blob: 2ee80ed140b72b1cf1702b19bf9bad69c36c7d47 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2019-2023 Linaro Ltd.
*/
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/bitfield.h>
#include <linux/if_rmnet.h>
#include <linux/dma-direction.h>
#include "gsi.h"
#include "gsi_trans.h"
#include "ipa.h"
#include "ipa_data.h"
#include "ipa_endpoint.h"
#include "ipa_cmd.h"
#include "ipa_mem.h"
#include "ipa_modem.h"
#include "ipa_table.h"
#include "ipa_gsi.h"
#include "ipa_power.h"
/* Hardware is told about receive buffers once a "batch" has been queued */
#define IPA_REPLENISH_BATCH 16 /* Must be non-zero */
/* The amount of RX buffer space consumed by standard skb overhead */
#define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
/* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
#define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */
#define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3
/** enum ipa_status_opcode - IPA status opcode field hardware values */
enum ipa_status_opcode { /* *Not* a bitmask */
IPA_STATUS_OPCODE_PACKET = 1,
IPA_STATUS_OPCODE_NEW_RULE_PACKET = 2,
IPA_STATUS_OPCODE_DROPPED_PACKET = 4,
IPA_STATUS_OPCODE_SUSPENDED_PACKET = 8,
IPA_STATUS_OPCODE_LOG = 16,
IPA_STATUS_OPCODE_DCMP = 32,
IPA_STATUS_OPCODE_PACKET_2ND_PASS = 64,
};
/** enum ipa_status_exception - IPA status exception field hardware values */
enum ipa_status_exception { /* *Not* a bitmask */
/* 0 means no exception */
IPA_STATUS_EXCEPTION_DEAGGR = 1,
IPA_STATUS_EXCEPTION_IPTYPE = 4,
IPA_STATUS_EXCEPTION_PACKET_LENGTH = 8,
IPA_STATUS_EXCEPTION_FRAG_RULE_MISS = 16,
IPA_STATUS_EXCEPTION_SW_FILTER = 32,
IPA_STATUS_EXCEPTION_NAT = 64, /* IPv4 */
IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK = 64, /* IPv6 */
IPA_STATUS_EXCEPTION_UC = 128,
IPA_STATUS_EXCEPTION_INVALID_ENDPOINT = 129,
IPA_STATUS_EXCEPTION_HEADER_INSERT = 136,
IPA_STATUS_EXCEPTION_CHEKCSUM = 229,
};
/** enum ipa_status_mask - IPA status mask field bitmask hardware values */
enum ipa_status_mask {
IPA_STATUS_MASK_FRAG_PROCESS = BIT(0),
IPA_STATUS_MASK_FILT_PROCESS = BIT(1),
IPA_STATUS_MASK_NAT_PROCESS = BIT(2),
IPA_STATUS_MASK_ROUTE_PROCESS = BIT(3),
IPA_STATUS_MASK_TAG_VALID = BIT(4),
IPA_STATUS_MASK_FRAGMENT = BIT(5),
IPA_STATUS_MASK_FIRST_FRAGMENT = BIT(6),
IPA_STATUS_MASK_V4 = BIT(7),
IPA_STATUS_MASK_CKSUM_PROCESS = BIT(8),
IPA_STATUS_MASK_AGGR_PROCESS = BIT(9),
IPA_STATUS_MASK_DEST_EOT = BIT(10),
IPA_STATUS_MASK_DEAGGR_PROCESS = BIT(11),
IPA_STATUS_MASK_DEAGG_FIRST = BIT(12),
IPA_STATUS_MASK_SRC_EOT = BIT(13),
IPA_STATUS_MASK_PREV_EOT = BIT(14),
IPA_STATUS_MASK_BYTE_LIMIT = BIT(15),
};
/* Special IPA filter/router rule field value indicating "rule miss" */
#define IPA_STATUS_RULE_MISS 0x3ff /* 10-bit filter/router rule fields */
/** The IPA status nat_type field uses enum ipa_nat_type hardware values */
/* enum ipa_status_field_id - IPA packet status structure field identifiers */
enum ipa_status_field_id {
STATUS_OPCODE, /* enum ipa_status_opcode */
STATUS_EXCEPTION, /* enum ipa_status_exception */
STATUS_MASK, /* enum ipa_status_mask (bitmask) */
STATUS_LENGTH,
STATUS_SRC_ENDPOINT,
STATUS_DST_ENDPOINT,
STATUS_METADATA,
STATUS_FILTER_LOCAL, /* Boolean */
STATUS_FILTER_HASH, /* Boolean */
STATUS_FILTER_GLOBAL, /* Boolean */
STATUS_FILTER_RETAIN, /* Boolean */
STATUS_FILTER_RULE_INDEX,
STATUS_ROUTER_LOCAL, /* Boolean */
STATUS_ROUTER_HASH, /* Boolean */
STATUS_UCP, /* Boolean */
STATUS_ROUTER_TABLE,
STATUS_ROUTER_RULE_INDEX,
STATUS_NAT_HIT, /* Boolean */
STATUS_NAT_INDEX,
STATUS_NAT_TYPE, /* enum ipa_nat_type */
STATUS_TAG_LOW32, /* Low-order 32 bits of 48-bit tag */
STATUS_TAG_HIGH16, /* High-order 16 bits of 48-bit tag */
STATUS_SEQUENCE,
STATUS_TIME_OF_DAY,
STATUS_HEADER_LOCAL, /* Boolean */
STATUS_HEADER_OFFSET,
STATUS_FRAG_HIT, /* Boolean */
STATUS_FRAG_RULE_INDEX,
};
/* Size in bytes of an IPA packet status structure */
#define IPA_STATUS_SIZE sizeof(__le32[4])
/* IPA status structure decoder; looks up field values for a structure */
static u32 ipa_status_extract(struct ipa *ipa, const void *data,
enum ipa_status_field_id field)
{
enum ipa_version version = ipa->version;
const __le32 *word = data;
switch (field) {
case STATUS_OPCODE:
return le32_get_bits(word[0], GENMASK(7, 0));
case STATUS_EXCEPTION:
return le32_get_bits(word[0], GENMASK(15, 8));
case STATUS_MASK:
return le32_get_bits(word[0], GENMASK(31, 16));
case STATUS_LENGTH:
return le32_get_bits(word[1], GENMASK(15, 0));
case STATUS_SRC_ENDPOINT:
if (version < IPA_VERSION_5_0)
return le32_get_bits(word[1], GENMASK(20, 16));
return le32_get_bits(word[1], GENMASK(23, 16));
/* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */
/* Status word 1, bits 24-26 are reserved (IPA v5.0+) */
case STATUS_DST_ENDPOINT:
if (version < IPA_VERSION_5_0)
return le32_get_bits(word[1], GENMASK(28, 24));
return le32_get_bits(word[7], GENMASK(23, 16));
/* Status word 1, bits 29-31 are reserved */
case STATUS_METADATA:
return le32_to_cpu(word[2]);
case STATUS_FILTER_LOCAL:
return le32_get_bits(word[3], GENMASK(0, 0));
case STATUS_FILTER_HASH:
return le32_get_bits(word[3], GENMASK(1, 1));
case STATUS_FILTER_GLOBAL:
return le32_get_bits(word[3], GENMASK(2, 2));
case STATUS_FILTER_RETAIN:
return le32_get_bits(word[3], GENMASK(3, 3));
case STATUS_FILTER_RULE_INDEX:
return le32_get_bits(word[3], GENMASK(13, 4));
/* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */
case STATUS_ROUTER_LOCAL:
if (version < IPA_VERSION_5_0)
return le32_get_bits(word[3], GENMASK(14, 14));
return le32_get_bits(word[1], GENMASK(27, 27));
case STATUS_ROUTER_HASH:
if (version < IPA_VERSION_5_0)
return le32_get_bits(word[3], GENMASK(15, 15));
return le32_get_bits(word[1], GENMASK(28, 28));
case STATUS_UCP:
if (version < IPA_VERSION_5_0)
return le32_get_bits(word[3], GENMASK(16, 16));
return le32_get_bits(word[7], GENMASK(31, 31));
case STATUS_ROUTER_TABLE:
if (version < IPA_VERSION_5_0)
return le32_get_bits(word[3], GENMASK(21, 17));
return le32_get_bits(word[3], GENMASK(21, 14));
case STATUS_ROUTER_RULE_INDEX:
return le32_get_bits(word[3], GENMASK(31, 22));
case STATUS_NAT_HIT:
return le32_get_bits(word[4], GENMASK(0, 0));
case STATUS_NAT_INDEX:
return le32_get_bits(word[4], GENMASK(13, 1));
case STATUS_NAT_TYPE:
return le32_get_bits(word[4], GENMASK(15, 14));
case STATUS_TAG_LOW32:
return le32_get_bits(word[4], GENMASK(31, 16)) |
(le32_get_bits(word[5], GENMASK(15, 0)) << 16);
case STATUS_TAG_HIGH16:
return le32_get_bits(word[5], GENMASK(31, 16));
case STATUS_SEQUENCE:
