK | |
| SCM_HAS_IFACE_CLK | |
| SCM_HAS_BUS_CLK) |
| }, |
| { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK | |
| SCM_HAS_IFACE_CLK | |
| SCM_HAS_BUS_CLK) |
| }, |
| { .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK | |
| SCM_HAS_IFACE_CLK | |
| SCM_HAS_BUS_CLK) |
| }, |
| { .compatible = "qcom,scm-msm8994" }, |
| { .compatible = "qcom,scm-msm8996" }, |
| { .compatible = "qcom,scm" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, qcom_scm_dt_match); |
| |
| static struct platform_driver qcom_scm_driver = { |
| .driver = { |
| .name = "qcom_scm", |
| .of_match_table = qcom_scm_dt_match, |
| .suppress_bind_attrs = true, |
| }, |
| .probe = qcom_scm_probe, |
| .shutdown = qcom_scm_shutdown, |
| }; |
| |
| static int __init qcom_scm_init(void) |
| { |
| return platform_driver_register(&qcom_scm_driver); |
| } |
| subsys_initcall(qcom_scm_init); |
| |
| MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver"); |
| MODULE_LICENSE("GPL v2"); |