return le32_get_bits(word[6], GENMASK(7, 0));
case STATUS_TIME_OF_DAY:
return le32_get_bits(word[6], GENMASK(31, 8));
case STATUS_HEADER_LOCAL:
return le32_get_bits(word[7], GENMASK(0, 0));
case STATUS_HEADER_OFFSET:
return le32_get_bits(word[7], GENMASK(10, 1));
case STATUS_FRAG_HIT:
return le32_get_bits(word[7], GENMASK(11, 11));
case STATUS_FRAG_RULE_INDEX:
return le32_get_bits(word[7], GENMASK(15, 12));
/* Status word 7, bits 16-30 are reserved */
/* Status word 7, bit 31 is reserved (not IPA v5.0+) */
default:
WARN(true, "%s: bad field_id %u\n", __func__, field);
return 0;
}
}
/* Compute the aggregation size value to use for a given buffer size */
static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
{
/* A hard aggregation limit will not be crossed; aggregation closes
* if saving incoming data would cross the hard byte limit boundary.
*
* With a soft limit, aggregation closes *after* the size boundary
* has been crossed. In that case the limit must leave enough space
* after that limit to receive a full MTU of data plus overhead.
*/
if (!aggr_hard_limit)
rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
/* The byte limit is encoded as a number of kilobytes */
return rx_buffer_size / SZ_1K;
}
static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
const struct ipa_gsi_endpoint_data *all_data,
const struct ipa_gsi_endpoint_data *data)
{
const struct ipa_gsi_endpoint_data *other_data;
struct device *dev = &ipa->pdev->dev;
enum ipa_endpoint_name other_name;
if (ipa_gsi_endpoint_data_empty(data))
return true;
if (!data->toward_ipa) {
const struct ipa_endpoint_rx *rx_config;
const struct reg *reg;
u32 buffer_size;
u32 aggr_size;
u32 limit;
if (data->endpoint.filter_support) {
dev_err(dev, "filtering not supported for "
"RX endpoint %u\n",
data->endpoint_id);
return false;
}
/* Nothing more to check for non-AP RX */
if (data->ee_id != GSI_EE_AP)
return true;
rx_config = &data->endpoint.config.rx;
/* The buffer size must hold an MTU plus overhead */
buffer_size = rx_config->buffer_size;
limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
if (buffer_size < limit) {
dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
data->endpoint_id, buffer_size, limit);
return false;
}
if (!data->endpoint.config.aggregation) {
bool result = true;
/* No aggregation; check for bogus aggregation data */
if (rx_config->aggr_time_limit) {
dev_err(dev,
"time limit with no aggregation for RX endpoint %u\n",
data->endpoint_id);
result = false;
}
if (rx_config->aggr_hard_limit) {
dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
data->endpoint_id);
result = false;
}
if (rx_config->aggr_close_eof) {
dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
data->endpoint_id);
result = false;
}
return result; /* Nothing more to check */
}
/* For an endpoint supporting receive aggregation, the byte
* limit defines the point at which aggregation closes. This
* check ensures the receive buffer size doesn't result in a
* limit that exceeds what's representable in the aggregation
* byte limit field.
*/
aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
rx_config->aggr_hard_limit);
reg = ipa_reg(ipa, ENDP_INIT_AGGR);
limit = reg_field_max(reg, BYTE_LIMIT);
if (aggr_size > limit) {
dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
data->endpoint_id, aggr_size, limit);
return false;
}
return true; /* Nothing more to check for RX */
}
/* Starting with IPA v4.5 sequencer replication is obsolete */
if (ipa->version >= IPA_VERSION_4_5) {
if (data->endpoint.config.tx.seq_rep_type) {
dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n",
data->endpoint_id);
return false;
}
}
if (data->endpoint.config.status_enable) {
other_name = data->endpoint.config.tx.status_endpoint;
if (other_name >= count) {
dev_err(dev, "status endpoint name %u out of range "
"for endpoint %u\n",
other_name, data->endpoint_id);
return false;
}
/* Status endpoint must be defined... */
other_data = &all_data[other_name];
if (ipa_gsi_endpoint_data_empty(other_data)) {
dev_err(dev, "DMA endpoint name %u undefined "
"for endpoint %u\n",
other_name, data->endpoint_id);
return false;
}
/* ...and has to be an RX endpoint... */
if (other_data->toward_ipa) {
dev_err(dev,
"status endpoint for endpoint %u not RX\n",
data->endpoint_id);
return false;
}
/* ...and if it's to be an AP endpoint... */
if (other_data->ee_id == GSI_EE_AP) {
/* ...make sure it has status enabled. */
if (!other_data->endpoint.config.status_enable) {
dev_err(dev,
"status not enabled for endpoint %u\n",
other_data->endpoint_id);
return false;
}
}
}
if (data->endpoint.config.dma_mode) {
other_name = data->endpoint.config.dma_endpoint;
if (other_name >= count) {
dev_err(dev, "DMA endpoint name %u out of range "
"for endpoint %u\n",
other_name, data->endpoint_id);
return false;
}
other_data = &all_data[other_name];
if (ipa_gsi_endpoint_data_empty(other_data)) {
dev_err(dev, "DMA endpoint name %u undefined "
"for endpoint %u\n",
other_name, data->endpoint_id);
return false;
}
}
return true;
}
/* Validate endpoint configuration data. Return max defined endpoint ID */
static u32 ipa_endpoint_max(struct ipa *ipa, u32 count,
const struct ipa_gsi_endpoint_data *data)
{
const struct ipa_gsi_endpoint_data *dp = data;
struct device *dev = &ipa->pdev->dev;
enum ipa_endpoint_name name;
u32 max;
if (count > IPA_ENDPOINT_COUNT) {
dev_err(dev, "too many endpoints specified (%u > %u)\n",
count, IPA_ENDPOINT_COUNT);
return 0;
}
/* Make sure needed endpoints have defined data */
if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
dev_err(dev, "command TX endpoint not defined\n");
return 0;
}
if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
dev_err(dev, "LAN RX endpoint not defined\n");
return 0;
}
if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
dev_err(dev, "AP->modem TX endpoint not defined\n");
return 0;
}
if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
dev_err(dev, "AP<-modem RX endpoint not defined\n");
return 0;
}
max = 0;
for (name = 0; name < count; name++, dp++) {
if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
return 0;
max = max_t(u32, max, dp->endpoint_id);
}
return max;
}
/* Allocate a transaction to use on a non-command endpoint */
static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
u32 tre_count)
{
struct gsi *gsi = &endpoint->ipa->gsi;
u32 channel_id = endpoint->channel_id;
enum dma_data_direction direction;
direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
}
/* suspend_delay represents suspend for RX, delay for TX endpoints.
* Note that suspend is not supported starting with IPA v4.0, and
* delay mode should not be used starting with IPA v4.2.
*/
static bool
ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
{
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 field_id;
u32 offset;
bool state;
u32 mask;
u32 val;
if (endpoint->toward_ipa)
WARN_ON(ipa->version >= IPA_VERSION_4_2);
else
WARN_ON(ipa->version >= IPA_VERSION_4_0);
reg = ipa_reg(ipa, ENDP_INIT_CTRL);
offset = reg_n_offset(reg, endpoint->endpoint_id);
val = ioread32(ipa->reg_virt + offset);
field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
mask = reg_bit(reg, field_id);
state = !!(val & mask);
/* Don't bother if it's already in the requested state */
if (suspend_delay != state) {
val ^= mask;
iowrite32(val, ipa->reg_virt + offset);
}
return state;
}
/* We don't care what the previous state was for delay mode */
static void
ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
{
/* Delay mode should not be used for IPA v4.2+ */
WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
WARN_ON(!endpoint->toward_ipa);
(void)ipa_endpoint_init_ctrl(endpoint, enable);
}
static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
u32 unit = endpoint_id / 32;
const struct reg *reg;
u32 val;
WARN_ON(!test_bit(endpoint_id, ipa->available));
reg = ipa_reg(ipa, STATE_AGGR_ACTIVE);
val = ioread32(ipa->reg_virt + reg_n_offset(reg, unit));
return !!(val & BIT(endpoint_id % 32));
}
static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
u32 mask = BIT(endpoint_id % 32);
struct ipa *ipa = endpoint->ipa;
u32 unit = endpoint_id / 32;
const struct reg *reg;
WARN_ON(!test_bit(endpoint_id, ipa->available));
reg = ipa_reg(ipa, AGGR_FORCE_CLOSE);
iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, unit));
}
/**
* ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
* @endpoint: Endpoint on which to emulate a suspend
*
* Emulate suspend IPA interrupt to unsuspend an endpoint suspended
* with an open aggregation frame. This is to work around a hardware
* issue in IPA version 3.5.1 where the suspend interrupt will not be
* generated when it should be.
*/
static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
{
struct ipa *ipa = endpoint->ipa;
if (!endpoint->config.aggregation)
return;
/* Nothing to do if the endpoint doesn't have aggregation open */
if (!ipa_endpoint_aggr_active(endpoint))
return;
/* Force close aggregation */
ipa_endpoint_force_close(endpoint);
ipa_interrupt_simulate_suspend(ipa->interrupt);
}
/* Returns previous suspend state (true means suspend was enabled) */
static bool
ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
{
bool suspended;
if (endpoint->ipa->version >= IPA_VERSION_4_0)
return enable; /* For IPA v4.0+, no change made */
WARN_ON(endpoint->toward_ipa);
suspended = ipa_endpoint_init_ctrl(endpoint, enable);
/* A client suspended with an open aggregation frame will not
* generate a SUSPEND IPA interrupt. If enabling suspend, have
* ipa_endpoint_suspend_aggr() handle this.
*/
if (enable && !suspended)
ipa_endpoint_suspend_aggr(endpoint);
return suspended;
}
/* Put all modem RX endpoints into suspend mode, and stop transmission
* on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is
* used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
* control instead.
*/
void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
{
u32 endpoint_id = 0;
while (endpoint_id < ipa->endpoint_count) {
struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
if (endpoint->ee_id != GSI_EE_MODEM)
continue;
if (!endpoint->toward_ipa)
(void)ipa_endpoint_program_suspend(endpoint, enable);
else if (ipa->version < IPA_VERSION_4_2)
ipa_endpoint_program_delay(endpoint, enable);
else
gsi_modem_channel_flow_control(&ipa->gsi,
endpoint->channel_id,
enable);
}
}
/* Reset all modem endpoints to use the default exception endpoint */
int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
{
struct gsi_trans *trans;
u32 endpoint_id;
u32 count;
/* We need one command per modem TX endpoint, plus the commands
* that clear the pipeline.
*/
count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
trans = ipa_cmd_trans_alloc(ipa, count);
if (!trans) {
dev_err(&ipa->pdev->dev,
"no transaction to reset modem exception endpoints\n");
return -EBUSY;
}
for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
struct ipa_endpoint *endpoint;
const struct reg *reg;
u32 offset;
/* We only reset modem TX endpoints */
endpoint = &ipa->endpoint[endpoint_id];
if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
continue;
reg = ipa_reg(ipa, ENDP_STATUS);
offset = reg_n_offset(reg, endpoint_id);
/* Value written is 0, and all bits are updated. That
* means status is disabled on the endpoint, and as a
* result all other fields in the register are ignored.
*/
ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
}
ipa_cmd_pipeline_clear_add(trans);
gsi_trans_commit_wait(trans);
ipa_cmd_pipeline_clear_wait(ipa);
return 0;
}
static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
enum ipa_cs_offload_en enabled;
const struct reg *reg;
u32 val = 0;
reg = ipa_reg(ipa, ENDP_INIT_CFG);
/* FRAG_OFFLOAD_EN is 0 */
if (endpoint->config.checksum) {
enum ipa_version version = ipa->version;
if (endpoint->toward_ipa) {
u32 off;
/* Checksum header offset is in 4-byte units */
off = sizeof(struct rmnet_map_header) / sizeof(u32);
val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
enabled = version < IPA_VERSION_4_5
? IPA_CS_OFFLOAD_UL
: IPA_CS_OFFLOAD_INLINE;
} else {
enabled = version < IPA_VERSION_4_5
? IPA_CS_OFFLOAD_DL
: IPA_CS_OFFLOAD_INLINE;
}
} else {
enabled = IPA_CS_OFFLOAD_NONE;
}
val |= reg_encode(reg, CS_OFFLOAD_EN, enabled);
/* CS_GEN_QMB_MASTER_SEL is 0 */
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val;
if (!endpoint->toward_ipa)
return;
reg = ipa_reg(ipa, ENDP_INIT_NAT);
val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS);
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
static u32
ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
{
u32 header_size = sizeof(struct rmnet_map_header);
/* Without checksum offload, we just have the MAP header */
if (!endpoint->config.checksum)
return header_size;
if (version < IPA_VERSION_4_5) {
/* Checksum header inserted for AP TX endpoints only */
if (endpoint->toward_ipa)
header_size += sizeof(struct rmnet_map_ul_csum_header);
} else {
/* Checksum header is used in both directions */
header_size += sizeof(struct rmnet_map_v5_csum_header);
}
return header_size;
}
/* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */
static u32 ipa_header_size_encode(enum ipa_version version,
const struct reg *reg, u32 header_size)
{
u32 field_max = reg_field_max(reg, HDR_LEN);
u32 val;
/* We know field_max can be used as a mask (2^n - 1) */
val = reg_encode(reg, HDR_LEN, header_size & field_max);
if (version < IPA_VERSION_4_5) {
WARN_ON(header_size > field_max);
return val;
}
/* IPA v4.5 adds a few more most-significant bits */
header_size >>= hweight32(field_max);
WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB));
val |= reg_encode(reg, HDR_LEN_MSB, header_size);
return val;
}
/* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */
static u32 ipa_metadata_offset_encode(enum ipa_version version,
const struct reg *reg, u32 offset)
{
u32 field_max = reg_field_max(reg, HDR_OFST_METADATA);
u32 val;
/* We know field_max can be used as a mask (2^n - 1) */
val = reg_encode(reg, HDR_OFST_METADATA, offset);
if (version < IPA_VERSION_4_5) {
WARN_ON(offset > field_max);
return val;
}
/* IPA v4.5 adds a few more most-significant bits */
offset >>= hweight32(field_max);
WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB));
val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
return val;
}
/**
* ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
* @endpoint: Endpoint pointer
*
* We program QMAP endpoints so each packet received is preceded by a QMAP
* header structure. The QMAP header contains a 1-byte mux_id and 2-byte
* packet size field, and we have the IPA hardware populate both for each
* received packet. The header is configured (in the HDR_EXT register)
* to use big endian format.
*
* The packet size is written into the QMAP header's pkt_len field. That
* location is defined here using the HDR_OFST_PKT_SIZE field.
*
* The mux_id comes from a 4-byte metadata value supplied with each packet
* by the modem. It is *not* a QMAP header, but it does contain the mux_id
* value that we want, in its low-order byte. A bitmask defined in the
* endpoint's METADATA_MASK register defines which byte within the modem
* metadata contains the mux_id. And the OFST_METADATA field programmed
* here indicates where the extracted byte should be placed within the QMAP
* header.
*/
static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val = 0;
reg = ipa_reg(ipa, ENDP_INIT_HDR);
if (endpoint->config.qmap) {
enum ipa_version version = ipa->version;
size_t header_size;
header_size = ipa_qmap_header_size(version, endpoint);
val = ipa_header_size_encode(version, reg, header_size);
/* Define how to fill fields in a received QMAP header */
if (!endpoint->toward_ipa) {
u32 off; /* Field offset within header */
/* Where IPA will write the metadata value */
off = offsetof(struct rmnet_map_header, mux_id);
val |= ipa_metadata_offset_encode(version, reg, off);
/* Where IPA will write the length */
off = offsetof(struct rmnet_map_header, pkt_len);
/* Upper bits are stored in HDR_EXT with IPA v4.5 */
if (version >= IPA_VERSION_4_5)
off &= reg_field_max(reg, HDR_OFST_PKT_SIZE);
val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off);
}
/* For QMAP TX, metadata offset is 0 (modem assumes this) */
val |= reg_bit(reg, HDR_OFST_METADATA_VALID);
/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
/* HDR_A5_MUX is 0 */
/* HDR_LEN_INC_DEAGG_HDR is 0 */
/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
}
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
{
u32 pad_align = endpoint->config.rx.pad_align;
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val = 0;
reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
if (endpoint->config.qmap) {
/* We have a header, so we must specify its endianness */
val |= reg_bit(reg, HDR_ENDIANNESS); /* big endian */
/* A QMAP header contains a 6 bit pad field at offset 0.
* The RMNet driver assumes this field is meaningful in
* packets it receives, and assumes the header's payload
* length includes that padding. The RMNet driver does
* *not* pad packets it sends, however, so the pad field
* (although 0) should be ignored.
*/
if (!endpoint->toward_ipa) {
val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
}
}
/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
if (!endpoint->toward_ipa)
val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
/* IPA v4.5 adds some most-significant bits to a few fields,
* two of which are defined in the HDR (not HDR_EXT) register.
*/
if (ipa->version >= IPA_VERSION_4_5) {
/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
if (endpoint->config.qmap && !endpoint->toward_ipa) {
u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE);
u32 off; /* Field offset within header */
off = offsetof(struct rmnet_map_header, pkt_len);
/* Low bits are in the ENDP_INIT_HDR register */
off >>= hweight32(mask);
val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
}
}
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val = 0;
u32 offset;
if (endpoint->toward_ipa)
return; /* Register not valid for TX endpoints */
reg = ipa_reg(ipa, ENDP_INIT_HDR_METADATA_MASK);
offset = reg_n_offset(reg, endpoint_id);
/* Note that HDR_ENDIANNESS indicates big endian header fields */
if (endpoint->config.qmap)
val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
iowrite32(val, ipa->reg_virt + offset);
}
static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
{
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 offset;
u32 val;
if (!endpoint->toward_ipa)
return; /* Register not valid for RX endpoints */
reg = ipa_reg(ipa, ENDP_INIT_MODE);
if (endpoint->config.dma_mode) {
enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
val = reg_encode(reg, ENDP_MODE, IPA_DMA);
val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
} else {
val = reg_encode(reg, ENDP_MODE, IPA_BASIC);
}
/* All other bits unspecified (and 0) */
offset = reg_n_offset(reg, endpoint->endpoint_id);
iowrite32(val, ipa->reg_virt + offset);
}
/* For IPA v4.5+, times are expressed using Qtime. A time is represented
* at one of several available granularities, which are configured in
* ipa_qtime_config(). Three (or, starting with IPA v5.0, four) pulse
* generators are set up with different "tick" periods. A Qtime value
* encodes a tick count along with an indication of a pulse generator
* (which has a fixed tick period). Two pulse generators are always
* available to the AP; a third is available starting with IPA v5.0.
* This function determines which pulse generator most accurately
* represents the time period provided, and returns the tick count to
* use to represent that time.
*/
static u32
ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select)
{
u32 which = 0;
u32 ticks;
/* Pulse generator 0 has 100 microsecond granularity */
ticks = DIV_ROUND_CLOSEST(microseconds, 100);
if (ticks <= max)
goto out;
/* Pulse generator 1 has millisecond granularity */
which = 1;
ticks = DIV_ROUND_CLOSEST(microseconds, 1000);
if (ticks <= max)
goto out;
if (ipa->version >= IPA_VERSION_5_0) {
/* Pulse generator 2 has 10 millisecond granularity */
which = 2;
ticks = DIV_ROUND_CLOSEST(microseconds, 100);
}
WARN_ON(ticks > max);
out:
*select = which;
return ticks;
}
/* Encode the aggregation timer limit (microseconds) based on IPA version */
static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg,
u32 microseconds)
{
u32 ticks;
u32 max;
if (!microseconds)
return 0; /* Nothing to compute if time limit is 0 */
max = reg_field_max(reg, TIME_LIMIT);
if (ipa->version >= IPA_VERSION_4_5) {
u32 select;
ticks = ipa_qtime_val(ipa, microseconds, max, &select);
return reg_encode(reg, AGGR_GRAN_SEL, select) |
reg_encode(reg, TIME_LIMIT, ticks);
}
/* We program aggregation granularity in ipa_hardware_config() */
ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY);
WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n",
microseconds, max * IPA_AGGR_GRANULARITY);
return reg_encode(reg, TIME_LIMIT, ticks);
}
static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val = 0;
reg = ipa_reg(ipa, ENDP_INIT_AGGR);
if (endpoint->config.aggregation) {
if (!endpoint->toward_ipa) {
const struct ipa_endpoint_rx *rx_config;
u32 buffer_size;
u32 limit;
rx_config = &endpoint->config.rx;
val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
buffer_size = rx_config->buffer_size;
limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
rx_config->aggr_hard_limit);
val |= reg_encode(reg, BYTE_LIMIT, limit);
limit = rx_config->aggr_time_limit;
val |= aggr_time_limit_encode(ipa, reg, limit);
/* AGGR_PKT_LIMIT is 0 (unlimited) */
if (rx_config->aggr_close_eof)
val |= reg_bit(reg, SW_EOF_ACTIVE);
} else {
val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
/* other fields ignored */
}
/* AGGR_FORCE_CLOSE is 0 */
/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
} else {
val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
/* other fields ignored */
}
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
/* The head-of-line blocking timer is defined as a tick count. For
* IPA version 4.5 the tick count is based on the Qtimer, which is
* derived from the 19.2 MHz SoC XO clock. For older IPA versions
* each tick represents 128 cycles of the IPA core clock.
*
* Return the encoded value representing the timeout period provided
* that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register.
*/
static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
u32 microseconds)
{
u32 width;
u32 scale;
u64 ticks;
u64 rate;
u32 high;
u32 val;
if (!microseconds)
return 0; /* Nothing to compute if timer period is 0 */
if (ipa->version >= IPA_VERSION_4_5) {
u32 max = reg_field_max(reg, TIMER_LIMIT);
u32 select;
u32 ticks;
ticks = ipa_qtime_val(ipa, microseconds, max, &select);
return reg_encode(reg, TIMER_GRAN_SEL, 1) |
reg_encode(reg, TIMER_LIMIT, ticks);
}
/* Use 64 bit arithmetic to avoid overflow */
rate = ipa_core_clock_rate(ipa);
ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
/* We still need the result to fit into the field */
WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE));
/* IPA v3.5.1 through v4.1 just record the tick count */
if (ipa->version < IPA_VERSION_4_2)
return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
/* For IPA v4.2, the tick count is represented by base and
* scale fields within the 32-bit timer register, where:
* ticks = base << scale;
* The best precision is achieved when the base value is as
* large as possible. Find the highest set bit in the tick
* count, and extract the number of bits in the base field
* such that high bit is included.
*/
high = fls(ticks); /* 1..32 (or warning above) */
width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE));
scale = high > width ? high - width : 0;
if (scale) {
/* If we're scaling, round up to get a closer result */
ticks += 1 << (scale - 1);
/* High bit was set, so rounding might have affected it */
if (fls(ticks) != high)
scale++;
}
val = reg_encode(reg, TIMER_SCALE, scale);
val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
return val;
}
/* If microseconds is 0, timeout is immediate */
static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
u32 microseconds)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val;
/* This should only be changed when HOL_BLOCK_EN is disabled */
reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER);
val = hol_block_timer_encode(ipa, reg, microseconds);
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
static void
ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 offset;
u32 val;
reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
offset = reg_n_offset(reg, endpoint_id);
val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0;
iowrite32(val, ipa->reg_virt + offset);
/* When enabling, the register must be written twice for IPA v4.5+ */
if (enable && ipa->version >= IPA_VERSION_4_5)
iowrite32(val, ipa->reg_virt + offset);
}
/* Assumes HOL_BLOCK is in disabled state */
static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
u32 microseconds)
{
ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
ipa_endpoint_init_hol_block_en(endpoint, true);
}
static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
{
ipa_endpoint_init_hol_block_en(endpoint, false);
}
void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
{
u32 endpoint_id = 0;
while (endpoint_id < ipa->endpoint_count) {
struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
continue;
ipa_endpoint_init_hol_block_disable(endpoint);
ipa_endpoint_init_hol_block_enable(endpoint, 0);
}
}
static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val = 0;
if (!endpoint->toward_ipa)
return; /* Register not valid for RX endpoints */
reg = ipa_reg(ipa, ENDP_INIT_DEAGGR);
/* DEAGGR_HDR_LEN is 0 */
/* PACKET_OFFSET_VALID is 0 */
/* PACKET_OFFSET_LOCATION is ignored (not valid) */
/* MAX_PACKET_LEN is 0 (not enforced) */
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
{
u32 resource_group = endpoint->config.resource_group;
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val;
reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
val = reg_encode(reg, ENDP_RSRC_GRP, resource_group);
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val;
if (!endpoint->toward_ipa)
return; /* Register not valid for RX endpoints */
reg = ipa_reg(ipa, ENDP_INIT_SEQ);
/* Low-order byte configures primary packet processing */
val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
/* Second byte (if supported) configures replicated packet processing */
if (ipa->version < IPA_VERSION_4_5)
val |= reg_encode(reg, SEQ_REP_TYPE,
endpoint->config.tx.seq_rep_type);
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
/**
* ipa_endpoint_skb_tx() - Transmit a socket buffer
* @endpoint: Endpoint pointer
* @skb: Socket buffer to send
*
* Returns: 0 if successful, or a negative error code
*/
int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
{
struct gsi_trans *trans;
u32 nr_frags;
int ret;
/* Make sure source endpoint's TLV FIFO has enough entries to
* hold the linear portion of the skb and all its fragments.
* If not, see if we can linearize it before giving up.
*/
nr_frags = skb_shinfo(skb)->nr_frags;
if (nr_frags > endpoint->skb_frag_max) {
if (skb_linearize(skb))
return -E2BIG;
nr_frags = 0;
}
trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
if (!trans)
return -EBUSY;
ret = gsi_trans_skb_add(trans, skb);
if (ret)
goto err_trans_free;
trans->data = skb; /* transaction owns skb now */
gsi_trans_commit(trans, !netdev_xmit_more());
return 0;
err_trans_free:
gsi_trans_free(trans);
return -ENOMEM;
}
static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
const struct reg *reg;
u32 val = 0;
reg = ipa_reg(ipa, ENDP_STATUS);
if (endpoint->config.status_enable) {
val |= reg_bit(reg, STATUS_EN);
if (endpoint->toward_ipa) {
enum ipa_endpoint_name name;
u32 status_endpoint_id;
name = endpoint->config.tx.status_endpoint;
status_endpoint_id = ipa->name_map[name]->endpoint_id;
val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id);
}
/* STATUS_LOCATION is 0, meaning IPA packet status
* precedes the packet (not present for IPA v4.5+)
*/
/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */
}
iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
}
static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
struct gsi_trans *trans)
{
struct page *page;
u32 buffer_size;
u32 offset;
u32 len;
int ret;
buffer_size = endpoint->config.rx.buffer_size;
page = dev_alloc_pages(get_order(buffer_size));
if (!page)
return -ENOMEM;
/* Offset the buffer to make space for skb headroom */
offset = NET_SKB_PAD;
len = buffer_size - offset;
ret = gsi_trans_page_add(trans, page, len, offset);
if (ret)
put_page(page);
else
trans->data = page; /* transaction owns page now */
return ret;
}
/**
* ipa_endpoint_replenish() - Replenish endpoint receive buffers
* @endpoint: Endpoint to be replenished
*
* The IPA hardware can hold a fixed number of receive buffers for an RX
* endpoint, based on the number of entries in the underlying channel ring
* buffer. If an endpoint's "backlog" is non-zero, it indicates how many
* more receive buffers can be supplied to the hardware. Replenishing for
* an endpoint can be disabled, in which case buffers are not queued to
* the hardware.
*/
static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
{
struct gsi_trans *trans;
if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
return;
/* Skip it if it's already active */
if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
return;
while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
bool doorbell;
if (ipa_endpoint_replenish_one(endpoint, trans))
goto try_again_later;
/* Ring the doorbell if we've got a full batch */
doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
gsi_trans_commit(trans, doorbell);
}
clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
return;
try_again_later:
gsi_trans_free(trans);
clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
/* Whenever a receive buffer transaction completes we'll try to
* replenish again. It's unlikely, but if we fail to supply even
* one buffer, nothing will trigger another replenish attempt.
* If the hardware has no receive buffers queued, schedule work to
* try replenishing again.
*/
if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
schedule_delayed_work(&endpoint->replenish_work,
msecs_to_jiffies(1));
}
static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
{
set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
/* Start replenishing if hardware currently has no buffers */
if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
ipa_endpoint_replenish(endpoint);
}
static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
{
clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
}
static void ipa_endpoint_replenish_work(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct ipa_endpoint *endpoint;
endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
ipa_endpoint_replenish(endpoint);
}
static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
void *data, u32 len, u32 extra)
{
struct sk_buff *skb;
if (!endpoint->netdev)
return;
skb = __dev_alloc_skb(len, GFP_ATOMIC);
if (skb) {
/* Copy the data into the socket buffer and receive it */
skb_put(skb, len);
memcpy(skb->data, data, len);
skb->truesize += extra;
}
ipa_modem_skb_rx(endpoint->netdev, skb);
}
static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
struct page *page, u32 len)
{
u32 buffer_size = endpoint->config.rx.buffer_size;
struct sk_buff *skb;
/* Nothing to do if there's no netdev */
if (!endpoint->netdev)
return false;
WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
skb = build_skb(page_address(page), buffer_size);
if (skb) {
/* Reserve the headroom and account for the data */
skb_reserve(skb, NET_SKB_PAD);
skb_put(skb, len);
}
/* Receive the buffer (or record drop if unable to build it) */
ipa_modem_skb_rx(endpoint->netdev, skb);
return skb != NULL;
}
/* The format of an IPA packet status structure is the same for several
* status types (opcodes). Other types aren't currently supported.
*/
static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
{
switch (opcode) {
case IPA_STATUS_OPCODE_PACKET:
case IPA_STATUS_OPCODE_DROPPED_PACKET:
case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
return true;
default:
return false;
}
}
static bool
ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data)
{
struct ipa *ipa = endpoint->ipa;
enum ipa_status_opcode opcode;
u32 endpoint_id;
opcode = ipa_status_extract(ipa, data, STATUS_OPCODE);
if (!ipa_status_format_packet(opcode))
return true;
endpoint_id = ipa_status_extract(ipa, data, STATUS_DST_ENDPOINT);
if (endpoint_id != endpoint->endpoint_id)
return true;
return false; /* Don't skip this packet, process it */
}
static bool
ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data)
{
struct ipa_endpoint *command_endpoint;
enum ipa_status_mask status_mask;
struct ipa *ipa = endpoint->ipa;
u32 endpoint_id;
status_mask = ipa_status_extract(ipa, data, STATUS_MASK);
if (!status_mask)
return false; /* No valid tag */
/* The status contains a valid tag. We know the packet was sent to
* this endpoint (already verified by ipa_endpoint_status_skip()).
* If the packet came from the AP->command TX endpoint we know
* this packet was sent as part of the pipeline clear process.
*/
endpoint_id = ipa_status_extract(ipa, data, STATUS_SRC_ENDPOINT);
command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
if (endpoint_id == command_endpoint->endpoint_id) {
complete(&ipa->completion);
} else {
dev_err(&ipa->pdev->dev,
"unexpected tagged packet from endpoint %u\n",
endpoint_id);
}
return true;
}
/* Return whether the status indicates the packet should be dropped */
static bool
ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data)
{
enum ipa_status_exception exception;
struct ipa *ipa = endpoint->ipa;
u32 rule;
/* If the status indicates a tagged transfer, we'll drop the packet */
if (ipa_endpoint_status_tag_valid(endpoint, data))
return true;
/* Deaggregation exceptions we drop; all other types we consume */
exception = ipa_status_extract(ipa, data, STATUS_EXCEPTION);
if (exception)
return exception == IPA_STATUS_EXCEPTION_DEAGGR;
/* Drop the packet if it fails to match a routing rule; otherwise no */
rule = ipa_status_extract(ipa, data, STATUS_ROUTER_RULE_INDEX);
return rule == IPA_STATUS_RULE_MISS;
}
static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
struct page *page, u32 total_len)
{
u32 buffer_size = endpoint->config.rx.buffer_size;
void *data = page_address(page) + NET_SKB_PAD;
u32 unused = buffer_size - total_len;
struct ipa *ipa = endpoint->ipa;
u32 resid = total_len;
while (resid) {
u32 length;
u32 align;
u32 len;
if (resid < IPA_STATUS_SIZE) {
dev_err(&endpoint->ipa->pdev->dev,
"short message (%u bytes < %zu byte status)\n",
resid, IPA_STATUS_SIZE);
break;
}
/* Skip over status packets that lack packet data */
length = ipa_status_extract(ipa, data, STATUS_LENGTH);
if (!length || ipa_endpoint_status_skip(endpoint, data)) {
data += IPA_STATUS_SIZE;
resid -= IPA_STATUS_SIZE;
continue;
}
/* Compute the amount of buffer space consumed by the packet,
* including the status. If the hardware is configured to
* pad packet data to an aligned boundary, account for that.
* And if checksum offload is enabled a trailer containing
* computed checksum information will be appended.
*/
align = endpoint->config.rx.pad_align ? : 1;
len = IPA_STATUS_SIZE + ALIGN(length, align);
if (endpoint->config.checksum)
len += sizeof(struct rmnet_map_dl_csum_trailer);
if (!ipa_endpoint_status_drop(endpoint, data)) {
void *data2;
u32 extra;
/* Client receives only packet data (no status) */
data2 = data + IPA_STATUS_SIZE;
/* Have the true size reflect the extra unused space in
* the original receive buffer. Distribute the "cost"
* proportionately across all aggregated packets in the
* buffer.
*/
extra = DIV_ROUND_CLOSEST(unused * len, total_len);
ipa_endpoint_skb_copy(endpoint, data2, length, extra);
}
/* Consume status and the full packet it describes */
data += len;
resid -= len;
}
}
void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
struct gsi_trans *trans)
{
struct page *page;
if (endpoint->toward_ipa)
return;
if (trans->cancelled)
goto done;
/* Parse or build a socket buffer using the actual received length */
page = trans->data;
if (endpoint->config.status_enable)
ipa_endpoint_status_parse(endpoint, page, trans->len);
else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
trans->data = NULL; /* Pages have been consumed */
done:
ipa_endpoint_replenish(endpoint);
}
void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
struct gsi_trans *trans)
{
if (endpoint->toward_ipa) {
struct ipa *ipa = endpoint->ipa;
/* Nothing to do for command transactions */
if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
struct sk_buff *skb = trans->data;
if (skb)
dev_kfree_skb_any(skb);
}
} else {
struct page *page = trans->data;
if (page)
put_page(page);
}
}
void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
{
const struct reg *reg;
u32 val;
reg = ipa_reg(ipa, ROUTE);
/* ROUTE_DIS is 0 */
val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE);
/* ROUTE_DEF_HDR_OFST is 0 */
val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
iowrite32(val, ipa->reg_virt + reg_offset(reg));
}
void ipa_endpoint_default_route_clear(struct ipa *ipa)
{
ipa_endpoint_default_route_set(ipa, 0);
}
/**
* ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
* @endpoint: Endpoint to be reset
*
* If aggregation is active on an RX endpoint when a reset is performed
* on its underlying GSI channel, a special sequence of actions must be
* taken to ensure the IPA pipeline is properly cleared.
*
* Return: 0 if successful, or a negative error code
*/
static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
{
struct device *dev = &endpoint->ipa->pdev->dev;
struct ipa *ipa = endpoint->ipa;
struct gsi *gsi = &ipa->gsi;
bool suspended = false;
dma_addr_t addr;
u32 retries;
u32 len = 1;
void *virt;
int ret;
virt = kzalloc(len, GFP_KERNEL);
if (!virt)
return -ENOMEM;
addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, addr)) {
ret = -ENOMEM;
goto out_kfree;
}
/* Force close aggregation before issuing the reset */
ipa_endpoint_force_close(endpoint);
/* Reset and reconfigure the channel with the doorbell engine
* disabled. Then poll until we know aggregation is no longer
* active. We'll re-enable the doorbell (if appropriate) when
* we reset again below.
*/
gsi_channel_reset(gsi, endpoint->channel_id, false);
/* Make sure the channel isn't suspended */
suspended = ipa_endpoint_program_suspend(endpoint, false);
/* Start channel and do a 1 byte read */
ret = gsi_channel_start(gsi, endpoint->channel_id);
if (ret)
goto out_suspend_again;
ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
if (ret)
goto err_endpoint_stop;
/* Wait for aggregation to be closed on the channel */
retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
do {
if (!ipa_endpoint_aggr_active(endpoint))
break;
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
} while (retries--);
/* Check one last time */
if (ipa_endpoint_aggr_active(endpoint))
dev_err(dev, "endpoint %u still active during reset\n",
endpoint->endpoint_id);
gsi_trans_read_byte_done(gsi, endpoint->channel_id);
ret = gsi_channel_stop(gsi, endpoint->channel_id);
if (ret)
goto out_suspend_again;
/* Finally, reset and reconfigure the channel again (re-enabling
* the doorbell engine if appropriate). Sleep for 1 millisecond to
* complete the channel reset sequence. Finish by suspending the
* channel again (if necessary).
*/
gsi_channel_reset(gsi, endpoint->channel_id, true);
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
goto out_suspend_again;
err_endpoint_stop:
(void)gsi_channel_stop(gsi, endpoint->channel_id);
out_suspend_again:
if (suspended)
(void)ipa_endpoint_program_suspend(endpoint, true);
dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
out_kfree:
kfree(virt);
return ret;
}
static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
{
u32 channel_id = endpoint->channel_id;
struct ipa *ipa = endpoint->ipa;
bool special;
int ret = 0;
/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
* is active, we need to handle things specially to recover.
* All other cases just need to reset the underlying GSI channel.
*/
special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
endpoint->config.aggregation;
if (special && ipa_endpoint_aggr_active(endpoint))
ret = ipa_endpoint_reset_rx_aggr(endpoint);
else
gsi_channel_reset(&ipa->gsi, channel_id, true);
if (ret)
dev_err(&ipa->pdev->dev,
"error %d resetting channel %u for endpoint %u\n",
ret, endpoint->channel_id, endpoint->endpoint_id);
}
static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
{
if (endpoint->toward_ipa) {
/* Newer versions of IPA use GSI channel flow control
* instead of endpoint DELAY mode to prevent sending data.
* Flow control is disabled for newly-allocated channels,
* and we can assume flow control is not (ever) enabled
* for AP TX channels.
*/
if (endpoint->ipa->version < IPA_VERSION_4_2)
ipa_endpoint_program_delay(endpoint, false);
} else {
/* Ensure suspend mode is off on all AP RX endpoints */
(void)ipa_endpoint_program_suspend(endpoint, false);
}
ipa_endpoint_init_cfg(endpoint);
ipa_endpoint_init_nat(endpoint);
ipa_endpoint_init_hdr(endpoint);
ipa_endpoint_init_hdr_ext(endpoint);
ipa_endpoint_init_hdr_metadata_mask(endpoint);
ipa_endpoint_init_mode(endpoint);
ipa_endpoint_init_aggr(endpoint);
if (!endpoint->toward_ipa) {
if (endpoint->config.rx.holb_drop)
ipa_endpoint_init_hol_block_enable(endpoint, 0);
else
ipa_endpoint_init_hol_block_disable(endpoint);
}
ipa_endpoint_init_deaggr(endpoint);
ipa_endpoint_init_rsrc_grp(endpoint);
ipa_endpoint_init_seq(endpoint);
ipa_endpoint_status(endpoint);
}
int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
struct gsi *gsi = &ipa->gsi;
int ret;
ret = gsi_channel_start(gsi, endpoint->channel_id);
if (ret) {
dev_err(&ipa->pdev->dev,
"error %d starting %cX channel %u for endpoint %u\n",
ret, endpoint->toward_ipa ? 'T' : 'R',
endpoint->channel_id, endpoint_id);
return ret;
}
if (!endpoint->toward_ipa) {
ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id);
ipa_endpoint_replenish_enable(endpoint);
}
__set_bit(endpoint_id, ipa->enabled);
return 0;
}
void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
{
u32 endpoint_id = endpoint->endpoint_id;
struct ipa *ipa = endpoint->ipa;
struct gsi *gsi = &ipa->gsi;
int ret;
if (!test_bit(endpoint_id, ipa->enabled))
return;
__clear_bit(endpoint_id, endpoint->ipa->enabled);
if (!endpoint->toward_ipa) {
ipa_endpoint_replenish_disable(endpoint);
ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id);
}
/* Note that if stop fails, the channel's state is not well-defined */
ret = gsi_channel_stop(gsi, endpoint->channel_id);
if (ret)
dev_err(&ipa->pdev->dev,
"error %d attempting to stop endpoint %u\n", ret,
endpoint_id);
}
void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
{
struct device *dev = &endpoint->ipa->pdev->dev;
struct gsi *gsi = &endpoint->ipa->gsi;
int ret;
if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
return;
if (!endpoint->toward_ipa) {
ipa_endpoint_replenish_disable(endpoint);
(void)ipa_endpoint_program_suspend(endpoint, true);
}
ret = gsi_channel_suspend(gsi, endpoint->channel_id);
if (ret)
dev_err(dev, "error %d suspending channel %u\n", ret,
endpoint->channel_id);
}
void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
{
struct device *dev = &endpoint->ipa->pdev->dev;
struct gsi *gsi = &endpoint->ipa->gsi;
int ret;
if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
return;
if (!endpoint->toward_ipa)
(void)ipa_endpoint_program_suspend(endpoint, false);
ret = gsi_channel_resume(gsi, endpoint->channel_id);
if (ret)
dev_err(dev, "error %d resuming channel %u\n", ret,
endpoint->channel_id);
else if (!endpoint->toward_ipa)
ipa_endpoint_replenish_enable(endpoint);
}
void ipa_endpoint_suspend(struct ipa *ipa)
{
if (!ipa->setup_complete)
return;
if (ipa->modem_netdev)
ipa_modem_suspend(ipa->modem_netdev);
ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
}
void ipa_endpoint_resume(struct ipa *ipa)
{
if (!ipa->setup_complete)
return;
ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
if (ipa->modem_netdev)
ipa_modem_resume(ipa->modem_netdev);
}
static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
{
struct gsi *gsi = &endpoint->ipa->gsi;
u32 channel_id = endpoint->channel_id;
/* Only AP endpoints get set up */
if (endpoint->ee_id != GSI_EE_AP)
return;
endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
if (!endpoint->toward_ipa) {
/* RX transactions require a single TRE, so the maximum
* backlog is the same as the maximum outstanding TREs.
*/
clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
INIT_DELAYED_WORK(&endpoint->replenish_work,
ipa_endpoint_replenish_work);
}
ipa_endpoint_program(endpoint);
__set_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
}
static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
{
__clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
if (!endpoint->toward_ipa)
cancel_delayed_work_sync(&endpoint->replenish_work);
ipa_endpoint_reset(endpoint);
}
void ipa_endpoint_setup(struct ipa *ipa)
{
u32 endpoint_id;
for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
}
void ipa_endpoint_teardown(struct ipa *ipa)
{
u32 endpoint_id;
for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count)
ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
}
void ipa_endpoint_deconfig(struct ipa *ipa)
{
ipa->available_count = 0;
bitmap_free(ipa->available);
ipa->available = NULL;
}
int ipa_endpoint_config(struct ipa *ipa)
{
struct device *dev = &ipa->pdev->dev;
const struct reg *reg;
u32 endpoint_id;
u32 hw_limit;
u32 tx_count;
u32 rx_count;
u32 rx_base;
u32 limit;
u32 val;
/* Prior to IPA v3.5, the FLAVOR_0 register was not supported.
* Furthermore, the endpoints were not grouped such that TX
* endpoint numbers started with 0 and RX endpoints had numbers
* higher than all TX endpoints, so we can't do the simple
* direction check used for newer hardware below.
*
* For hardware that doesn't support the FLAVOR_0 register,
* just set the available mask to support any endpoint, and
* assume the configuration is valid.
*/
if (ipa->version < IPA_VERSION_3_5) {
ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL);
if (!ipa->available)
return -ENOMEM;
ipa->available_count = IPA_ENDPOINT_MAX;
bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX);
return 0;
}
/* Find out about the endpoints supplied by the hardware, and ensure
* the highest one doesn't exceed the number supported by software.
*/
reg = ipa_reg(ipa, FLAVOR_0);
val = ioread32(ipa->reg_virt + reg_offset(reg));
/* Our RX is an IPA producer; our TX is an IPA consumer. */
tx_count = reg_decode(reg, MAX_CONS_PIPES, val);
rx_count = reg_decode(reg, MAX_PROD_PIPES, val);
rx_base = reg_decode(reg, PROD_LOWEST, val);
limit = rx_base + rx_count;
if (limit > IPA_ENDPOINT_MAX) {
dev_err(dev, "too many endpoints, %u > %u\n",
limit, IPA_ENDPOINT_MAX);
return -EINVAL;
}
/* Until IPA v5.0, the max endpoint ID was 32 */
hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1;
if (limit > hw_limit) {
dev_err(dev, "unexpected endpoint count, %u > %u\n",
limit, hw_limit);
return -EINVAL;
}
/* Allocate and initialize the available endpoint bitmap */
ipa->available = bitmap_zalloc(limit, GFP_KERNEL);
if (!ipa->available)
return -ENOMEM;
ipa->available_count = limit;
/* Mark all supported RX and TX endpoints as available */
bitmap_set(ipa->available, 0, tx_count);
bitmap_set(ipa->available, rx_base, rx_count);
for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
struct ipa_endpoint *endpoint;
if (endpoint_id >= limit) {
dev_err(dev, "invalid endpoint id, %u > %u\n",
endpoint_id, limit - 1);
goto err_free_bitmap;
}
if (!test_bit(endpoint_id, ipa->available)) {
dev_err(dev, "unavailable endpoint id %u\n",
endpoint_id);
goto err_free_bitmap;
}
/* Make sure it's pointing in the right direction */
endpoint = &ipa->endpoint[endpoint_id];
if (endpoint->toward_ipa) {
if (endpoint_id < tx_count)
continue;
} else if (endpoint_id >= rx_base) {
continue;
}
dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id);
goto err_free_bitmap;
}
return 0;
err_free_bitmap:
ipa_endpoint_deconfig(ipa);
return -EINVAL;
}
static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
const struct ipa_gsi_endpoint_data *data)
{
struct ipa_endpoint *endpoint;
endpoint = &ipa->endpoint[data->endpoint_id];
if (data->ee_id == GSI_EE_AP)
ipa->channel_map[data->channel_id] = endpoint;
ipa->name_map[name] = endpoint;
endpoint->ipa = ipa;
endpoint->ee_id = data->ee_id;
endpoint->channel_id = data->channel_id;
endpoint->endpoint_id = data->endpoint_id;
endpoint->toward_ipa = data->toward_ipa;
endpoint->config = data->endpoint.config;
__set_bit(endpoint->endpoint_id, ipa->defined);
}
static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
{
__clear_bit(endpoint->endpoint_id, endpoint->ipa->defined);
memset(endpoint, 0, sizeof(*endpoint));
}
void ipa_endpoint_exit(struct ipa *ipa)
{
u32 endpoint_id;
ipa->filtered = 0;
for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
bitmap_free(ipa->enabled);
ipa->enabled = NULL;
bitmap_free(ipa->set_up);
ipa->set_up = NULL;
bitmap_free(ipa->defined);
ipa->defined = NULL;
memset(ipa->name_map, 0, sizeof(ipa->name_map));
memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
}
/* Returns a bitmask of endpoints that support filtering, or 0 on error */
int ipa_endpoint_init(struct ipa *ipa, u32 count,
const struct ipa_gsi_endpoint_data *data)
{
enum ipa_endpoint_name name;
u32 filtered;
BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
/* Number of endpoints is one more than the maximum ID */
ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1;
if (!ipa->endpoint_count)
return -EINVAL;
/* Initialize endpoint state bitmaps */
ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
if (!ipa->defined)
return -ENOMEM;
ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
if (!ipa->set_up)
goto err_free_defined;
ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
if (!ipa->enabled)
goto err_free_set_up;
filtered = 0;
for (name = 0; name < count; name++, data++) {
if (ipa_gsi_endpoint_data_empty(data))
continue; /* Skip over empty slots */
ipa_endpoint_init_one(ipa, name, data);
if (data->endpoint.filter_support)
filtered |= BIT(data->endpoint_id);
if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
ipa->modem_tx_count++;
}
/* Make sure the set of filtered endpoints is valid */
if (!ipa_filtered_valid(ipa, filtered)) {
ipa_endpoint_exit(ipa);
return -EINVAL;
}
ipa->filtered = filtered;
return 0;
err_free_set_up:
bitmap_free(ipa->set_up);
ipa->set_up = NULL;
err_free_defined:
bitmap_free(ipa->defined);
ipa->defined = NULL;
return -ENOMEM;
}